
COMP 551 – Applied Machine Learning
Lecture 12: Stacking and features

Instructor:  Herke van Hoof (herke.vanhoof@mcgill.ca)

Class web page: www.cs.mcgill.ca/~hvanho2/comp551

Unless otherwise noted, all material posted for this course are copyright of the 
instructor, and cannot be reused or reposted without the instructor’s written permission. 



Herke van Hoof2

Project 1 feedback

• Unexpected grading issues. Sorry! Grading should be done

Thursday!

• Some common errors:

• Make live easy for the TA’s!: answers not in report, excessively

long reports, report not stapled together, missing name or ID…

• Make sure we can understand your plot: legend, lines look 

different in black&white, axes are labeled, …
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Project 4 teams

• Project 4 and 5 will be bigger projects

• Longer time, but also more work

• Should be done in teams of 3

(Working alone is discouraged, as you’ll have to do the work of 

3 people by yourself…)

• Teams must be completely different between project 4 and 5

• Teams must consist of only people in section 002!

• Project 4 starts end of next week. You can already start looking

for teams. There’ll be a myCourses forum to find partners.
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Quizzes

• Practice questions available for:

– SVM (2nd part)

– Decision trees

– Ensemble methods
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Main types of machine learning problems

• Supervised learning

– Classification

– Regression

• Unsupervised learning

• Reinforcement learning

COMP-551: Applied Machine Learning

Ensemble methods
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Recap ensemble methods so far

• Combine multiple classifiers (or regressors)

• Hopefully, each classifier makes different mistakes

• In that case, combining them might help

• 2 ways so far to obtain different classifiers from the same family

– Independent training using randomized dataset and/or training
• Bagging, random forests, extremely randomized trees

– Add classifiers that focus on examples ensemble gets wrong
• Boosting

– Both typically use a large amount of classifiers

• Can we combine some classifiers of different types?
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Stacking

• Basic idea: use the output of multiple classifiers as input to a 

meta-model

• We ‘stack’ the meta-model on top of the base models

COMP-551: Applied Machine Learning
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Stacking example

COMP-551: Applied Machine Learning

Base 
models

Stacked 
model

Source: https://gormanalysis.com/guide-to-model-stacking-i-e-meta-ensembling/
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Stacking example
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Base 
models

Stacked 
model

Source: https://gormanalysis.com/guide-to-model-stacking-i-e-meta-ensembling/
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Stacking – a naïve approach

• Let’s consider the regression case

• Base model predictions are

• Meta learner could be a simple linear combination

• If we could choose w to minimize true error, the stacked model 

would always be at least as good as any base model!

– Worst case we set all wi to 0 except that of the best base model

• But what if we minimize the train error instead?
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f1(x), . . . , fL(x)
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Stacking – a naïve approach

• Consider the following base models

• What weights would minimize train set error? 

• Does that yield good generalization error for the meta model?
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Stacking – a naïve approach

• Naïve implementation of stacking prefers over-fitted models

• Underlying problem: the outputs of the base models have been 

adapted to the labels. 

• Thus, inputs of the meta model are not representative of the 

inputs it will get at test-time.

• To avoid preference for overfitted models, inputs to the meta-

model should not have seen the labels for the data points 

themselves

COMP-551: Applied Machine Learning
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Stacking – second attempt

• Naïve implementation of stacking prefers over-fitted models

• Underlying problem: the outputs of the base models have been

adapted to the labels.

• Thus, inputs of the meta model are not representative of the 

inputs it will get at test-time.

• To avoid preference for overfitted models, inputs to the meta-

model should not have seen the labels for the data points 

themselves

COMP-551: Applied Machine Learning
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Stacking – second attempt

COMP-551: Applied Machine Learning

Fold x1 x2 f1 f2 fmeta y
1 0.8 0.1 1.5

2 0.9 0.9 0.8

4 0.1 0.9 -0.7

3 0.6 0.8 1.3
4 0.1 0.1 0.1

2 0.3 0.4 0.1

3 0.5 0.9 0.2

⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞

1 0.9 1.0 1.0
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Stacking – second attempt
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Fold x1 x2 f1 f2 fmeta y
1 0.8 0.1 1.5

2 0.9 0.9 0.8

4 0.1 0.9 -0.7

3 0.6 0.8 1.3
4 0.1 0.1 0.1

2 0.3 0.4 0.1

3 0.5 0.9 0.2

⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞

1 0.9 1.0 1.0

• Train base models on folds 2-4 and predict for fold 1  

Tr
ai

n 
da

ta
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Stacking – second attempt
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Fold x1 x2 f1 f2 fmeta y
1 0.8 0.1 2.4 0.5 1.5

2 0.9 0.9 0.8

4 0.1 0.9 -0.7

3 0.6 0.8 1.3
4 0.1 0.1 0.1

2 0.3 0.4 0.1

3 0.5 0.9 0.2

⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞

1 0.9 1.0 0.0 0.2 1.0

• Train base models on folds 2-4 and predict for fold 1  

Tr
ai

n 
da

ta



Herke van Hoof17

Stacking – second attempt
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Fold x1 x2 f1 f2 fmeta y
1 0.8 0.1 2.4 0.5 1.5

2 0.9 0.9 -2.2 0.7 0.8

4 0.1 0.9 -0.7

3 0.6 0.8 1.3
4 0.1 0.1 0.1

2 0.3 0.4 0.2 -0.3 0.1

3 0.5 0.9 0.2

⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞

1 0.9 1.0 0.0 0.2 1.0

• Train base models on folds 1,3,4 and predict for fold 2  

Tr
ai

n 
da

ta
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Stacking – second attempt
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Fold x1 x2 f1 f2 fmeta y
1 0.8 0.1 2.4 0.5 1.5

2 0.9 0.9 -2.2 0.7 0.8

4 0.1 0.9 -0.7

3 0.6 0.8 1.3 1.2 1.3
4 0.1 0.1 0.1

2 0.3 0.4 0.2 -0.3 0.1

3 0.5 0.9 0.5 0.7 0.2

⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞

1 0.9 1.0 0.0 0.2 1.0

• Train base models on folds 1,2,4 and predict for fold 3  

Tr
ai

n 
da

ta
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Stacking – second attempt
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Fold x1 x2 f1 f2 fmeta y
1 0.8 0.1 2.4 0.5 1.5

2 0.9 0.9 -2.2 0.7 0.8

4 0.1 0.9 -1.1 -0.7 -0.7

3 0.6 0.8 1.3 1.2 1.3
4 0.1 0.1 -0.5 0.3 0.1

2 0.3 0.4 0.2 -0.3 0.1

3 0.5 0.9 0.5 0.7 0.2

⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞

1 0.9 1.0 0.0 0.2 1.0

• Train base models on folds 1,2,3 and predict for fold 4  

Tr
ai

n 
da

ta
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Stacking – second attempt

• Now, we can train the meta-model on the data in the base 

model outputs paired with the target label

• Any base-model output is now a good indication of test-time 

behavior

• If the meta-model has free parameters itself, can cross-validate 

using the same folds

• Usually, the meta-model is relatively simple (e.g. linear 

regression or logistic regression)

COMP-551: Applied Machine Learning
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Testing the stacked model

• To test the stacked model, again we set aside a test set from the 

very beginning

• Have several versions of the base models from cross-validation!

• Two approaches:

– Retrain the base models on the whole dataset
• Possible disadvantage: slightly different input to meta-model

– Use an average of the trained base models
• Possible disadvantage: time cost

• Then feed the base model predictions into the trained meta-

model

COMP-551: Applied Machine Learning
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Comparison to model selection

• If we force meta-learner to use just one base model (with weight 

1) and set all other weights to 0, this is equivalent to selecting 

the best model with cross-validation

• More expressive meta-models (e.g. linear / logistic regression) 

can leverage the relative strength of multiple models

• A very complex meta-model (e.g. decision tree) could again 

easily overfit

• Could use cross-validation on the meta-level to ensure good 

generalization properties

COMP-551: Applied Machine Learning
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Effectiveness of stacking

• Stacking generally improves performance, but not by much

• Additional cost of training and evaluating multiple models

• Depending on conditions, it might or might not be worth it:

– If interpretability or latency are important consideration, stacking 
might not help you much.

– In competitions where a small gain is important and time cost is not
so much of an issue, it is usually effective!

– Quite useful in collaborative approaches where everyone can
integrate their own model in overall system

COMP-551: Applied Machine Learning
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Any questions about stacking?

COMP-551: Applied Machine Learning
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Steps to solving a supervised learning problem

1. Decide what the input-output pairs are.

2. Decide how to encode inputs and outputs.

• This defines the input space X and output space Y.

3. Choose a class of hypotheses / representations H.
• E.g. linear functions.

4. Choose an error function (cost function) to define best 

hypothesis.

• E.g. Least-mean squares.

5. Choose an algorithm for searching through space of 

hypotheses.

So far:
we have been 
focusing on 
this

Today and 
Monday: 
deciding on 
what the 
inputs are
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Feature Extraction Steps

“raw”
features Construction

feature 
subset PredictorSelection

constructed
features

Ideas for feature construction?
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A few strategies we discussed

• Use domain knowledge to construct “ad hoc” features.

• Normalization across different features, e.g. centering and scaling 

with xi = (x’i – μi) / σi.

• Normalization across different data instances, e.g. 

counts/histogram of pixel colors.

• Non-linear expansions when first order interactions are not 

enough for good results, e.g. products x1x2, x1x3, etc.

• Other functions of features (e.g. sin, cos, log, exponential etc.)

• Selecting features by predictive value

• Regularization (lasso, ridge).
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Delving deeper…

• Use domain knowledge to construct “ad hoc” features.

– Look at some domain-specific features for language data

• Non-linear expansions

– What are some good expansions to try?

– How to select useful expansions?

• Selecting features by predictive value

– Finding good subsets of features (next lecture…)

• New: combine multiple features into a single feature

– Dimensionality reduction (next lecture…)
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Feature Construction

Why do we do feature construction? 

– Increase predictor performance.

– Reduce time / memory requirements.

– Improve interpretability.

But:  Don’t lose important information!
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Features for modelling natural language

• Words

• TF-IDF

• N-grams

• Word embeddings

• Useful Python package for implementing these:

– Natural Language toolkit:  http://www.nltk.org/

COMP-551: Applied Machine Learning
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Words

• Binary (present or absent)

• Absolute frequency

– i.e., raw count

• Relative frequency

– i.e., proportion

– document length

COMP-551: Applied Machine Learning
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More options for words

• Stopwords

– Common words like “the”, “of”, “about” are unlikely to be informative 

about the contents of a document.  Remove!

• Lemmatization

– Inflectional morphology: changes to a word required by the 

grammar of a language

• e.g., “perplexing” “perplexed” “perplexes”

• (Much worse in languages other than English, Chinese, Vietnamese)

– Lemmatize to recover the canonical form; e.g., “perplex”

COMP-551: Applied Machine Learning
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Term weighting

• Words that occur more often influence decision boundary more

• Not all words are equally important.

• What do you know about an article if it contains the word

• the?

• penguin?
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TF*IDF (Salton, 1988)

• Term Frequency Times Inverse Document Frequency

• A term is important/indicative of a document if it:

1. Appears many times in the document

2. Is a relative rare word overall

• TF is usually just the count of the word

• IDF is a little more complicated:

– "#$ %, '()*+, = log #(Docs	in	9:;<=>)
#(Docs	with	term	F)	GH

• Need a separate large training corpus for this

• Originally designed for document retrieval
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N-grams

• Use sequences of words, instead of individual words

• e.g., … quick brown fox jumped …

– Unigrams (i.e. words)
• quick, brown, fox, jumped

– Bigrams
• quick_brown, brown_fox, fox_jumped

– Trigrams
• quick_brown_fox, brown_fox_jumped

• Usually stop at N <= 3, unless you have lots and lots of data

COMP-551: Applied Machine Learning
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Word embedding models

• Problems with above:

– Number of features scales with size of vocabulary!

– Many words are semantically related and behave similarly (e.g., 
freedom vs liberty)

• Word embedding models can help us:

– Embed each word into a fixed-dimension space

– Learn correlations between words with similar meanings

COMP-551: Applied Machine Learning
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Word embedding models

• Main idea: Represent each word by a vector

• The vector could encode different properties of the word, that 

should be locally consistent

COMP-551: Applied Machine Learning

lady lord

queen king

woman man
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word2vec (Mikolov et al., 2013)

• Intuition:

– Words that appear in similar contexts should be semantically 
related, so they should have similar word vector representations

• Actually two models:

• Continuous bag of words (CBOW) – use context words to 
predict a target word

• Skip-gram – use target word to predict context words

• In both cases, the representation that is associated with the 

target word is the embedding that is learned.
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word2vec Architectures

39
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Practical word2vec

• Pre-trained word embeddings are available for download online

– Google News corpus

– Freebase entities

• Can also train your own word2vec model, if you have more 

specialized data

• Training is done using gradient descent

• Another popular option:

– GloVe (Pennington et al., 2014)

COMP-551: Applied Machine Learning
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What you should know

• Basic idea of stacking model and how to use it

• Main strengths and limitations of stacking

• Know some features for natural language data


