COMP 551 – Applied Machine Learning Lecture 12: Stacking and features

Instructor: Herke van Hoof (*herke.vanhoof@mcgill.ca*)

Class web page: www.cs.mcgill.ca/~hvanho2/comp551

Unless otherwise noted, all material posted for this course are copyright of the instructor, and cannot be reused or reposted without the instructor's written permission.

Project 1 feedback

- Unexpected grading issues. Sorry! Grading should be done Thursday!
- Some common errors:
- Make live easy for the TA's!: answers not in report, excessively long reports, report not stapled together, missing name or ID...
- Make sure we can understand your plot: legend, lines look different in black&white, axes are labeled, ...

Project 4 teams

- Project 4 and 5 will be bigger projects
- Longer time, but also more work
- Should be done in teams of 3

 (Working alone is discouraged, as you'll have to do the work of
 3 people by yourself...)
- Teams must be **completely different** between project 4 and 5
- Teams must consist of only people in section 002!
- Project 4 starts end of next week. You can already start looking for teams. There'll be a myCourses forum to find partners.

Quizzes

- Practice questions available for:
 - SVM (2nd part)
 - Decision trees
 - Ensemble methods

Main types of machine learning problems

• Reinforcement learning

Recap ensemble methods so far

- Combine multiple classifiers (or regressors)
- Hopefully, each classifier makes different mistakes
- In that case, combining them might help
- 2 ways so far to obtain different classifiers from the same *family*
 - Independent training using randomized dataset and/or training
 - Bagging, random forests, extremely randomized trees
 - Add classifiers that focus on examples ensemble gets wrong
 - Boosting
 - Both typically use a large amount of classifiers
- Can we combine some classifiers of different types?

Stacking

- Basic idea: use the output of multiple classifiers as input to a meta-model
- We 'stack' the meta-model on top of the base models

Stacking example

Base models

Stacked model

Source: https://gormanalysis.com/guide-to-model-stacking-i-e-meta-ensembling/

COMP-551: Applied Machine Learning

Stacking example

COMP-551: Applied Machine Learning

Stacking – a naïve approach

- Let's consider the regression case
- Base model predictions are $f_1(\mathbf{x}), \ldots, f_L(\mathbf{x})$
- Meta learner could be a simple linear combination

$$f_{\text{meta}}(\mathbf{x}) = \sum_{i=1}^{L} w_i f_i(\mathbf{x})$$

- If we could choose w to minimize true error, the stacked model would always be at least as good as any base model!
 - Worst case we set all w_i to 0 except that of the best base model
- But what if we minimize the train error instead?

Stacking – a naïve approach

• Consider the following base models

- What weights would minimize train set error?
- Does that yield good generalization error for the meta model?

COMP-551: Applied Machine Learning

Stacking – a naïve approach

- Naïve implementation of stacking prefers over-fitted models
- Underlying problem: the outputs of the base models have been adapted to the labels.
- Thus, inputs of the meta model are not representative of the inputs it will get at test-time.
- To avoid preference for overfitted models, inputs to the metamodel should not have seen the labels for the data points themselves

- Naïve implementation of stacking prefers over-fitted models
- Underlying problem: the outputs of the base models have been adapted to the labels.
- Thus, inputs of the meta model are not representative of the inputs it will get at test-time.
- To avoid preference for overfitted models, inputs to the metamodel should not have seen the labels for the data points themselves

Fold	x ₁	x ₂	f ₁	f ₂	f_{meta}	У
1	0.8	0.1				1.5
2	0.9	0.9				0.8
4	0.1	0.9				-0.7
3	0.6	0.8				1.3
4	0.1	0.1				0.1
2	0.3	0.4				0.1
3	0.5	0.9				0.2
:	ł	ł	ł	ł	ł	ł
1	0.9	1.0				1.0

COMP-551: Applied Machine Learning

• Train base models on folds 2-4 and predict for fold 1

	Fold	x ₁	x ₂	f ₁	f ₂	f _{meta}	У
	1	0.8	0.1				1.5
	2	0.9	0.9				0.8
Ita	4	0.1	0.9				-0.7
	3	0.6	0.8				1.3
Train	4	0.1	0.1				0.1
Ē	2	0.3	0.4				0.1
	3	0.5	0.9				0.2
	I	I	I	E	:	I	:
	1	0.9	1.0				1.0

COMP-551: Applied Machine Learning

• Train base models on folds 2-4 and predict for fold 1

	Fold	x ₁	x ₂	f ₁	f ₂	f _{meta}	У
	1	0.8	0.1	2.4	0.5		1.5
	2	0.9	0.9				0.8
Ita	4	0.1	0.9				-0.7
data	3	0.6	0.8				1.3
Train	4	0.1	0.1				0.1
Ĕ	2	0.3	0.4				0.1
	3	0.5	0.9				0.2
	i	E	1	1	1	I	E
	1	0.9	1.0	0.0	0.2		1.0

• Train base models on folds 1,3,4 and predict for fold 2

	Fold	x ₁	x ₂	f ₁	f ₂	f _{meta}	У
	1	0.8	0.1	2.4	0.5		1.5
	2	0.9	0.9	-2.2	0.7		0.8
ta	4	0.1	0.9				-0.7
data	3	0.6	0.8				1.3
Train	4	0.1	0.1				0.1
F	2	0.3	0.4	0.2	-0.3		0.1
	3	0.5	0.9				0.2
	1	ł	1	ł	ł	:	1
	1	0.9	1.0	0.0	0.2		1.0

COMP-551: Applied Machine Learning

• Train base models on folds 1,2,4 and predict for fold 3

	Fold	x ₁	x ₂	f ₁	f ₂	f _{meta}	У
	1	0.8	0.1	2.4	0.5		1.5
	2	0.9	0.9	-2.2	0.7		0.8
ta	4	0.1	0.9				-0.7
-	3	0.6	0.8	1.3	1.2		1.3
Train	4	0.1	0.1				0.1
Ľ	2	0.3	0.4	0.2	-0.3		0.1
	3	0.5	0.9	0.5	0.7		0.2
	I	E	1	ł	ł	E	1
	1	0.9	1.0	0.0	0.2		1.0

COMP-551: Applied Machine Learning

• Train base models on folds 1,2,3 and predict for fold 4

	Fold	x ₁	X ₂	f ₁	f ₂	f _{meta}	У
	1	0.8	0.1	2.4	0.5		1.5
	2	0.9	0.9	-2.2	0.7		0.8
Ita	4	0.1	0.9	-1.1	-0.7		-0.7
data	3	0.6	0.8	1.3	1.2		1.3
Train	4	0.1	0.1	-0.5	0.3		0.1
Ľ	2	0.3	0.4	0.2	-0.3		0.1
	3	0.5	0.9	0.5	0.7		0.2
	1	ł	:	ł	ł	ł	1
	1	0.9	1.0	0.0	0.2		1.0

COMP-551: Applied Machine Learning

- Now, we can train the meta-model on the data in the base model outputs paired with the target label
- Any base-model output is now a good indication of test-time behavior
- If the meta-model has free parameters itself, can cross-validate using the same folds
- Usually, the meta-model is relatively simple (e.g. linear regression or logistic regression)

Testing the stacked model

- To test the stacked model, again we set aside a test set from the very beginning
- Have several versions of the base models from cross-validation!
- Two approaches:
 - Retrain the base models on the whole dataset
 - Possible disadvantage: slightly different input to meta-model
 - Use an average of the trained base models
 - Possible disadvantage: time cost
- Then feed the base model predictions into the trained metamodel

Comparison to model selection

- If we force meta-learner to use just one base model (with weight 1) and set all other weights to 0, this is equivalent to selecting the best model with cross-validation
- More expressive meta-models (e.g. linear / logistic regression)
 can leverage the relative strength of multiple models
- A very complex meta-model (e.g. decision tree) could again easily overfit
- Could use cross-validation on the meta-level to ensure good generalization properties

Effectiveness of stacking

- Stacking generally improves performance, but not by much
- Additional cost of training and evaluating multiple models
- Depending on conditions, it might or might not be worth it:
 - If interpretability or latency are important consideration, stacking might not help you much.
 - In competitions where a small gain is important and time cost is not so much of an issue, it is usually effective!
 - Quite useful in collaborative approaches where everyone can integrate their own model in overall system

Any questions about stacking?

Steps to solving a supervised learning problem

- 1. Decide what the input-output pairs are.
- 2. Decide how to encode inputs and outputs.
 - This defines the input space X and output space Y.
- 3. Choose a class of hypotheses / representations H.
 - E.g. linear functions.
- Choose an error function (cost function) to define best hypothesis.
 - E.g. Least-mean squares.
- Choose an algorithm for searching through space of hypotheses.

Today and

deciding on

Monday:

what the

Feature Extraction Steps

Ideas for feature construction?

COMP-551: Applied Machine Learning

A few strategies we discussed

- Use domain knowledge to construct "ad hoc" features.
- Normalization across different features, e.g. centering and scaling with $x_i = (x'_i \mu_i) / \sigma_i$.
- <u>Normalization</u> across different data <u>instances</u>, e.g. counts/histogram of pixel colors.
- <u>Non-linear expansions</u> when first order interactions are not enough for good results, e.g. products x_1x_2 , x_1x_3 , etc.
- Other functions of features (e.g. sin, cos, log, exponential etc.)
- Selecting features by predictive value
- Regularization (lasso, ridge).

Delving deeper...

- Use <u>domain knowledge</u> to construct "ad hoc" features.
 - Look at some domain-specific features for language data
- Non-linear expansions
 - What are some good expansions to try?
 - How to select useful expansions?
- Selecting features by predictive value
 - Finding good subsets of features (next lecture...)
- New: combine multiple features into a single feature
 - Dimensionality reduction (next lecture...)

Feature Construction

Why do we do feature construction?

- Increase predictor performance.
- Reduce time / memory requirements.
- Improve interpretability.
- <u>But</u>: Don't lose important information!

Features for modelling natural language

- Words
- TF-IDF
- N-grams
- Word embeddings
- Useful Python package for implementing these:
 - Natural Language toolkit: http://www.nltk.org/

Words

- Binary (present or absent)
- Absolute frequency
 - i.e., raw count
- Relative frequency
 - i.e., proportion
 - document length

The quick brown fox jumped over the lazy dog's back.

Document2

Now is the time for all good men to come to the aid of their party.

Term	Docu	Docu	
aid	0	1	
all	0	1	
back	1	0	
brown	1	0	
come	0	1	
dog	1	0	
fox	1	0	
good	0	1	
jump	1	0	
lazy	1	0	
men	0	1	
now	0	1	
over	1	0	
party	0	1	
quick	1	0	
their	0	1	
time	0	1	

ument 1 ument 2

Stopword List

for
is
of
the
to

COMP-551: Applied Machine Learning

More options for words

- Stopwords
 - Common words like "the", "of", "about" are unlikely to be informative about the contents of a document. Remove!
- Lemmatization
 - Inflectional morphology: changes to a word required by the grammar of a language
 - e.g., "perplexing" "perplexed" "perplexes"
 - (Much worse in languages other than English, Chinese, Vietnamese)
 - Lemmatize to recover the canonical form; e.g., "perplex"

Term weighting

- Words that occur more often influence decision boundary more
- Not all words are equally important.
- What do you know about an article if it contains the word

• the?

• penguin?

TF*IDF (Salton, 1988)

- Term Frequency Times Inverse Document Frequency
- A term is important/indicative of a document if it:
 - 1. Appears many times in the document
 - 2. Is a relative rare word overall
- TF is usually just the count of the word
- IDF is a little more complicated:

- $IDF(t, Corpus) = \log \frac{\#(Docs in Corpus)}{\#(Docs with term t) + 1}$

- Need a separate large training corpus for this
- Originally designed for document retrieval

N-grams

- Use sequences of words, instead of individual words
- e.g., ... quick brown fox jumped ...
 - Unigrams (i.e. words)
 - quick, brown, fox, jumped
 - Bigrams
 - quick_brown, brown_fox, fox_jumped
 - Trigrams
 - quick_brown_fox, brown_fox_jumped
- Usually stop at N <= 3, unless you have lots and lots of data

Word embedding models

- Problems with above:
 - Number of features scales with size of vocabulary!
 - Many words are semantically related and behave similarly (e.g., freedom vs liberty)
- Word embedding models can help us:
 - Embed each word into a fixed-dimension space
 - Learn correlations between words with similar meanings

Word embedding models

- Main idea: Represent each word by a vector
- The vector could encode different properties of the word, that should be locally consistent

COMP-551: Applied Machine Learning

word2vec (Mikolov et al., 2013)

- Intuition:
 - Words that appear in similar contexts should be semantically related, so they should have similar word vector representations
- Actually two models:
 - Continuous bag of words (CBOW) use context words to predict a target word
 - **Skip-gram** use target word to predict context words
- In both cases, the representation that is associated with the target word is the embedding that is learned.

word2vec Architectures

Figure 1: New model architectures. The CBOW architecture predicts the current word based on the context, and the Skip-gram predicts surrounding words given the current word.

Practical word2vec

- Pre-trained word embeddings are available for download online
 - Google News corpus
 - Freebase entities
- Can also train your own word2vec model, if you have more specialized data
- Training is done using gradient descent
- Another popular option:
 - GloVe (Pennington et al., 2014)

What you should know

- Basic idea of stacking model and how to use it
- Main strengths and limitations of stacking
- Know some features for natural language data