AdaplD workshop
26 September 2006
KU Leuven

Model-based approaches
for the design of
secure e-ID card applications

Hans Vangheluwe
Mohamed Layouni, Ximeng Sun, Miriam Zia
Modelling, Simulation and Design Lab
McGill University
Stefan Brands, Credentica

VISDT. B McGill

Modelling, Simulation and Design Lab

Belgian National electronic ID cards

* Functionalities of e-ID:
— Visual and electronic identification of the cardholder;

— Stores a single public key certificate linked to a
citizen’s national number = electronic authentication of
the cardholder;

— Digital signature;

» Used in all transactions with government services.

« RISK: breaching privacy of citizen.

E-Health Applications

* Motivation:
— Improve the quality and efficiency of healthcare;
— Reduce related costs;

— Rely on the innovation of information and
communication technology.

 Technology:

— Associated with each patient is his/her Electronic Health
Record (EHR) (patient-related information);

— Electronic data warehouses: central information systems
where EHRs are stored.

« Concerns:
— Management of electronic health records;
— Mining of electronic health data.

Existing Infrastructure for
Mining of Electronic Health Records (EHR)

L B

Researcher

C

CUSE

C

MUHC

C

- System allows crossing

CHUM

of information;
- 1 coordinates the activities
between the access points.

~

1Q

Serve

RAMO

O

= =-

A web-based research infrastructure
to facilitate clinical and population studies.

- Inspired by the IRIS-Quebec implementation.

(“Infrastructure de Recherche Intégrée en Santee du Québec”)

Use Case: Mining EHR

4— 2.6 : progress := reportQueryProgress{query)

—p 3 [Finished] : results := retrieveResults() -5 2.1: doSubmitQuery{guery)
27 showProgress(progress) 4 1.4 : acknowledgeAuthorize()
— 2: submitQuery|query) — 13: doAuthorize()
Researcher's Computer CDsS
4— 1.5 : acknowledgeAuthenticateAndAuthorize) - 4 1.2 : acknowledgeAuthenticate() B
—p 1 : authenticateAndAuthorize(} —y 1.1: doAuthenticate()

Researcher
K 2.2 : sendQuery(que

4 3.1[progress == 100%] : resulfs := retrieveResults(AHC_final) “ 2.3 *[For all AHCs] : ackQuery(status)
- 24b [Finished] : storeResults()

i 24a [not Finished) : forwardQueryToNext{AHC next)

AHC

{’ 2.5b : doStareResults()

~4 2.5a: doForwardQuery(query|AHC next)

» Queries are processed sequentially by a subset of the AHCs (Associated Hospital Centers)
under the coordination of the CDSS (Clinical Data Sharing System).

» The CDSS first sends the query to AHC_i1. Once AHC i1 is done, the CDSS requests

AHC_i1 to forward the query along with the anonymized result to the next AHC _i2.

« When the cumulative result reaches AHC final, the CDSS notifies the researcher that the
query has been processed and provides the location where the result can be fetched.

Use Case: Issuing a Credential for EHR Mining

- 2 : requestCredentiall)

1 : authenticate(}
- Researcher's Computer

4+ 13: acknowledge()

4+ 2.3 : returnCredential()

Researcher

‘ 1.1 : doAuthenticate()
1- 1.2 : acknowledge()

* 2.1 : doRequestCredentiall)

1~ 2.2 : issueCredential()

1AC

*|AC: Information Access Commission

Concerns

* We only require that communication
channels between the AHCs, the CDSS,
and the researcher guarantee the integrity
of data. Confidentiality is not required

because:

1. AHCs exchange only anonymized EHRs when
processing a query;

2. The researcher retrieves the result of his/her query
in an anonymized form (all person-identifying fields
are removed);

3. Authentication and query submission between the
researcher and CDSS is likely to be done in Zero
Knowledge thereby assuring confidentiality and
preventing replay attacks.

Modelling and Simulation Based Design
of Complex Systems

‘We now have:
—A definition of elD;

—A definition of e-health
and related applications;

—An example e-health use
case, and requirements;

—Something to check for

(integrity of data).
Where do we go from
here?

Y

Use Cases, Sequence
Diagram, ...

| REQUIREMENTS

QUERIES

YES /NO

@@ i Model Transformation
1

Time Petri Nets,
CSP, ...

MODEL CHECKING

Y

PERFORMANCE | _._._._._| TEST CASES |-~
METRICS i i

YES /NO PASS / FAIL

Overview of the Process

USE CASE-LEVEL
ANALYSIS MODEL

~

£
==

=

=

Use Case-Level Analysis

Model-Driven Assessment of Use Cases
for Dependable Systems

« Assessing and refining use cases to ensure
that the specified functionality meets the
dependability requirements of the system.

* Method:
1. Mapping use cases to DA-Charts model;

2. Perform probability analysis of the model
using ATolMs.

Dependability and Fault Tolerance
* Dependability:

Property of a computer system such that reliance can
justifiably be placed on the service it delivers.

— Reliability: Measure a system’s aptitude to provide
service and remain operating as long as required.

— Safety: Determined by the lack of catastrophic failures
it undergoes.

- Fault tolerance:
Means of achieving system dependability.

— Error detection: Detection of exceptional situations

— System recovery: Describing the interactions with the
environment

Model-Driven Process for Assessment and
Refinement of Use Cases

1. Step:
Standard

Use Cases

Uselaze: ...
Frimary: ...
hdain;

1. ..

2 ..

3. ..

2. Step:
Exceptional
Use Cases

3. Step:
Annotated

Exceptional Use Cases

' UseCase: ..
Primary: ...
hain;

1. ..
Extensign:

Refine if necessary I |

1a. Excep..

UzaCase: ...
Primary: ...
Main:

1. Hel:89%

Extension:

h,

1a. Excep..

4, Step: :> 5. Step:
Mapping to Dependability
DA-Charts Analysis

————- Dependability \
Heport

ﬁ

DA-Charts

» Dependability Assessment Charts:
Probabilistic extension of the Statecharts formalism.

* A state can transition to one of two possible target
states: a success state with probability p and a failure
state with probability 7-p.

» Syntax: event[condition]{probability}/action

lopdo. Tl opAck

= Dl 11

iopd0.01 WsiopMack;

Failure

DA-Charts in AtoM3

X AToM3 v0.3 using: DA_Charts EEE
| DA_Charts
s F7=0] -
A ?’ ...r" 1 Basiec @ Dﬁ?] ,H 'j [ﬂl"ﬂl‘t : 'U'IS!IEI Pa
“@#- State HizTory 2 e Orthogonal @ger:ar _SE“'"F 4|
~ | -

|95y

The probability of reaching (s 3, *) from
(s3,51,58)1s: 0.999500

®

ﬁ

oK

-

(note: concurrency)

Verification Branch

REQUIREMENTS

_________J

Model Verification with TPN and Romeo

pl 12.4] n

©——O

Example of TPN Model

« ROMEO:

— TPN Analyzer: translates TPN models
into Timed Automata;

— Performs state space computation and
on-the-fly model checking of reachability
properties expressed in RT-CTL (Real-
Time Computation-Tree Logic).

TPN Model of the CDSS

AHHC td: [processing 1
=T

!

I__|
t2:RIVIT 1 | 4

ta ackl 5 motification

Researcher

(1o —w =

11 subroitOuery | CDSS

19 notification 2
Researcher tesultsReady

2
(e = { e 2 1 2

HH - trametferBesults HE amtesration taprocessing 4 AHCG A B2

« Check : AG[0,inf)(M(CDSS server)<1)
— Assumption that the “CDSS server” place could hold 2 tokens if there
was some breach of privacy of data (results were stored on the server).
*Output:
false (property does not hold)
Trace: t1: submitQuery, t2: RMI 1, t3: ack 1, t4: processing 1

Privacy-respecting TPN Model of the CDSS

guard .
t12: data tran=fer TS
LEHC1
 I— 2
t2 BT T &
tZ:ack 1 t5: notification 1
Fesgearcher
tl: subrodtQuersy | CDSS
to rotification 2
t:ack 2
2
Fesearcher resultsFeadsy
{1 { 2 = "
t11: transferResults 110: integration tE: processing 2 | AHC 2 té: FIVIL 2

» Check : AGIO0,inf](M(CDSS server)<1)

 Output:
true

Use Case Analysis with CSP and FDR2

« CSP (Communicating Sequential
Processes):

— Language for describing
patterns of interaction.

FDR2 (Failures/Divergence
Refinement 2):

— Model checker for systems
described in CSP;

— Converts two CSP process
expressions into labelled
transition systems, and then
determines whether one of the
processes is a refinement of
the other.

Simulation Branch

[aam]
REQUIREMENTS

Approach

Modelling Simulation Analysis
Python E
\ '

DEVS Formalism

» Discrete-EVent system Specifications

* To develop a rigourous basis for the
compositional modelling and
simulation of discrete event systems

DEVS in AToM3

EntityRelationshipy3

QJJJ

GEMI TING

Timeadvance:
timespan: =0

Clntpupb Inb}:
pokelout, jobl;

|k sizai=randint|szi, szhl;

Raoot

al
: Generator

g_m

Processor
p_difEard

LA

|

I~

[Editing 'Monamed' (modified)

|Ed'rting transf. ‘Monamed’ {not modified) in file ‘Nonamed'

Modelling & Simulation using PyDEVS

- PyDEVS (aka PythonDEVS):

— A prototype DEVS modelling language
with simulator

Simulation Results Analysis

File
Select a Model: Parameters: Plot Options:
Root gs (Integer) [1 ia (Integer) [1 _| Generator.generator | Processor.pl
Processor S Pro 2 beis 3
Generator ib (Integer) |7 sa (Integer) |5 | CEssor.p = cessor.p
sh (Integer) |10 Simulation Time: |1000 Flotter Scale: [100.0 _i Real Time
% Start | Stop |
Processor.p1
state
ldle (j—(
Eusy -+ © Q Q Q
Discarding Q
408.0 411.0 4140 42004210 4250 43304340 Time
‘ Scale: ISD.D W Line I Text “ <= < < | > > =] PostScript H
Processor.p2
state
ldle 4 4
Eusy
Discarding
507.0 SIB@0 5190 558.0 566 565 0 SABES80 5820 Time
‘ Scale: W Line 1 Text “ |<< << < | > B> »3| PostScript H
Root.simlnst
Instance
Generator.gd Q L ¢ 40
neratar T ; ?
Frocessorp
Frocessar.p
Frocessor.p
Root.simlnst +
0 7.0 120 140 17.0 200210 230240 29.0 320 340 380 380 Tipa
Scale: IZD.D W Line _| Text |<< | << | < | > B> »3| PostScript |

DEVS Simuld DEVS Simulation Environment

Animation in AToM3

AToM3 WIS using: Animaton"META

Animation META|
) |
H ==
P =2 €3
iy
— — | - o —
o UG o
o RARG ZH
Fesearcher B
—_— | O _
fﬁ il —
. — o
. © Intranet
Internt
- e
o
Fesearcher_R0O
O O
CLUSE fALIHC
£
= [-
|iris_quebec_D1_MDL.py' (not modified) |Editing transf. ‘Monamed' (not maodified) in file ‘MNonamed’

Conclusions

« Gave overview of first experiments
in modelling and simulation based
design of e-Health applications

* Next phase:
— Elaborate use case(s)

— Down to synthesis of code ?
— Use Credentica SDK

References

[IRIS-Quebec] http://www.iris-quebec.ca/

[BHO1-1] Andrea Bobbio and Andras Horvath, “Model Checking Time
Petri Nets Using NuSMV”’, PMCCS 5, 2001.

[Hoa78] C.A.R Hoare, “Communicating Sequential Processes”,
Communications of the ACM 21, 1978.

[Ros94] A.W. Roscoe, “Model-Checking CSP”, in A Classical Mind:
essays in Honour of C.A.R. Hoare, Prentice Hall, 1994.

[IMSKVO06] S. Mustafiz, X. Sun, J. Kienzle, and H. Vangheluwe. “Model-
Driven Assessment of Use Cases for Dependable Systems”,
ACM/IEEE 9th International Conference on Model Driven
Engineering Languages and Systems, 2006.

