Project 1 feedback

• Unexpected grading issues. Sorry! Grading should be done Thursday!

• Some common errors:

• Make live easy for the TA’s!: answers not in report, excessively long reports, report not stapled together, missing name or ID…

• Make sure we can understand your plot: legend, lines look different in black&white, axes are labeled, …
Project 4 teams

• Project 4 and 5 will be bigger projects
• Longer time, but also more work
• Should be done in **teams of 3**
 (Working alone is discouraged, as you’ll have to do the work of 3 people by yourself…)
• Teams must be **completely different** between project 4 and 5
• Teams must consist of only people in section 002!
• Project 4 starts end of next week. You can already start looking for teams. There’ll be a myCourses forum to find partners.
Quizzes

• Practice questions available for:
 – SVM (2nd part)
 – Decision trees
 – Ensemble methods
Main types of machine learning problems

- Supervised learning
 - Classification
 - Regression
 - Ensemble methods
- Unsupervised learning
- Reinforcement learning
Recap ensemble methods so far

- Combine multiple classifiers (or regressors)
- Hopefully, each classifier makes different mistakes
- In that case, combining them might help
- 2 ways so far to obtain different classifiers from the same family
 - Independent training using randomized dataset and/or training
 - Bagging, random forests, extremely randomized trees
 - Add classifiers that focus on examples ensemble gets wrong
 - Boosting
 - Both typically use a large amount of classifiers
- Can we combine some classifiers of different types?
Stacking

- Basic idea: use the output of multiple classifiers as input to a meta-model
- We ‘stack’ the meta-model on top of the base models

Classification

\[
\begin{align*}
&x \rightarrow \text{NB} \\
&x \rightarrow \text{knn} \\
&x \rightarrow \text{svm} \\
&\text{meta} \rightarrow \hat{y}
\end{align*}
\]

Regression

\[
\begin{align*}
&x \rightarrow \text{DT} \\
&x \rightarrow \text{LR} \\
&x \rightarrow \text{knn} \\
&\text{meta} \rightarrow \hat{y}
\end{align*}
\]
Stacking example

Base models

Stacked model

Source: https://gormanalysis.com/guide-to-model-stacking-i-e-meta-ensembling/
Stacking example

Base models

Stacked model

Source: https://gormanalysis.com/guide-to-model-stacking-i-e-meta-ensembling/
Stacking – a naïve approach

• Let’s consider the regression case
• Base model predictions are \(f_1(x), \ldots, f_L(x) \)
• Meta learner could be a simple linear combination

\[
f_{\text{meta}}(x) = \sum_{i=1}^{L} w_i f_i(x)
\]

• If we could choose \(w \) to minimize true error, the stacked model would always be at least as good as any base model!
 – Worst case we set all \(w_i \) to 0 except that of the best base model
• But what if we minimize the train error instead?
Stacking – a naïve approach

- Consider the following base models

- What weights would minimize train set error?

- Does that yield good generalization error for the meta model?
Stacking – a naïve approach

- Naïve implementation of stacking prefers over-fitted models
- Underlying problem: the outputs of the base models have been adapted to the labels.
- Thus, inputs of the meta model are not representative of the inputs it will get at test-time.
- To avoid preference for overfitted models, inputs to the meta-model should not have seen the labels for the data points themselves.
Stacking – second attempt

• Naïve implementation of stacking prefers over-fitted models

• Underlying problem: the outputs of the base models have been adapted to the labels.

• Thus, inputs of the meta model are not representative of the inputs it will get at test-time.

• To avoid preference for overfitted models, inputs to the meta-model should not have seen the labels for the data points themselves
Stacking – second attempt

<table>
<thead>
<tr>
<th>Fold</th>
<th>x_1</th>
<th>x_2</th>
<th>f_1</th>
<th>f_2</th>
<th>f_{meta}</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.8</td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
<td>1.5</td>
</tr>
<tr>
<td>2</td>
<td>0.9</td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
<td>0.8</td>
</tr>
<tr>
<td>4</td>
<td>0.1</td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
<td>-0.7</td>
</tr>
<tr>
<td>3</td>
<td>0.6</td>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
<td>1.3</td>
</tr>
<tr>
<td>4</td>
<td>0.1</td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
<td>0.1</td>
</tr>
<tr>
<td>2</td>
<td>0.3</td>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
<td>0.1</td>
</tr>
<tr>
<td>3</td>
<td>0.5</td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.9</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td>1.0</td>
</tr>
</tbody>
</table>
Stacking – second attempt

- Train base models on folds 2-4 and predict for fold 1

<table>
<thead>
<tr>
<th>Fold</th>
<th>x₁</th>
<th>x₂</th>
<th>f₁</th>
<th>f₂</th>
<th>f_{meta}</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.8</td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
<td>1.5</td>
</tr>
<tr>
<td>2</td>
<td>0.9</td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
<td>0.8</td>
</tr>
<tr>
<td>4</td>
<td>0.1</td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
<td>-0.7</td>
</tr>
<tr>
<td>3</td>
<td>0.6</td>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
<td>1.3</td>
</tr>
<tr>
<td>4</td>
<td>0.1</td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
<td>0.1</td>
</tr>
<tr>
<td>2</td>
<td>0.3</td>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
<td>0.1</td>
</tr>
<tr>
<td>3</td>
<td>0.5</td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
<td>0.2</td>
</tr>
<tr>
<td>1</td>
<td>0.9</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td>1.0</td>
</tr>
</tbody>
</table>
Stacking – second attempt

- Train base models on folds 2-4 and predict for fold 1

<table>
<thead>
<tr>
<th>Fold</th>
<th>x_1</th>
<th>x_2</th>
<th>f_1</th>
<th>f_2</th>
<th>f_{meta}</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.8</td>
<td>0.1</td>
<td>2.4</td>
<td>0.5</td>
<td></td>
<td>1.5</td>
</tr>
<tr>
<td>2</td>
<td>0.9</td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
<td>0.8</td>
</tr>
<tr>
<td>3</td>
<td>0.6</td>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
<td>1.3</td>
</tr>
<tr>
<td>4</td>
<td>0.1</td>
<td>0.9</td>
<td></td>
<td></td>
<td>-0.7</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.3</td>
<td>0.4</td>
<td></td>
<td></td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.5</td>
<td>0.9</td>
<td></td>
<td></td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.9</td>
<td>1.0</td>
<td>0.0</td>
<td>0.2</td>
<td></td>
<td>1.0</td>
</tr>
</tbody>
</table>

Train data
Stacking – second attempt

- Train base models on folds 1, 3, 4 and predict for fold 2

<table>
<thead>
<tr>
<th>Fold</th>
<th>x₁</th>
<th>x₂</th>
<th>f₁</th>
<th>f₂</th>
<th>f_{meta}</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.8</td>
<td>0.1</td>
<td>2.4</td>
<td>0.5</td>
<td></td>
<td>1.5</td>
</tr>
<tr>
<td>2</td>
<td>0.9</td>
<td>0.9</td>
<td>-2.2</td>
<td>0.7</td>
<td></td>
<td>0.8</td>
</tr>
<tr>
<td>4</td>
<td>0.1</td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
<td>-0.7</td>
</tr>
<tr>
<td>3</td>
<td>0.6</td>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
<td>1.3</td>
</tr>
<tr>
<td>4</td>
<td>0.1</td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
<td>0.1</td>
</tr>
<tr>
<td>2</td>
<td>0.3</td>
<td>0.4</td>
<td>0.2</td>
<td>-0.3</td>
<td></td>
<td>0.1</td>
</tr>
<tr>
<td>3</td>
<td>0.5</td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
<td>0.2</td>
</tr>
<tr>
<td>1</td>
<td>0.9</td>
<td>1.0</td>
<td>0.0</td>
<td>0.2</td>
<td></td>
<td>1.0</td>
</tr>
</tbody>
</table>
Stacking – second attempt

- Train base models on folds 1, 2, 4 and predict for fold 3

<table>
<thead>
<tr>
<th>Fold</th>
<th>x_1</th>
<th>x_2</th>
<th>f_1</th>
<th>f_2</th>
<th>f_{meta}</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.8</td>
<td>0.1</td>
<td>2.4</td>
<td>0.5</td>
<td></td>
<td>1.5</td>
</tr>
<tr>
<td>2</td>
<td>0.9</td>
<td>0.9</td>
<td>-2.2</td>
<td>0.7</td>
<td></td>
<td>0.8</td>
</tr>
<tr>
<td>4</td>
<td>0.1</td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
<td>-0.7</td>
</tr>
<tr>
<td>3</td>
<td>0.6</td>
<td>0.8</td>
<td>1.3</td>
<td>1.2</td>
<td></td>
<td>1.3</td>
</tr>
<tr>
<td>4</td>
<td>0.1</td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
<td>0.1</td>
</tr>
<tr>
<td>2</td>
<td>0.3</td>
<td>0.4</td>
<td>0.2</td>
<td>-0.3</td>
<td></td>
<td>0.1</td>
</tr>
<tr>
<td>3</td>
<td>0.5</td>
<td>0.9</td>
<td>0.5</td>
<td>0.7</td>
<td></td>
<td>0.2</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>1</td>
<td>0.9</td>
<td>1.0</td>
<td>0.0</td>
<td>0.2</td>
<td></td>
<td>1.0</td>
</tr>
</tbody>
</table>
Stacking – second attempt

- Train base models on folds 1,2,3 and predict for fold 4

<table>
<thead>
<tr>
<th>Fold</th>
<th>x_1</th>
<th>x_2</th>
<th>f_1</th>
<th>f_2</th>
<th>f_{meta}</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.8</td>
<td>0.1</td>
<td>2.4</td>
<td>0.5</td>
<td></td>
<td>1.5</td>
</tr>
<tr>
<td>2</td>
<td>0.9</td>
<td>0.9</td>
<td>-2.2</td>
<td>0.7</td>
<td></td>
<td>0.8</td>
</tr>
<tr>
<td>4</td>
<td>0.1</td>
<td>0.9</td>
<td>-1.1</td>
<td>-0.7</td>
<td></td>
<td>-0.7</td>
</tr>
<tr>
<td>3</td>
<td>0.6</td>
<td>0.8</td>
<td>1.3</td>
<td>1.2</td>
<td></td>
<td>1.3</td>
</tr>
<tr>
<td>4</td>
<td>0.1</td>
<td>0.1</td>
<td>-0.5</td>
<td>0.3</td>
<td></td>
<td>0.1</td>
</tr>
<tr>
<td>2</td>
<td>0.3</td>
<td>0.4</td>
<td>0.2</td>
<td>-0.3</td>
<td></td>
<td>0.1</td>
</tr>
<tr>
<td>3</td>
<td>0.5</td>
<td>0.9</td>
<td>0.5</td>
<td>0.7</td>
<td></td>
<td>0.2</td>
</tr>
<tr>
<td>⋮</td>
<td>⋮</td>
<td>⋮</td>
<td>⋮</td>
<td>⋮</td>
<td>⋮</td>
<td>⋮</td>
</tr>
<tr>
<td>1</td>
<td>0.9</td>
<td>1.0</td>
<td>0.0</td>
<td>0.2</td>
<td></td>
<td>1.0</td>
</tr>
</tbody>
</table>
Stacking – second attempt

• Now, we can train the meta-model on the data in the base model outputs paired with the target label
• Any base-model output is now a good indication of test-time behavior
• If the meta-model has free parameters itself, can cross-validate using the same folds
• Usually, the meta-model is relatively simple (e.g. linear regression or logistic regression)
Testing the stacked model

- To test the stacked model, again we set aside a test set from the very beginning
- Have several versions of the base models from cross-validation!
- Two approaches:
 - Retrain the base models on the whole dataset
 - Possible disadvantage: slightly different input to meta-model
 - Use an average of the trained base models
 - Possible disadvantage: time cost
- Then feed the base model predictions into the trained meta-model
Comparison to model selection

• If we force meta-learner to use just one base model (with weight 1) and set all other weights to 0, this is equivalent to selecting the best model with cross-validation

• More expressive meta-models (e.g. linear / logistic regression) can leverage the relative strength of multiple models

• A very complex meta-model (e.g. decision tree) could again easily overfit

• Could use cross-validation on the meta-level to ensure good generalization properties
Effectiveness of stacking

- Stacking generally improves performance, but not by much
- Additional cost of training and evaluating multiple models
- Depending on conditions, it might or might not be worth it:
 - If interpretability or latency are important consideration, stacking might not help you much.
 - In competitions where a small gain is important and time cost is not so much of an issue, it is usually effective!
 - Quite useful in collaborative approaches where everyone can integrate their own model in overall system
Any questions about stacking?
Steps to solving a supervised learning problem

1. Decide what the input-output pairs are.
2. Decide how to encode inputs and outputs.
 - This defines the input space X and output space Y.
3. Choose a class of hypotheses / representations H.
 - E.g. linear functions.
4. Choose an error function (cost function) to define best hypothesis.
 - E.g. Least-mean squares.
5. Choose an algorithm for searching through space of hypotheses.

Today and Monday: deciding on what the inputs are

So far: we have been focusing on this
Feature Extraction Steps

Ideas for feature construction?
A few strategies we discussed

- Use **domain knowledge** to construct “ad hoc” features.
- **Normalization** across different **features**, e.g. centering and scaling with $x_i = (x'_i - \mu_i) / \sigma_i$.
- **Normalization** across different **data instances**, e.g. counts/histogram of pixel colors.
- **Non-linear expansions** when first order interactions are not enough for good results, e.g. products x_1x_2, x_1x_3, etc.
- Other functions of features (e.g. sin, cos, log, exponential etc.)
- Selecting features by predictive value
- **Regularization** (lasso, ridge).
Delving deeper…

- Use **domain knowledge** to construct “ad hoc” features.
 - Look at some domain-specific features for language data
- **Non-linear expansions**
 - What are some good expansions to try?
 - How to select useful expansions?
- **Selecting features by predictive value**
 - Finding good subsets of features (next lecture…)
- **New**: combine multiple features into a single feature
 - Dimensionality reduction (next lecture…)

COMP-551: Applied Machine Learning
Herke van Hoof
Why do we do feature construction?

- Increase predictor performance.
- Reduce time / memory requirements.
- Improve interpretability.

But: Don't lose important information!
Features for modelling natural language

- Words
- TF-IDF
- N-grams
- Word embeddings
- Useful Python package for implementing these:
 - Natural Language toolkit: http://www.nltk.org/
Words

• Binary (present or absent)

• Absolute frequency
 – i.e., raw count

• Relative frequency
 – i.e., proportion
 – document length

<table>
<thead>
<tr>
<th>Term</th>
<th>Document 1</th>
<th>Document 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>aid</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>all</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>back</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>brown</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>come</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>dog</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>fox</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>good</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>jump</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>lazy</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>men</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>now</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>over</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>party</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>quick</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>their</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>time</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Stopword List

- for
- is
- of
- the
- to
More options for words

- **Stopwords**
 - Common words like “the”, “of”, “about” are unlikely to be informative about the contents of a document. Remove!

- **Lemmatization**
 - Inflectional morphology: changes to a word required by the grammar of a language
 - e.g., “perplexing” “perplexed” “perplexes”
 - (Much worse in languages other than English, Chinese, Vietnamese)
 - **Lemmatize** to recover the canonical form; e.g., “perplex”
Term weighting

• Words that occur more often influence decision boundary more

• Not all words are equally important.

• What do you know about an article if it contains the word

 • *the*?

 • *penguin*?
TF*IDF (Salton, 1988)

- **Term Frequency Times Inverse Document Frequency**
- A term is important/indicative of a document if it:
 1. Appears many times in the document
 2. Is a relative rare word overall
- TF is usually just the count of the word
- IDF is a little more complicated:

 $IDF(t, Corpus) = \log \frac{\#(\text{Docs in } corpus)}{\#(\text{Docs with term } t) + 1}$

 - Need a separate large training corpus for this
- Originally designed for document retrieval
N-grams

- Use sequences of words, instead of individual words
- e.g., ... quick brown fox jumped ...
 - Unigrams (i.e. words)
 - quick, brown, fox, jumped
 - Bigrams
 - quick_brown, brown_fox, fox_jumped
 - Trigrams
 - quick_brown_fox, brown_fox_jumped
- Usually stop at N <= 3, unless you have lots and lots of data
Word embedding models

• Problems with above:
 – Number of features scales with size of vocabulary!
 – Many words are semantically related and behave similarly (e.g.,
 freedom vs liberty)

• Word embedding models can help us:
 – Embed each word into a fixed-dimension space
 – Learn correlations between words with similar meanings
Word embedding models

- Main idea: Represent each word by a vector
- The vector could encode different properties of the word, that should be locally consistent

![Diagram showing the relationship between gender and titles in a word embedding model.](diagram.png)
word2vec (Mikolov et al., 2013)

• Intuition:
 – Words that appear in similar contexts should be semantically related, so they should have similar word vector representations

• Actually two models:
 • **Continuous bag of words (CBOW)** – use context words to predict a target word
 • **Skip-gram** – use target word to predict context words

• In both cases, the representation that is associated with the target word is the embedding that is learned.
word2vec Architectures

Figure 1: New model architectures. The CBOW architecture predicts the current word based on the context, and the Skip-gram predicts surrounding words given the current word.
Practical word2vec

- Pre-trained word embeddings are available for download online
 - Google News corpus
 - Freebase entities
- Can also train your own word2vec model, if you have more specialized data
- Training is done using gradient descent
- Another popular option:
 - GloVe (Pennington et al., 2014)
What you should know

• Basic idea of stacking model and how to use it
• Main strengths and limitations of stacking
• Know some features for natural language data