COMP 551 — Applied Machine Learning
Lecture 12: Stacking and features

Instructor: Herke van Hoof (herke.vanhoof@mcgill.ca)

Class web page: www.cs.mcqill.ca/~hvanho2/compb51

Unless otherwise noted, all material posted for this course are copyright of the
instructor, and cannot be reused or reposted without the instructor’s written permission.




Project 1 feedback

« Unexpected grading issues. Sorry! Grading should be done

Thursday!
e Some common errors:

« Make live easy for the TA's!: answers not in report, excessively

long reports, report not stapled together, missing name or ID...

- Make sure we can understand your plot: legend, lines look

different in black&white, axes are labeled, ...
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Project 4 teams

* Project 4 and 5 will be bigger projects
« Longer time, but also more work

« Should be done in teams of 3

(Working alone is discouraged, as you'll have to do the work of

3 people by yourself...)
- Teams must be completely different between project 4 and 5
- Teams must consist of only people in section 002!

* Project 4 starts end of next week. You can already start looking

for teams. There’ll be a myCourses forum to find partners.
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Quizzes

* Practice questions available for:
— SVM (2 part)
— Decision trees

— Ensemble methods
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Main types of machine learning problems

« Supervised learning

— Regression

* Unsupervised learning

— Classification Ensemble methods ‘
I
|
J

* Reinforcement learning
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Recap ensemble methods so far

« Combine multiple classifiers (or regressors)
* Hopefully, each classifier makes different mistakes
* In that case, combining them might help

« 2 ways so far to obtain different classifiers from the same family
— Independent training using randomized dataset and/or training
- Bagging, random forests, extremely randomized trees

— Add classifiers that focus on examples ensemble gets wrong
» Boosting

— Both typically use a large amount of classifiers

Can we combine some classifiers of different types?
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Stacking

« Basic idea: use the output of multiple classifiers as input to a

meta-model
«  We ‘stack’ the meta-model on top of the base models

classification regression

meta — y

LR

knn meta — y

svm knn
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Stacking example
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Stacking example
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Stacking — a naive approach

« Let's consider the regression case
- Base model predictions are f;(x), ..., f1(x)

« Meta learner could be a simple linear combination

fmeta (X) — Z wzfz (X)

« |f we could choose w to minimize true error, the stacked model

would always be at least as good as any base model!

— Worst case we set all w; to 0 except that of the best base model

 But what if we minimize the train error instead?
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Stacking — a naive approach

« Consider the following base models

«  What weights would minimize train set error?

* Does that yield good generalization error for the meta model?
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Stacking — a naive approach

« Nalve implementation of stacking prefers over-fitted models

« Underlying problem: the outputs of the base models have been
adapted to the labels.

« Thus, inputs of the meta model are not representative of the

inputs it will get at test-time.

« To avoid preference for overfitted models, inputs to the meta-

model should not have seen the labels for the data points

themselves
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Stacking — second attempt

« Nalve implementation of stacking prefers over-fitted models

« Underlying problem: the outputs of the base models have been
adapted to the labels.

« Thus, inputs of the meta model are not representative of the

inputs it will get at test-time.

* To avoid preference for overfitted models, inputs to the meta-

model should not have seen the labels for the data points

themselves
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Stacking — second attempt

Fold _xi % filfh e Y
0.1 1.5

1 0.8

2 0.9 0.9 0.8

4 0.1 0.9 -0.7
3 0.6 0.8 1.3

4 0.1 0.1 0.1

2 0.3 0.4 0.1

3 0.5 0.9 0.2

1 0.9 1.0 1.0
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Stacking — second attempt

* Train base models on folds 2-4 and predict for fold 1

Fold _xi % filfh e Y
0.1 1.5

1 0.8
2 0.9 0.9 0.8
© 4 0.1 0.9 0.7
3 3 0.6 0.8 1.3
C
g ° 0.1 0.1 0.1
= 2 0.3 0.4 0.1
3 0.5 0.9 0.2
1 0.9 1.0 1.0
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Stacking — second attempt

* Train base models on folds 2-4 and predict for fold 1

Fold _xi % fi [f [fea v
0.1 2.4 0.5 1.5

1 0.8
2 0.9 0.9 0.8
© 4 0.1 0.9 0.7
3 3 0.6 0.8 1.3
C
G “ 0.1 0.1 0.1
= 2 0.3 0.4 0.1
3 0.5 0.9 0.2
1 0.9 1.0 0.0 0.2 1.0
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Stacking — second attempt

» Train base models on folds 1,3,4 and predict for fold 2

Fold _xi % fi lfh e Y
0.1 2.4 0.5 1.5

1 0.8
2 0.9 0.9 -2.2 0.7 0.8
© 4 0.1 0.9 -0.7
'g 3 0.6 0.8 1.3
C
@ 4 0.1 0.1 0.1
= 2 0.3 0.4 0.2 -0.3 0.1
3 0.5 0.9 0.2
1 0.9 1.0 0.0 0.2 1.0
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Stacking — second attempt

* Train base models on folds 1,2,4 and predict for fold 3

Fold _xi % fi lfh e Y
0.1 2.4 0.5 1.5

1 0.8
2 0.9 0.9 -2.2 0.7 0.8
© 4 0.1 0.9 -0.7
'g 3 0.6 0.8 1.3 1.2 1.3
C
@ 4 0.1 0.1 0.1
= 2 0.3 0.4 0.2 -0.3 0.1
3 0.5 0.9 0.5 0.7 0.2
1 0.9 1.0 0.0 0.2 1.0
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Stacking — second attempt

* Train base models on folds 1,2,3 and predict for fold 4

Fold _xi % fi lfh e Y
0.1 2.4 0.5 1.5

1 0.8
2 0.9 0.9 2.2 0.7 0.8
4 0.1 0.9 1.1 0.7 0.7
3 3 0.6 0.8 1.3 1.2 1.3
= 4 0.1 0.1 0.5 0.3 0.1
©
= 2 0.3 0.4 0.2 0.3 0.1
3 0.5 0.9 0.5 0.7 0.2
1 0.9 1.0 0.0 0.2 1.0
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Stacking — second attempt

 Now, we can train the meta-model on the data in the base

model outputs paired with the target label

* Any base-model output is now a good indication of test-time

behavior

« |If the meta-model has free parameters itself, can cross-validate

using the same folds

« Usually, the meta-model is relatively simple (e.g. linear

regression or logistic regression)
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Testing the stacked model

« To test the stacked model, again we set aside a test set from the
very beginning
 Have several versions of the base models from cross-validation!

 Two approaches:

— Retrain the base models on the whole dataset

» Possible disadvantage: slightly different input to meta-model

— Use an average of the trained base models

» Possible disadvantage: time cost
« Then feed the base model predictions into the trained meta-

model
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Comparison to model selection

+ |If we force meta-learner to use just one base model (with weight
1) and set all other weights to 0, this is equivalent to selecting

the best model with cross-validation

*  More expressive meta-models (e.g. linear / logistic regression)

can leverage the relative strength of multiple models

* Avery complex meta-model (e.g. decision tree) could again

easily overfit

« Could use cross-validation on the meta-level to ensure good

generalization properties
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Effectiveness of stacking

- Stacking generally improves performance, but not by much
« Additional cost of training and evaluating multiple models

* Depending on conditions, it might or might not be worth it:
— If interpretability or latency are important consideration, stacking
might not help you much.

— In competitions where a small gain is important and time cost is not
so much of an issue, it is usually effective!

— Quite useful in collaborative approaches where everyone can
integrate their own model in overall system
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Any questions about stacking?
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Steps to solving a supervised learning problem

1.
2.

Decide what the input-output pairs are.

Decide how to encode inputs and outputs.

* This defines the input space X and output space Y.

Choose a class of hypotheses / representations H.

« E.g. linear functions.

Choose an error function (cost function) to define best

hypothesis.

 E.g. Least-mean squares.
Choose an algorithm for searching through space of

hypotheses.

Today and
__ Monday:
deciding on
what the
inputs are

So far:

| we have been
focusing on
this
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Feature Extraction Steps

11 7

raw constructed feature JPredictor

features . construction—==7 === Selection—_ -

|deas for feature construction?
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A few strategies we discussed

« Use domain knowledge to construct “ad hoc” features.

* Normalization across different features, e.g. centering and scaling

with x; = (x’;— ;) / O,

- Normalization across different data instances, e.g.

counts/histogram of pixel colors.

* Non-linear expansions when first order interactions are not

enough for good results, e.g. products x,x,, X;X3, etc.
« Other functions of features (e.g. sin, cos, log, exponential etc.)
« Selecting features by predictive value

- Regularization (lasso, ridge).
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Delving deeper...

 Use domain knowledge to construct “ad hoc” features.

— Look at some domain-specific features for language data

 Non-linear expansions

— What are some good expansions to try?

— How to select useful expansions?
« Selecting features by predictive value
— Finding good subsets of features (next lecture...)
- New: combine multiple features into a single feature

— Dimensionality reduction (next lecture...)
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Feature Construction

Why do we do feature construction?
— Increase predictor performance.
— Reduce time / memory requirements.

— Improve interpretability.

But: Don’t lose important information!
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Features for modelling natural language

« Words

- TF-IDF
 N-grams

*  Word embeddings

« Useful Python package for implementing these:

— Natural Language toolkit: http://www.nltk.org/
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Words

* Binary (present or absent)

- Absolute frequency oG zz
E B
. 35 3
— lLe., raw count The quick brown Term é §
fox jumped over aid ol4
. the lazy dog’
* Relative frequency back | al__[0]1 Stopword
back 110 List
. i brown 1{0
— l.e., proportion come |01 for
do 110 i
— document length fox 110 =
Document?2 good 13} the
jump 110 to
lazy 110
Now is the time men 0]1
forall good men now 01
tq cometpthe over 110
aid of their party. party 011
quick 110
their 0f1
time 0|1
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More options for words

- Stopwords

— Common words like “the”, “of”, “about” are unlikely to be informative
about the contents of a document. Remove!

« Lemmatization

— Inflectional morphology: changes to a word required by the
grammar of a language
> e.g., ‘perplexing” “perplexed” “perplexes”

* (Much worse in languages other than English, Chinese, Viethamese)

— Lemmatize to recover the canonical form; e.g., “perplex”
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Term weighting

- Words that occur more often influence decision boundary more
« Not all words are equally important.

«  What do you know about an article if it contains the word

o the?

* penguin?
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TF*IDF (Salton, 1988)

Term Frequency Times Inverse Document Frequency

A term is important/indicative of a document if it:

1. Appears many times in the document

2. Is arelative rare word overall
TF is usually just the count of the word
IDF is a little more complicated:

#(Docs in corpus)
#(Docs with term t) +1

— IDF(t,Corpus) = log
* Need a separate large training corpus for this

Originally designed for document retrieval
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N-grams

« Use sequences of words, instead of individual words

* e.g., ... quick brown fox jumped ...
— Unigrams (i.e. words)
* quick, brown, fox, jumped
— Bigrams
* quick_brown, brown_fox, fox_jumped

— Trigrams

« quick _brown_fox, brown_fox_ jumped

« Usually stop at N <= 3, unless you have lots and lots of data
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Word embedding models

Problems with above:

— Number of features scales with size of vocabulary!

— Many words are semantically related and behave similarly (e.g.,
freedom vs liberty)

*  Word embedding models can help us:

— Embed each word into a fixed-dimension space

— Learn correlations between words with similar meanings

COMP-551: Applied Machine Learning 36 Herke van Hoof



Word embedding models

« Main idea: Represent each word by a vector

* The vector could encode different properties of the word, that

should be locally consistent

© queen

'mdy

% woman

King
lord

man
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word2vec (Mikolov et al., 2013)

Intuition:
— Words that appear in similar contexts should be semantically
related, so they should have similar word vector representations
Actually two models:

« Continuous bag of words (CBOW) — use context words to
predict a target word

« Skip-gram — use target word to predict context words

In both cases, the representation that is associated with the

target word is the embedding that is learned.
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word2vec Architectures

INPUT PROJECTION QUTPUT INPUT PROJECTION QUTPUT
w(t-2) w(t-2)
w(t-1) wi(t-1)

SUM /
. wi(t) w(t) R
w(t+1) / \x\ w(t+1)
w(t+2) w(t+2)
cBOwW Skip-gram

Figure 1: New model architectures. The CBOW architecture predicts the current word based on the
context, and the Skip-gram predicts surrounding words given the current word.
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Practical word2vec

* Pre-trained word embeddings are available for download online

— Google News corpus

— Freebase entities
« Can also train your own word2vec model, if you have more
specialized data

- Training is done using gradient descent

« Another popular option:

— GloVe (Pennington et al., 2014)
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What you should know

- Basic idea of stacking model and how to use it
« Main strengths and limitations of stacking

*  Know some features for natural language data
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