COMP 551 — Applied Machine Learning
Lecture 12: Stacking and features

Instructor: Herke van Hoof (herke.vanhoof@mcgill.ca)

Class web page: www.cs.mcqill.ca/~hvanho2/compb51

Unless otherwise noted, all material posted for this course are copyright of the
instructor, and cannot be reused or reposted without the instructor’s written permission.

Project 1 feedback

« Unexpected grading issues. Sorry! Grading should be done

Thursday!
e Some common errors:

« Make live easy for the TA's!: answers not in report, excessively

long reports, report not stapled together, missing name or ID...

- Make sure we can understand your plot: legend, lines look

different in black&white, axes are labeled, ...

COMP-551: Applied Machine Learning 2 Herke van Hoof

Project 4 teams

* Project 4 and 5 will be bigger projects
« Longer time, but also more work

« Should be done in teams of 3

(Working alone is discouraged, as you'll have to do the work of

3 people by yourself...)
- Teams must be completely different between project 4 and 5
- Teams must consist of only people in section 002!

* Project 4 starts end of next week. You can already start looking

for teams. There’ll be a myCourses forum to find partners.

COMP-551: Applied Machine Learning 3 Herke van Hoof

Quizzes

* Practice questions available for:
— SVM (2 part)
— Decision trees

— Ensemble methods

COMP-551: Applied Machine Learning 4 Herke van Hoof

Main types of machine learning problems

« Supervised learning

— Regression

* Unsupervised learning

— Classification Ensemble methods ‘
I
|
J

* Reinforcement learning

COMP-551: Applied Machine Learning 5 Herke van Hoof

Recap ensemble methods so far

« Combine multiple classifiers (or regressors)
* Hopefully, each classifier makes different mistakes
* In that case, combining them might help

« 2 ways so far to obtain different classifiers from the same family
— Independent training using randomized dataset and/or training
- Bagging, random forests, extremely randomized trees

— Add classifiers that focus on examples ensemble gets wrong
» Boosting

— Both typically use a large amount of classifiers

Can we combine some classifiers of different types?

COMP-551: Applied Machine Learning 6 Herke van Hoof

Stacking

« Basic idea: use the output of multiple classifiers as input to a

meta-model
« We ‘stack’ the meta-model on top of the base models

classification regression

meta — y

LR

knn meta — y

svm knn

COMP-551: Applied Machine Learning 7 Herke van Hoof

Stacking example

KNN Class Regions SVM Class Regions
1.0

1.0

05 0.5

Competitor
Base g . . o
models .

0.5

-1.0

10 05 0.0 05 1.0 -1.0 05 0.0 0.5 1.0
XCoord XCoord

-1.0

Stacked
model

Source: https://gormanalysis.com/guide-to-model-stacking-i-e-meta-ensembling/

COMP-551: Applied Machine Learning 8 Herke van Hoof

Stacking example

KNN Class Regions SVM Class Regions
1.0 1.0
05 08 Competitor

B @ Bob

ase § oo o o Kato

@ Mark

models o sue
0.5 0.5

-1.0

10 05 0.0 05 1.0 -1.0 05 0.0 0.5 1.0
XCoord XCoord

Stacked Logistic Regression Class Regions

-1.0

1.0

05

Stacked 5., D
model ” com

05

-1.0

1.0 0.5 0.0 05 10
XCoord

Source: https://gormanalysis.com/guide-to-model-stacking-i-e-meta-ensembling/

COMP-551: Applied Machine Learning 9 Herke van Hoof

Stacking — a naive approach

« Let's consider the regression case
- Base model predictions are f;(x), ..., f1(x)

« Meta learner could be a simple linear combination

fmeta (X) — Z wzfz (X)

« |f we could choose w to minimize true error, the stacked model

would always be at least as good as any base model!

— Worst case we set all w; to 0 except that of the best base model

 But what if we minimize the train error instead?

COMP-551: Applied Machine Learning 10 Herke van Hoof

Stacking — a naive approach

« Consider the following base models

« What weights would minimize train set error?

* Does that yield good generalization error for the meta model?

COMP-551: Applied Machine Learning 11 Herke van Hoof

Stacking — a naive approach

« Nalve implementation of stacking prefers over-fitted models

« Underlying problem: the outputs of the base models have been
adapted to the labels.

« Thus, inputs of the meta model are not representative of the

inputs it will get at test-time.

« To avoid preference for overfitted models, inputs to the meta-

model should not have seen the labels for the data points

themselves

COMP-551: Applied Machine Learning 12 Herke van Hoof

Stacking — second attempt

« Nalve implementation of stacking prefers over-fitted models

« Underlying problem: the outputs of the base models have been
adapted to the labels.

« Thus, inputs of the meta model are not representative of the

inputs it will get at test-time.

* To avoid preference for overfitted models, inputs to the meta-

model should not have seen the labels for the data points

themselves

COMP-551: Applied Machine Learning 13 Herke van Hoof

Stacking — second attempt

Fold _xi % filfh e Y
0.1 1.5

1 0.8

2 0.9 0.9 0.8

4 0.1 0.9 -0.7
3 0.6 0.8 1.3

4 0.1 0.1 0.1

2 0.3 0.4 0.1

3 0.5 0.9 0.2

1 0.9 1.0 1.0

COMP-551: Applied Machine Learning 14 Herke van Hoof

Stacking — second attempt

* Train base models on folds 2-4 and predict for fold 1

Fold _xi % filfh e Y
0.1 1.5

1 0.8
2 0.9 0.9 0.8
© 4 0.1 0.9 0.7
3 3 0.6 0.8 1.3
C
g ° 0.1 0.1 0.1
= 2 0.3 0.4 0.1
3 0.5 0.9 0.2
1 0.9 1.0 1.0

COMP-551: Applied Machine Learning 15 Herke van Hoof

Stacking — second attempt

* Train base models on folds 2-4 and predict for fold 1

Fold _xi % fi [f [fea v
0.1 2.4 0.5 1.5

1 0.8
2 0.9 0.9 0.8
© 4 0.1 0.9 0.7
3 3 0.6 0.8 1.3
C
G “ 0.1 0.1 0.1
= 2 0.3 0.4 0.1
3 0.5 0.9 0.2
1 0.9 1.0 0.0 0.2 1.0

COMP-551: Applied Machine Learning 16 Herke van Hoof

Stacking — second attempt

» Train base models on folds 1,3,4 and predict for fold 2

Fold _xi % fi lfh e Y
0.1 2.4 0.5 1.5

1 0.8
2 0.9 0.9 -2.2 0.7 0.8
© 4 0.1 0.9 -0.7
'g 3 0.6 0.8 1.3
C
@ 4 0.1 0.1 0.1
= 2 0.3 0.4 0.2 -0.3 0.1
3 0.5 0.9 0.2
1 0.9 1.0 0.0 0.2 1.0

COMP-551: Applied Machine Learning 17 Herke van Hoof

Stacking — second attempt

* Train base models on folds 1,2,4 and predict for fold 3

Fold _xi % fi lfh e Y
0.1 2.4 0.5 1.5

1 0.8
2 0.9 0.9 -2.2 0.7 0.8
© 4 0.1 0.9 -0.7
'g 3 0.6 0.8 1.3 1.2 1.3
C
@ 4 0.1 0.1 0.1
= 2 0.3 0.4 0.2 -0.3 0.1
3 0.5 0.9 0.5 0.7 0.2
1 0.9 1.0 0.0 0.2 1.0

COMP-551: Applied Machine Learning 18 Herke van Hoof

Stacking — second attempt

* Train base models on folds 1,2,3 and predict for fold 4

Fold _xi % fi lfh e Y
0.1 2.4 0.5 1.5

1 0.8
2 0.9 0.9 2.2 0.7 0.8
4 0.1 0.9 1.1 0.7 0.7
3 3 0.6 0.8 1.3 1.2 1.3
= 4 0.1 0.1 0.5 0.3 0.1
©
= 2 0.3 0.4 0.2 0.3 0.1
3 0.5 0.9 0.5 0.7 0.2
1 0.9 1.0 0.0 0.2 1.0

COMP-551: Applied Machine Learning 19 Herke van Hoof

Stacking — second attempt

 Now, we can train the meta-model on the data in the base

model outputs paired with the target label

* Any base-model output is now a good indication of test-time

behavior

« |If the meta-model has free parameters itself, can cross-validate

using the same folds

« Usually, the meta-model is relatively simple (e.g. linear

regression or logistic regression)

COMP-551: Applied Machine Learning 20 Herke van Hoof

Testing the stacked model

« To test the stacked model, again we set aside a test set from the
very beginning
 Have several versions of the base models from cross-validation!

 Two approaches:

— Retrain the base models on the whole dataset

» Possible disadvantage: slightly different input to meta-model

— Use an average of the trained base models

» Possible disadvantage: time cost
« Then feed the base model predictions into the trained meta-

model

COMP-551: Applied Machine Learning 21 Herke van Hoof

Comparison to model selection

+ |If we force meta-learner to use just one base model (with weight
1) and set all other weights to 0, this is equivalent to selecting

the best model with cross-validation

* More expressive meta-models (e.g. linear / logistic regression)

can leverage the relative strength of multiple models

* Avery complex meta-model (e.g. decision tree) could again

easily overfit

« Could use cross-validation on the meta-level to ensure good

generalization properties

COMP-551: Applied Machine Learning 22 Herke van Hoof

Effectiveness of stacking

- Stacking generally improves performance, but not by much
« Additional cost of training and evaluating multiple models

* Depending on conditions, it might or might not be worth it:
— If interpretability or latency are important consideration, stacking
might not help you much.

— In competitions where a small gain is important and time cost is not
so much of an issue, it is usually effective!

— Quite useful in collaborative approaches where everyone can
integrate their own model in overall system

COMP-551: Applied Machine Learning 23 Herke van Hoof

Any questions about stacking?

COMP-551: Applied Machine Learning 24 Herke van Hoof

Steps to solving a supervised learning problem

1.
2.

Decide what the input-output pairs are.

Decide how to encode inputs and outputs.

* This defines the input space X and output space Y.

Choose a class of hypotheses / representations H.

« E.g. linear functions.

Choose an error function (cost function) to define best

hypothesis.

 E.g. Least-mean squares.
Choose an algorithm for searching through space of

hypotheses.

Today and
__ Monday:
deciding on
what the
inputs are

So far:

| we have been
focusing on
this

COMP-551: Applied Machine Learning 25 Herke van Hoof

Feature Extraction Steps

11 7

raw constructed feature JPredictor

features . construction—==7 === Selection—_ -

|deas for feature construction?

COMP-551: Applied Machine Learning 26 Herke van Hoof

A few strategies we discussed

« Use domain knowledge to construct “ad hoc” features.

* Normalization across different features, e.g. centering and scaling

with x; = (x’;— ;) / O,

- Normalization across different data instances, e.g.

counts/histogram of pixel colors.

* Non-linear expansions when first order interactions are not

enough for good results, e.g. products x,x,, X;X3, etc.
« Other functions of features (e.g. sin, cos, log, exponential etc.)
« Selecting features by predictive value

- Regularization (lasso, ridge).

COMP-551: Applied Machine Learning 27 Herke van Hoof

Delving deeper...

 Use domain knowledge to construct “ad hoc” features.

— Look at some domain-specific features for language data

 Non-linear expansions

— What are some good expansions to try?

— How to select useful expansions?
« Selecting features by predictive value
— Finding good subsets of features (next lecture...)
- New: combine multiple features into a single feature

— Dimensionality reduction (next lecture...)

COMP-551: Applied Machine Learning 28 Herke van Hoof

Feature Construction

Why do we do feature construction?
— Increase predictor performance.
— Reduce time / memory requirements.

— Improve interpretability.

But: Don’t lose important information!

COMP-551: Applied Machine Learning 29 Herke van Hoof

Features for modelling natural language

« Words

- TF-IDF
 N-grams

* Word embeddings

« Useful Python package for implementing these:

— Natural Language toolkit: http://www.nltk.org/

COMP-551: Applied Machine Learning 30 Herke van Hoof

Words

* Binary (present or absent)

- Absolute frequency oG zz
E B
. 35 3
— lLe., raw count The quick brown Term é §
fox jumped over aid ol4
. the lazy dog’
* Relative frequency back | al__[0]1 Stopword
back 110 List
. i brown 1{0
— l.e., proportion come |01 for
do 110 i
— document length fox 110 =
Document?2 good 13} the
jump 110 to
lazy 110
Now is the time men 0]1
forall good men now 01
tq cometpthe over 110
aid of their party. party 011
quick 110
their 0f1
time 0|1

COMP-551: Applied Machine Learning 31 Herke van Hoof

More options for words

- Stopwords

— Common words like “the”, “of”, “about” are unlikely to be informative
about the contents of a document. Remove!

« Lemmatization

— Inflectional morphology: changes to a word required by the
grammar of a language
> e.g., ‘perplexing” “perplexed” “perplexes”

* (Much worse in languages other than English, Chinese, Viethamese)

— Lemmatize to recover the canonical form; e.g., “perplex”

COMP-551: Applied Machine Learning 32 Herke van Hoof

Term weighting

- Words that occur more often influence decision boundary more
« Not all words are equally important.

« What do you know about an article if it contains the word

o the?

* penguin?

33 Herke van Hoof

TF*IDF (Salton, 1988)

Term Frequency Times Inverse Document Frequency

A term is important/indicative of a document if it:

1. Appears many times in the document

2. Is arelative rare word overall
TF is usually just the count of the word
IDF is a little more complicated:

#(Docs in corpus)
#(Docs with term t) +1

— IDF(t,Corpus) = log
* Need a separate large training corpus for this

Originally designed for document retrieval

34 Herke van Hoof

N-grams

« Use sequences of words, instead of individual words

* e.g., ... quick brown fox jumped ...
— Unigrams (i.e. words)
* quick, brown, fox, jumped
— Bigrams
* quick_brown, brown_fox, fox_jumped

— Trigrams

« quick _brown_fox, brown_fox_ jumped

« Usually stop at N <= 3, unless you have lots and lots of data

COMP-551: Applied Machine Learning 35 Herke van Hoof

Word embedding models

Problems with above:

— Number of features scales with size of vocabulary!

— Many words are semantically related and behave similarly (e.g.,
freedom vs liberty)

* Word embedding models can help us:

— Embed each word into a fixed-dimension space

— Learn correlations between words with similar meanings

COMP-551: Applied Machine Learning 36 Herke van Hoof

Word embedding models

« Main idea: Represent each word by a vector

* The vector could encode different properties of the word, that

should be locally consistent

© queen

'mdy

% woman

King
lord

man

COMP-551: Applied Machine Learning

37

Herke van Hoof

word2vec (Mikolov et al., 2013)

Intuition:
— Words that appear in similar contexts should be semantically
related, so they should have similar word vector representations
Actually two models:

« Continuous bag of words (CBOW) — use context words to
predict a target word

« Skip-gram — use target word to predict context words

In both cases, the representation that is associated with the

target word is the embedding that is learned.

38 Herke van Hoof

word2vec Architectures

INPUT PROJECTION QUTPUT INPUT PROJECTION QUTPUT
w(t-2) w(t-2)
w(t-1) wi(t-1)

SUM /
. wi(t) w(t) R
w(t+1) / \x\ w(t+1)
w(t+2) w(t+2)
cBOwW Skip-gram

Figure 1: New model architectures. The CBOW architecture predicts the current word based on the
context, and the Skip-gram predicts surrounding words given the current word.

39 39 Herke van Hoof

Practical word2vec

* Pre-trained word embeddings are available for download online

— Google News corpus

— Freebase entities
« Can also train your own word2vec model, if you have more
specialized data

- Training is done using gradient descent

« Another popular option:

— GloVe (Pennington et al., 2014)

COMP-551: Applied Machine Learning 40 Herke van Hoof

What you should know

- Basic idea of stacking model and how to use it
« Main strengths and limitations of stacking

* Know some features for natural language data

COMP-551: Applied Machine Learning 41 Herke van Hoof

