
www.elsevier.com/locate/jvlc

 Journal of
Visual Languages
 & ComputingJournal of Visual Languages and Computing

15 (2004) 309–330

Defining visual notations and their manipulation
through meta-modelling and graph

transformation

Juan de Laraa,*, Hans Vangheluweb

a Ing. Inform !atica, Universidad Aut !onoma de Madrid, Madrid, Spain
bSchool of Computer Science, McGill University, Montr!eal, Canada

Received 13 June 2003; received in revised form 2 November 2003; accepted 5 January 2004

Abstract

This paper presents a framework for the definition of visual notations (both syntax and

semantics) based on meta-modelling and graph transformation. With meta-modelling it is

possible to define the syntax of the notations we want to deal with. Meta-modelling tools are

able to generate environments which accept models in the defined formalisms. These can

be provided with further functionality by defining operations that can be performed to

the models. One of the ways of defining such manipulations is through graph grammars,

because models and meta-models can be represented as attributed, typed graphs. In this way,

computations become high-level models expressed in the formal, graphical and intuitive

notation of graph grammars. As an example, AToM3 is used to automatically generate a tool

for a Discrete Event Simulation notation. The tool’s functionality has been completely defined

in a visual way through graph grammars, and includes a simulator (formalism’s operational

semantics), a transformation into Timed Transition Petri nets (denotational semantics), an

optimizer and a code generator for a GPSS simulator.

r 2004 Elsevier Ltd. All rights reserved.

Keywords: Meta-modelling; Graph transformation; Domain-specific visual languages; Discrete-event

simulation; AToM3

ARTICLE IN PRESS

*Corresponding author.

E-mail addresses: juan.lara@ii.uam.es (J. de Lara), hv@cs.mcgill.ca (H. Vangheluwe).

1045-926X/$ - see front matter r 2004 Elsevier Ltd. All rights reserved.

doi:10.1016/j.jvlc.2004.01.005

1. Introduction

For as long as computers were invented more than half a century ago, Software

Engineers have sought higher levels of abstraction to program their applications:
from bits to assembler to procedural programming languages and object orientation.
This evolution seems natural and necessary for several reasons, among them the
increasing needs of productivity and quality. Using higher abstraction level
notations, programs become more compact and easier to understand, write and
maintain. In this way, developers deal with less (accidental) details about the system
they are building and concentrate on describing its essential properties [1].

Domain-specific visual languages (DSVL) are graphical notations specially devised
for the specific needs and knowledge of a certain group of users. DSVL have the
advantage of being at a very high-level of abstraction and very effective and intuitive
for the task to be performed. In areas where DSVL are intensively used or where the
notations can evolve, we need a way to reduce the effort in building and maintaining
the DSVL tools. Meta-modelling is a way to reduce this problem, as one can use
graphical, high-level notations (such as UML class diagrams with OCL constraints)
to define the syntax of the visual language. From this meta-model, a tool can be
generated for the defined formalism. The generated tool has a limited functionality,
typically editing, loading, saving models and verifying that they are correct
(consistent with the meta-model). However, for a modelling tool to be useful, more
complex operations on the models are desired. For example, simulation, model
transformation into some other (textual or graphical) notation (where other
operations could be performed, or properties could be proved) and model
optimization (for example, reducing its complexity). As models, meta-models and
meta–meta-models can be represented as attributed, typed graphs, these operations
can be expressed using graph grammars [2]. In this way, computations become high-
level models expressed in a formal, graphical and intuitive notation. This eliminates
the problem of adding features to the generated tool using a lower-level
programming language and has the potential to improve key factors in software
development, such as productivity, quality and ease of maintenance.

AToM3 [3] (A Tool for Multi-Formalism and Meta-Modelling) is a Multi-
Paradigm Modelling tool that is being developed in collaboration between McGill
University and the Universidad Aut !onoma in Madrid. This tool implements the
concepts explained above and has been used to define modelling environments for
areas such as Modelling and Simulation (Petri nets [4], GPSS [5] and Causal Block
Diagrams), Artificial Intelligence (Constraint Satisfaction Problems and Ant Colony
Optimization) and Software Engineering (the UML structural and behavioural
diagrams [6], Data Flow Diagrams and Structure Charts).

In this paper, we show new improvements in the tool, together with an example of
the usefulness of the DSVL approach. We define a notation for Discrete Event

Simulation, in the Process Interaction style [7] and the subsequent automatic
generation of a modelling tool. The tool’s functionality is enriched by graphically
defining graph transformations to simulate, transform into Timed Transition Petri
nets (TTPN) [8], optimize the model and generate code for a GPSS simulator [9].

ARTICLE IN PRESS
J. de Lara, H. Vangheluwe / Journal of Visual Languages and Computing 15 (2004) 309–330310

The rest of the paper is organized as follows: Section 2 gives some background on
graph grammars and the rationale for its use in our context; Section 3 explains the
use of AToM3 for meta-modelling a Process Interaction Notation; Section 4 presents
a graph grammar for simulation; Section 5 shows a graph grammar for the
transformation into TTPN for analysis; Section 6 presents a simple graph grammar
to improve model efficiency; Section 7 explains the graph grammar for GPSS code
generation; Section 8 shows related research and finally Section 9 presents the
conclusions and the future work.

2. Graph grammars: a brief introduction

Graph grammars [2] are similar to Chomsky grammars [10] (which are applied on
strings), but rules have graphs in left- and right-hand sides (LHS and RHS). Graph
grammars are useful to generate sets of valid graphs or to specify operations on
them. In the latter case, a graph rewriting processor looks for graph matchings
between the LHS of a rule and a zone of an input graph (called host graph). When
this happens, the matching subgraph in the host graph is replaced by the RHS. Rules
may have conditions that must be met in order for the rule to be applied and actions
that are performed once the rule is applied. Some graph rewriting processors (such as
AToM3) iteratively apply a list of rules (ordered by priority) to the host graph until
none of them is applicable. When a rule can be applied, the processor starts again
trying the rule at the beginning of the list. Other processors have a (possibly
graphical) control language to select the rule to be considered next.

In our approach, we use graph grammars to specify operations on models
(typically model execution, optimization and transformation) at any meta-level, as
these can be expressed as attributed, typed graphs. In this case, the attributes of the
nodes in the LHS must be provided with the matching conditions. In AToM3; we can
specify that either a specific value or any value will make a match. Nodes in both
LHS and RHS are also provided with labels to specify the mapping between LHS
and RHS. If a node label appears in the LHS of a rule, but not in the RHS, then the
node is deleted when the rule is applied. Conversely, if a node label appears in the
RHS but not in the LHS, then the node is created when the rule is applied. Finally, if
a node label appears both in the LHS and in the RHS of a rule, the node is not
deleted. If a node is created or maintained by a rule, we must specify in the RHS the
attributes’ values after the rule application. In AToM3 there are several possibilities.
If the node label is already present in the LHS, the attribute value can be copied. We
also have the option to give it a specific value or assign it a program to calculate the
value, possibly using the value of other attributes.

Using a model of the computation in the form of a graph grammar has several
advantages over embedding the computation in a lower-level, textual language.
Graph grammars are a natural, graphical, formal and high-level formalism. Its
theoretical background can help in demonstrating the termination and correctness of
the computation model. As a natural and intuitive formalism for describing
computations, it may be interesting for education [11], as computations, and their

ARTICLE IN PRESS
J. de Lara, H. Vangheluwe / Journal of Visual Languages and Computing 15 (2004) 309–330 311

effects can be visually traced. Nonetheless, its use is constrained by efficiency as in
the most general case, subgraph isomorphism testing is NP-complete. However, the
use of small subgraphs on the LHS of graph grammar rules, as well as using node
and edge types and attributes can greatly reduce the search space in the matching
process.

3. Meta-modelling a process interaction notation with AToM3

This section presents a meta-model for a Discrete Event Modelling formalism [7]
for which transformations are described in the following sections. Discrete Event
formalisms usually follow an Event-based or a Process Interaction approach. The
former focuses on modelling the events (state changes) in the system, while the latter
(the one we follow in this example) models the life-cycle of some entities in the
system. The notation we present has been tailored to the domain of manufacturing.
Models are composed of pieces moving through an interconnected network of
machines. The concepts of the notation are Pieces, Machines, Queues and Generators

(which produce pieces at certain rates). A meta-model built with AToM3 for this
notation is shown in Fig. 1.

In AToM3; we can use either the Entity-Relationship or the UML Class Diagrams
meta-formalisms for meta-modelling. A meta-formalism can be used to define
formalisms as well as other meta-formalisms. In addition, meta-models can be
provided with textual constraints expressed as OCL [12] (not shown in the paper) or
Python code (‘‘well-formedness rules’’). These are executed at run time and guarantee

ARTICLE IN PRESS

Fig. 1. Meta-model for process interaction.

J. de Lara, H. Vangheluwe / Journal of Visual Languages and Computing 15 (2004) 309–330312

model correctness. The AToM3 user interface changes depending on the loaded
(meta-)formalism. In the case of Fig. 1, UML class diagrams have been loaded. This
notation allows to create classes, connect them (by means of inheritance or as a
regular connection), or generate code for the described formalism. This code can be
loaded again on top of AToM3; which then allows modelling under the syntax of the
defined formalism.

The window in Fig. 1, shows five UML classes for our notation. Machines can be
either in state Idle or Busy, consume some time (Tproc) for the processing of each
Piece and have a pointer to the Piece that is currently being processed. Generators

are provided with an inter-arrival time (IAT) and a displacement (Desp), in such a
way that the next Piece will be generated in a random number of time units in the
interval [IAT-Desp, IAT+Desp]. Generators produce a maximum of maxTransac-

tions Pieces (if this attribute is greater than zero), starting at time initTime.
Generators can only be connected to Queues, the pieces they generate are stored in
them. Queues have connections to the first and last Piece they are storing. A Piece

can be related to the next Piece in the Queue. The Timer accounts for the final and
actual time of the simulation.

In addition to this abstract syntax information, a graphical appearance has been
defined for each class and connection in the meta-model. In AToM3; there are two
kinds of graphical attributes: arrow-like and icon-like. The first one is usually
assigned to connections in the meta-model, the second one is usually assigned to
entities. A graphical editor allows designing both kinds of graphical appearances.

Fig. 2 shows AToM3 once loaded with the automatically generated files from the
previous meta-model. The column of buttons to the left has changed with respect to
the window in Fig. 1. This part of the user interface is indeed a model that AToM3

generates from the meta-model. This model has a meta-model (‘‘Buttons’’, which is
made of a single entity, the button) on its own right, and gets interpreted when
AToM3 loads the corresponding formalism. AToM3 generates a button for each
non-abstract UML class in the meta-model. This process is indeed a formalism
transformation: from UML class diagrams to the ‘‘Buttons’’ formalism. Like some
other built-in features of the AToM3 kernel, it has been modeled using a graph
grammar. As the user interface is a model, we can modify it. In the case of the figure
we have added buttons to simulate, convert to TTPN, optimize and generate GPSS
code (the four lower buttons in the left column). These buttons call the appropriate
graph grammar models to perform the operations and are described in the following
sections.

Thus, in the pure meta-modelling approach we follow, the Visual Language (VL) is
completely defined by a meta-model. This can be regarded as a type graph (with
inheritance) enriched with certain constraints. Some of them are visually embedded
(cardinalities) in the type graph, while others have been defined with a textual
language (‘‘well-formedness’’ rules). On the other hand, in a pure graph grammar

approach [13], the VL is defined by constructing graph grammar rules for generation
or parsing (some systems automatically derive rules for generating the alphabet
symbols). This usually is more difficult, but the theoretical results of graph
transformation can be used to prove properties of the generated language. While the

ARTICLE IN PRESS
J. de Lara, H. Vangheluwe / Journal of Visual Languages and Computing 15 (2004) 309–330 313

pure meta-modelling approach is more declarative, the pure graph grammar approach
is more constructive.

4. Defining a simulator

In this section, we extend the functionality of the tool with a simulator modeled
using graph grammars. Coding the simulator in a textual language (Python in the
case of AToM3) can be more efficient, but, for our purposes, graph grammars have a
number of advantages (besides the ones expressed in Section 2). Graph grammars
should be considered as a notation for high-level modelling in opposition to
programming. Thus, a simulator expressed with graph grammars may be viewed as a
reference (and executable) specification from which more efficient simulators can be
derived. They also have advantages from the point of view of education. Modelling a
simulator with graph grammars is natural and intuitive, and one gets insight in the
process one is modelling. Additionally, AToM3 is able to animate and execute graph
grammars step by step. In this case, the simulation can be visually traced without
having to code complex graphical routines. In AToM3 one can also use Python to
express the computations, but in this case, the user has to know the Python syntax
and some of the internal details of the tool, such as the way in which models are
stored in memory, and how nodes are connected.

The graph grammar for simulation is composed of six rules. Fig. 3 shows the first
two of them. They are numbered according to their priority. Both deal with the
production of pieces by a Generator and are only applicable if the actual simulation

ARTICLE IN PRESS

Fig. 2. An example process interaction model.

J. de Lara, H. Vangheluwe / Journal of Visual Languages and Computing 15 (2004) 309–330314

time is equal to the time in which the next Piece should be generated (see their
conditions). Rule 1 deals with the case in which there are already some Pieces in the
Queue (label ‘‘1’’) attached to the Generator (label ‘‘3’’). The last Piece is pointed by
the ‘last’’ arrow. In this case, the newly generated Piece (labelled as ‘‘7’’ in the RHS)
becomes the last one. Rule 2 shows the special situation in which the Queue is empty.
In this case, the newly created Piece (labelled as ‘‘5’’) is pointed by the ‘‘first’’ and
‘‘last’’ arrows of the Queue. Note how, in the RHS some of the nodes’ attributes are
copied, while others are assigned new values. This is the case with the Generator’s
attribute Tnext, which stores the time in which the next Piece has to be generated.
The creation time of the piece (Tcreat attribute in nodes 7 and 5 in the RHS) is also
calculated.

Fig. 4 shows rules number three and four, which deal with the consumption of
Pieces by Machines. Rule 3 shows a situation in which the incoming Queue has more
than one stored Piece, while in rule 4, the Queue has only one Piece. In both cases,
the first Piece in the Queue is consumed by the Machine (removed from the Queue

ARTICLE IN PRESS

1. − Generate Transaction 1

Tnext+=rnd(IAT−Desp, IAT+Desp) Tnext+=rnd(IAT−Desp, IAT+Desp)

node(4).Time==
node(3).Tnext

node(4).Time==
node(3).TnextCONDITION

CONDITION

LHSLHS RHS RHS

2. − Generate Transaction 2

PIECE:

PIECE:

PIECE:

PIECE:

Tcreat:

Tcreat:

Tcreat:

Tcreat:

Tend:

Tend:

Tend:

Tend:

TIMETIME TIME
TIME

FINAL FINALFINAL

FINAL

<ANY><COPIED>

<COPIED>
<ANY>

<COPIED>

<ANY>

<ANY><ANY>

<ANY>

<COPIED>L
as

t

L
as

t

F
ir

st

L
as

t

IAT:IAT: IAT: IAT:+− +−+− +−MAX:MAX: MAX: MAX:

0

<ANY>
<ANY>

<ANY>

<ANY>

<COPIED>

<COPIED>
<COPIED>

P
node(4).Time

<COPIED> <ANY> <COPIED>

P
node(4).Time
0

<ANY>
<ANY>

<COPIED>

<COPIED>

<ANY>
<ANY> <COPIED>

<COPIED>

<COPIED>
<COPIED>

7
5

7

5 8

5

1
1

1 1 1

4
4

4 4

22 2

6
6 6

3 3
3 3

Fig. 3. The first two rules for the simulation graph grammar: generating pieces.

MACHINE:MACHINE: MACHINE: MACHINE:
BusyIdle Idle Busy

<COPIED> <COPIED><ANY> <ANY>

<ANY> <COPIED>

<COPIED>

<ANY>

<ANY>

<COPIED>

<COPIED>

6

8

1

556

2

2

2

2

PIECE:
PIECE:

PIECE:
PIECE:

PIECE:

PIECE: Tcreat:

Tcreat:

Tcreat:Tcreat:
Tcreat:

Tcreat:

Tend:

Tend:
Tend: Tend:

Tend:
Tend:

LHS RHS RHSLHS

3. − Consume Piece 1 4. − Consume Piece 2

TIME

TIME

TIME

TIME

FINAL

FINAL

FINAL FINAL
<ANY><ANY>

<COPIED>

<COPIED>

<COPIED>

<COPIED>

<ANY>

<ANY><ANY>

F
ir

st

L
as

t

F
ir

st

F
ir

st

<ANY>
<ANY>

<ANY><ANY>
<ANY>

<ANY>

<ANY>
<ANY>

<ANY>

<COPIED>
<COPIED>

<COPIED>
<COPIED>
<COPIED>

<COPIED> <COPIED>
<COPIED>

<COPIED>

3

4

3
3

3

4

1
1

1

45

5

4

7
97 10 6

8

Tend=node(5).Time+TprocTend=node(5).Time+Tproc

Fig. 4. Rules three and four for the simulation graph grammar: begin of machine processes.

J. de Lara, H. Vangheluwe / Journal of Visual Languages and Computing 15 (2004) 309–330 315

and pointed by the Machines arrow), and the machine final processing time is
updated.

Fig. 5 shows rules 5 and 6. Both deal with the end of processing by Machines, in
which Pieces are stored in the output Queue. Rule 5 is a general case, in which the
Queue is not empty and only the ‘‘last’’ arrow should be redirected. In rule 6, the
Queue is empty, and both the ‘‘first’’ and ‘‘last’’ arrows should be created.

Finally, rule 7 (not shown in the figure, its LHS and RHS consist of a Timer) is
applied if none of the previous rules can be applied and updates the simulation time
with the time of the next event. This is the minimum of the final processing time of
each Machine, and of the next Piece production in each Generator. We may have
several applications of the previous rules (1–6) before an increment in the simulation
time takes place. The applicability condition of rule 7 checks that the actual time
must be less than the final simulation time, otherwise the rule is not applicable and
the graph grammar execution ends.

Fig. 6 shows the execution of some rules (until a time increment) on a model
composed of two machines connected sequentially by Queues. During the
simulation, it can be the case that a rule can be applied in several zones of the
model. For example, if both Machines are in the Idle state and have a Piece in the
incoming Queue, rule number 4 (‘‘Consume Piece-2’’) can be applied in two different
places. In this case, AToM3’s Graph Rewriting module offers several possibilities. In
the first one, the system asks the user in which zone in the graph the rule should be
applied by clicking in the different subgraphs (in the example, the user should
indicate which Machine consumes the Piece). In the second possibility AToM3

chooses a random occurrence of the rule. Finally, if the zones in the graph where the
rule can be applied are disjoint, AToM3 can apply the rule in parallel (that is, in the
example, both machines would consume the pieces at the same time). For some
cases, this non-determinism is not important in the present graph grammar. The time
update rule is the last one in the list and we can apply several rules at the same
simulation time. That is, in the example, and choosing whichever possibility, both
Pieces are consumed by both machines at the same simulation time, so the
simulation result is the same in any case. In the case of an idle Machine with two
non-empty input Queues, either the user or AToM3 at random chooses the Queue

from which the Piece comes, and the simulation results of the two alternatives are
not the same.

ARTICLE IN PRESS

RHSLHS RHS LHS

node(1).Tend==node(6).Timenode(1).Tend==node(8).Time
CONDITION CONDITION

MACHINE:

MACHINE: MACHINE:

MACHINE:
Busy

IdleIdle

Busy

<COPIED>

<ANY>

<COPIED>

<ANY>

<ANY> <ANY>

<COPIED> <COPIED>

1

1

1

1

PIECE:

PIECE:

PIECE:
PIECE:

PIECE: PIECE:

Tcreat:

Tcreat:

Tcreat:Tcreat:Tcreat:

Tcreat:Tend:

Tend:

Tend:

Tend:Tend: Tend:

6. − Output Piece 25.− Output Piece 1

TIME

TIMETIME

TIME

FINAL

FINAL

FINAL

FINAL

<COPIED>
<COPIED>

<ANY> <ANY>

<COPIED>

<COPIED>
<COPIED>

<ANY><ANY>

<ANY>

<COPIED>

<ANY>

L
as

t

L
as

t

L
as

t

F
ir

st

<ANY>

<COPIED>
<COPIED>

<COPIED>

<COPIED>
<COPIED>
<COPIED> <COPIED>

<COPIED>

<COPIED>

<ANY>

<ANY>
<ANY>
<ANY>

<ANY>
<ANY>
<ANY>

<ANY>

3

6 3

6

3

3

8

2
5

5

4
2 8

5

2

6

2

5

4

6

10

7

7

9

8

Fig. 5. Rules five and six for the simulation graph grammar: end of machine process.

J. de Lara, H. Vangheluwe / Journal of Visual Languages and Computing 15 (2004) 309–330316

AToM3 allows several execution modes for a graph grammar: continuous (only
the final model is shown), step-by-step (the user clicks on a button after the execution
of each rule) and animated. In this case, one can set the time interval that must be
spent after the execution of each rule. The time is an attribute of each rule and is
established when the user builds the graph grammar, but it can be changed by the
rule. For this kind of graph grammar (simulation grammars), the feature is very
useful, because animation can be synchronized with the simulation. For example, if
rule number 7 advances time in 5 time units, the rule can set the delay parameter for
animation to 5 s:

Another new feature included in the AToM3’s graph grammar engine, is that in
the matching process, we can specify either an exact-type matching between the
nodes of the LHS and the nodes in the host graph or what we call a ‘‘subtype

matching’’. In the latter case, nodes (or connections) in the LHS and in the host
graph do not need to have exactly the same type. AToM3 checks at run-time whether
the node (or the connection) in the host graph has at least the same set of attributes
(and connections) as the node in the LHS (that is, if the node in the host graph is a
subtype of the node in the LHS). We do not need to express the subtyping
relationship in the meta-models, but this relationship is found at run-time. This idea
is extremely powerful as one can write general graph grammars and reuse them for
many formalisms, in unexpected situations. For example, suppose we want to adapt
the formalism defined in this section introducing different kinds of Pieces and
Machines with extra attributes. This could be done by subclassifying the Piece and
Machine classes in the meta-model of Fig. 1. In spite of the modifications performed
to the meta-model, the graph grammar for simulation would still be valid. The newly
created elements have the same subset of attributes as the ones that appear in the
graph grammar rules and these could make a match with the new kinds of Pieces and
Machines. The graph grammar would also be valid in the case we change the
application domain, for example, people waiting for cashiers in a supermarket.

ARTICLE IN PRESS

MACHINE: M1 MACHINE: M2

MACHINE: M1 MACHINE: M1

MACHINE: M2

MACHINE: M2

MACHINE: M1

MACHINE: M2

Busy

Idle

Idle

Idle

BusyIdle

IdleIdle

10.0

7.010.0

7.010.0

10.0 7.0

7.0

PIECE: PPIECE: P

PIECE: P
Tcreat: 0.0

Tcreat: 0.0 Tcreat: 0.0
Tend: 0.0 Tend: 0.0

Tend: 0.0

TIMETIME

TIME TIME

FINAL

FINAL FINAL

FINAL

0.0

0.0 5.0

0.0

50

50

50

50

IAT:5.0

IAT:5.0IAT:5.0

IAT:5.0
+−0.0 +−0.0

+−0.0+−0.0
MAX:3

MAX:3 MAX:3

MAX:3

R
ul

e
2:

 G
en

er
at

e
T

ra
ns

ac
tio

n
2

R
ul

e
4:

 C
on

su
m

e
P

ie
ce

 2

R
ul

e
7:

 A
dv

an
ce

 T
im

e

Conveyor

Output

Output

ConveyorInput

Output

Input Conveyor Input Conveyor

Output

Input

Tnext=5.0

F
irs

t

La
st

Fig. 6. Some steps in the execution of a simple model.

J. de Lara, H. Vangheluwe / Journal of Visual Languages and Computing 15 (2004) 309–330 317

5. Transforming into timed transition Petri nets

For the study of certain characteristics of the model, it may be useful to translate it
into another formalism for which there are appropriate analysis or simulation
techniques. The transformation should preserve the properties under investigation,
and can be regarded as expressing the denotational semantics of a formalism in terms
of another one. This idea was represented in a ‘‘formalism transformation graph’’
(FTG) in [14]. That work shows several continuous and discrete event simulation
formalisms as the nodes in the graph, while behaviour-preserving transformations are
represented as the edges. For the simulation of a complex system (with interconnected
components, described in different formalisms) one could transform each of its
components into a common formalism and then simulate the system as a whole. The
common formalism can be found by looking in the FTG. The same approach is also
valid if the goal is not simulation but verification of a property. This approach
contrasts with co-simulation [15], where no transformation into a common formalism
is performed. In that approach, a simulator for each component is needed, and they
synchronize by using a coordinator to direct the events appropriately. Thus, the co-

simulation approach cannot be used to verify a property for which we have to
understand the system as a whole, as there is no global, unified view of the system.

In AToM3; a part of the FTG has been implemented, where formalisms (the nodes
in the graph) have been meta-modeled and the edges in the FTG (which depict
transformation, simulation and optimization) have been formally expressed as graph
grammars [3]. Here, we show a graph grammar for the transformation of models in
the Process Interaction formalism described in the previous section into TTPN [28].
For simplicity and space constraints, we transform Process Interaction models in
their initial state, that is, when the simulation has not begun, before the generation of
any Piece. Transitions in TTPN are given a delay for firing since they are enabled.
The analysis and simulation methods available for TTPN allow us to analyze if
certain states are reachable, and to obtain performance metrics using a similar idea
to the Reachability Graph for untimed Petri nets [16].

In AToM3; the user may open several meta-models at the same time to define a
transformation graph grammar. During the transformation, the model is a mixing of
both source and target formalisms, but when the transformation ends, the model is
expressed in the target formalism alone. During the transformation process the
syntactic constraints imposed by the source and target formalisms are not checked.
However, at the end of the transformation, AToM3 checks that the transformed
model is consistent with the syntactic rules of the target meta-model.

AToM3 allows the application of a list of graph grammars to a model.
Decomposing a graph grammar in blocks makes the transformation more reusable,
easier to understand and more efficient. This is due to the fact that once a graph
grammar in the list is finished, their rules are not considered again by the graph
rewriting processor. Graph grammars may have actions (Python code) to be
performed before and after the graph grammar execution.

In the example of this section, the transformation can be clearly divided in three graph
grammars. The first one is shown in Fig. 7 and attaches Petri net places and transitions

ARTICLE IN PRESS
J. de Lara, H. Vangheluwe / Journal of Visual Languages and Computing 15 (2004) 309–330318

to each block in the Process Interaction model. The initial action adds attribute done

(initialized to zero) to all Generators, Queues and Machines. This attribute is deleted by
the graph grammar final action. Rule 1 is applied to Generators not processed before
(done attribute equal to zero), and attaches them to a Petri net transition. The delay of
this transition is set to a function returning a random number in the limits specified in
the Generator. In this way, the transition fires at the same intervals in which the
Generator produces a Piece. If the rule is applied, the done attribute is set to one to
prevent the Generator from being processed again. Rule 2 attaches a Petri net place to
each Queue. Rule 3 attaches two Petri net places to each Machine, representing states
Idle and Busy. The rule puts a token in the place representing the Idle state. Later we will
make sure that the number of tokens in both places is exactly one, using a well-known
structural property of Petri nets for capacity constraint [4].

The second graph grammar is used to connect the Petri net elements according to the
connectivity of the attached Process Interaction elements. It is composed of three rules
and is shown in Fig. 8. Rule 1 connects the transition attached to each Generator with
the place attached to the connected Queues. This rule is applied once for each Queue

attached to each Generator. The connection between the Generator and the Queue is
deleted to avoid multiple processing of the same Generator and Queue.

Rule 2 connects (through a transition) the associated place of an incoming Queue

to a Machine with the places associated with it. When the transition fires, it changes
the Machine state to Busy and removes a token from the place representing the
Queue. If the rule is executed, then the Queue is also disconnected from the Machine

to avoid multiple processing of the same Queue and Machine. A similar situation
(but for output Queues) is described in rule number three.

Finally, the last graph grammar (not shown in the figures) removes the Process
Interaction blocks. The rules simply disconnect and remove the Process Interaction
elements.

ARTICLE IN PRESS

RHSRHS LHSLHS

LHS RHS

1.−Convert Generators

done=1

done=1
done==0

done==0 done=1

done==0

3.−Convert Machines

MACHINE: MACHINE: <COPIED>
<COPIED><ANY>

<ANY>

<ANY> <COPIED>

1 1

2.−Convert Queues

<ANY>
<SPECIFIED>

<SPECIFIED>

<COPIED>

<SPECIFIED>

IAT: IAT:
+− +−
MAX: MAX:<ANY> <COPIED>

<ANY>
<ANY> <COPIED> <SPECIFIED>, <SPECIFIED>

<COPIED>

1

3

4
5

2

3

2

1
21

3

1
0

0 1

Fig. 7. First block of rules for the transformation graph grammar: adding the petri net elements.

J. de Lara, H. Vangheluwe / Journal of Visual Languages and Computing 15 (2004) 309–330 319

As an example, Fig. 9 shows the result of the transformation of the Process
Interaction model shown in Fig. 2 (without any of the Pieces, only the structure is
transformed). The sequence of graph grammar rules that where applied for the
transformation has been the following: convertGenerators, convertQueues (3 times),
convertMachines (3 times), ConnectGenQueue, ConnectQueueServer (3 times),
ConnectServerQueue (3 times), removeQueue (3 times), removeMachine (3 times),
removeGenerator and removeTimer.

6. Optimization

Optimizing transformations do not change the formalism in which the model is
expressed, but perform a structural change in the model, which results in a reduction
of its complexity, or in an improvement of its performance.

ARTICLE IN PRESS

3.−conectServerQueue

2.−conectQueueServer

MACHINE:

MACHINE:

MACHINE:

MACHINE:

<COPIED>

<ANY>

<ANY>

<COPIED>

<ANY>

<COPIED>

<COPIED>

<ANY>

<ANY>

<ANY>

<COPIED>

<COPIED>

2

2

2

2

RHS

RHSLHS

LHS

RHSLHS

<COPIED>

<COPIED>

<COPIED>

<ANY>

<ANY>

<ANY><ANY><ANY>

<ANY>

<COPIED>

<COPIED> <COPIED>

<ANY><ANY>

<COPIED>

<SPECIFIED>, <SPECIFIED>

<COPIED>

<COPIED>

<SPECIFIED>, <SPECIFIED>

<ANY>

<COPIED>

<ANY>

1.−conectGenQueue

IAT: IAT:
+− +−
MAX: MAX:<COPIED><ANY>

<COPIED>, <COPIED>
<ANY>

<ANY>

<ANY>, <ANY>
<COPIED>

<COPIED>

3

4

6

7

1

9

3

5

4

8

6

9

7 5

8

6

9

4

7

1

10

11

13

12

2

6

7

8

2

8

6

1

7

3

5

8

6

9

10 13
12

11

4

7

5

1

1
4 4

5

1

5

CONDITION

CONDITION

Node(5) represents the Idle State

Node(5) represents the Idle State

<ANY> <ANY> <ANY>

<ANY><ANY> <ANY> <COPIED>

<COPIED> <COPIED> <COPIED>

<COPIED><ANY>

<COPIED> <COPIED>

Fig. 8. Second block of rules for the transformation graph grammar: connecting petri net elements.

J. de Lara, H. Vangheluwe / Journal of Visual Languages and Computing 15 (2004) 309–330320

Fig. 10 shows a simple graph grammar for improving the performance of the
Process Interaction models. We assume that the process performed by the Machine can
be decomposed (pipelined) in processes up to the time unit. Pipelining [17] is a standard
procedure to improve the performance of the operations performed by processors. Its
use is very common to build fast CPUs. The idea is to divide the process in subprocesses,
in such a way that a job passes through the chain of subprocesses and is not
finished until it has passed through all of them. All these subprocesses can be active in
parallel, thus performing the different work stages (on different jobs) at the same time.
In our Process Interaction notation, this means that several Pieces can be processed in
parallel by the different Machines in which we have divided the original Machine.
This results in an improvement in the rate at which the Machines produce the Pieces

(if more than one Piece is waiting in the input Queue to be processed).
Thus, the only rule in the graph grammar shown in Fig. 10 takes a Machine with a

processing time larger than one and generates two Machines connected by a
Queue. As an action after the rule execution, the outputs of the original
machine are moved to the newly created one.

7. Code generation

In this section we define a code generator for GPSS (General Purpose Simulation
System) [5], which is the basis for the majority of Process Interaction tools available

ARTICLE IN PRESS

Output

M1

M1’

1

M2

M2’

1

M3

M3’

1

0

0

00

Input

Generator0, 4 Input2M1, 0

0

Input2M2, 0

0
M32Output, 7Conveyor2M3, 0

M22Conveyor, 7

M12Conveyor, 10

Conveyor

Fig. 9. Result of the transformation of the process interaction model in Fig. 2 into TTPN.

MACHINE: MACHINE: MACHINE:
Idle IdleIdle

<COPIED> <SPECIFIED><ANY>

<ANY> <SPECIFIED><SPECIFIED>

1 1 5
<SPECIFIED>

3 4

2

RHS

ACTION
Move Output Nodes from Node(1) to Node(5)

Tproc=Tproc%2==0?
(Tproc−1)/2Tproc/2:

CONDITION

1.−pipeLineMachines

Node(1).Tproc>1

Name="p"+Node(1).Name

Tproc=Node(1).Tproc%2==0?
Node(1).Tproc/2:
(Node(1).Tproc+1)/2

LHS

Fig. 10. Graph grammar for optimization: pipelining.

J. de Lara, H. Vangheluwe / Journal of Visual Languages and Computing 15 (2004) 309–330 321

in the market. It is a block-based textual language, but since it was invented in the
fifties, a graphical notation was devised for it. Although all current simulators accept
the textual notation, only some of them accept the graphical one. We focus on
generating the textual representation which then can be fed into many different
simulators. The total number of blocks of the GPSS language varies depending on
the specific implementation, but usually there are about 20. For this example we only
need some of them, which are explained next:

* ‘‘GENERATE /IATS; /DESPS’’ generates transactions (Pieces in our
example), at random in the interval [IAT-DESP, IAT+DESP].

* ‘‘QUEUE /qS’’ and ‘‘DEPART /qS’’ queue and dequeue transactions in the
queue named ‘‘q’’.

* ‘‘SEIZE /xS’’ and ‘‘RELEASE /xS’’ take and release resource named ‘‘x’’ for
exclusive use. In our Process Interaction notation, resources are Machines.

* ‘‘ADVANCE /mS; /dS’’ which simulates the processing of a transaction during
a random time in the interval [m-d, m+d]. We use this block to indicate the time
it takes a Machine to process a Piece.

* ‘‘TRANSFER BOTH, /xS; /yS’’ is a kind of ‘‘go-to’’ that checks whether a
transaction can enter in the block specified by operand /xS; and in this case, the
transaction is sent to it. Otherwise, it is sent to the block specified by label /yS:
This block can also be used as an unconditional transfer if the first parameter is
omitted and only one label is given as the second parameter.

* ‘‘TERMINATE n’’ counts n transactions as terminated (usually 1 or 0).
* ‘‘END’’ signals the end of the program code.
* ‘‘SIMULATE /nS’’ runs the simulation until n transactions finish.

Code generation is performed graphically by means of graph grammars. Of
course, in AToM3 one can write efficient Python code for this purpose, but by using
a graph grammar the user does not have to care about how the model is stored inside
AToM3 and of other implementation details. The code generator becomes
another high-level model, that we can build graphically, although in this
case, we have to specify the textual patterns that have to be generated as a result
of a rule application.

The main idea is to serialize the graphical model, performing a depth-first
traversal of the graph. This is performed by using a ‘pointer’’ that signals to the
block whose code should be generated. The meta-model has to be extended to
include this pointer which can be connected to either Generators, Queues or
Machines. Additionally, two kinds of connections are allowed from the pointer to
the blocks: the ones that appear as continuous black arrows point to the current
block, while the dotted arrows point to a path that has not been generated and
should be completed.

The graph grammar for GPSS code generation has an initial action which labels each
node in the model with the attribute done, and initializes it to zero. This attribute
controls whether code has been already generated for the node. This initial action also
opens a file (‘‘f ’’), where the textual code is written. Fig. 11 shows the first two rules.
Rule 1 generates code for Generators. It is applicable if there is no pointer in the model

ARTICLE IN PRESS
J. de Lara, H. Vangheluwe / Journal of Visual Languages and Computing 15 (2004) 309–330322

and the Generator has not been processed before. If these conditions are met a
pointer is created, which points to the Generator, and textual code is written in the file.
For clarity, we put between the percentage symbols the node attributes whose value is
written in the file, and use the notation ‘‘NðxÞ’’ to refer to the node whose label is ‘‘x’’.
Rule 2 is applied when there is a Generator (the last generated node) connected to a
Queue. In this case, GPSS code is written to queue a transaction (preceded by an
appropriate label) and the pointer advances to the Queue.

Fig. 12 shows rules 3 and 4, which deal with the beginning of processing of
the Pieces. Rule 3 shows a situation where a Queue is connected to multiple
Machines. The Piece is thus processed by one of the Idle Machines. This rule
advances the pointer to one of the non-processed Machines, but keeps a pointer to
the Queue as other paths in the graph should be processed later. The first line of
GPSS code checks whether the transaction can reach the first Machines (if this is
Idle), or whether other Machine should be tried (if the first one was Busy). The code
in the second line seizes the first Machine, which enters in state Busy. Finally, the
code in the third line dequeues the Piece. A Piece only reaches this point if it has been
able to seize the resource (the Machine). Rule 4 is applied if the Queue is only
connected to one Machine, or only one non-processed Machine remains. Due to
the priority order of the rules, this rule is applied only if the previous one could not
be applied.

Fig. 13 shows the three remaining rules of the graph grammar. Rule 5 deals with
the case of a Machine (which is the last generated block) connected to an
output Queue. In this case GPSS code is generated for the processing time, as well as
to release the Machine (placing it in Idle state again). Rule 6 is used when a path in
the graph has been completely generated, and other paths should be completed. This
happens when the pointer cannot further advance. In this case, the rule simply sets
the current pointer to one of the non-generated paths. Finally, rule 7 terminates the
code generation procedure for one of the connected graphs. The graph
grammar has a final action which writes a SIMULATE sentence according to the
number of Transactions that must be generated and an END sentence
indicating the end of the listing and closes the file.

f << "L%N(2).Name% QUEUE %N(2).Name%"

LHS RHSRHSLHS

1.−genGenerator 2.−genGenerator2Queue

ACTION

done==0 done=1

f << "GENERATE %N(1).IAT%, %N(1).Desp%" ACTION

<COPIED><ANY>

IAT:IAT: IAT:IAT:
+− +−+− +−

MAX: MAX:MAX: MAX:<COPIED><COPIED> <ANY><ANY>

<COPIED>
<COPIED>

<ANY> <COPIED>
<COPIED>

<ANY>
<ANY><ANY>

2 2

3

1 1 1 1
4

6

45

3

2

3

Fig. 11. Rules 1 and 2 for GPSS Code Generation: Generators and Queues.

J. de Lara, H. Vangheluwe / Journal of Visual Languages and Computing 15 (2004) 309–330 323

The GPSS code generated by the graph grammar from the model shown in
Fig. 2 (without the Pieces) is shown in listing 1.

[1] GENERATE 4,0 [12] ADVANCE 7,0

[2] LInput QUEUE Input [13] RELEASE RM3

[3] InputM1 TRANSFER BOTH,L-

M1,InputM2

[14] TRANSFER ,LOutput

[4] LM1 SEIZE RM1 [15] LOutput TERMINATE 1

[5] DEPART Input [16] InputM2 SEIZE RM2

[6] ADVANCE 10,0 [17] DEPART Input

[7] RELEASE RM1 [18] ADVANCE 7,0

[8] TRANSFER ,LConveyor [19] RELEASE RM2

[9] LConveyor QUEUE Conveyor [20] TRANSFER ,LConveyor

[10] ConveyorM3 SEIZE RM3 [21] SIMULATE 30

[11] DEPART Conveyor [22] END

Listing 1: Generated GPSS code from the Process Interaction model in Fig. 2.

ARTICLE IN PRESS

RHSLHS

RHSLHS

MACHINE:

MACHINE:

MACHINE:

MACHINE:

MACHINE:

MACHINE:
IdleIdle

done = 1

Idle

done == 0

done = 1

Idle

done == 0

Idle

done == 0

Idle

<ANY>

<COPIED>

<COPIED><ANY>

<COPIED>

<ANY>

<ANY>

<ANY>

<ANY>

<COPIED>

<COPIED>

<COPIED>

2

3

2

3

2

2

4.−genQueue2Machine−2

ACTION
f << "%N(1).Name%%N(2).Name% SEIZE R%N(2).Name%"
f << "DEPART %N(1).Name%"

3.−genQueue2Machine 1

ACTION
f << "%N(1).Name%%N(2).Name% TRANSFER BOTH, L%N(2).Name%, %N(1).Name%%N(3).Name%"
f << "L%N(2).Name% SEIZE R%N(2).Name%"
f << "DEPART %N(1).Name%"

<COPIED>

<COPIED><ANY>

<ANY>

6
5

6

1

9

1

4

5

8
4

5

7

6

1

4

1

4

33

Fig. 12. Rules 3 and 4 for GPSS code generation: begin of process.

J. de Lara, H. Vangheluwe / Journal of Visual Languages and Computing 15 (2004) 309–330324

GPSS simulators [9] usually give a standard report showing information about
resources (Machines in our case) and Queues. With respect to the resources, we can
have information about the number of transactions processed by the resource, the
percentage of time the resource has been used (utilization) and the average time the
resource was busy. With respect to Queues, we can obtain information about the
maximum number of stored transactions during the simulation, the total number of
them that passed through, the average contents and the average time a transaction
spent in the queue. Additionally, we can have information about the number of
transactions that passed through each block of the model.

For the experiment performed, the simulation stopped at time 224.
The experiment shows that Machine M1 had a utilization time of 98.2%,
Machine M2 of 96.0% and Machine M3 of 93.8%. With respect to the Queues,
the Input Queue had a maximum of 3 Pieces (0.978 in average) and the Pieces waited
3.911 units of time in average. The Conveyor Queue had 22 Pieces as its maximum
number, and 10.040 in average, the Pieces had to wait for 43.288 unit of time in
average. That is, by means of simulation we can show that this configuration is not
stable, as the number of Pieces stored in both the Conveyor and the Input Queues

grows without limit as the simulation time increases. Both problems can

ARTICLE IN PRESS

if N(2).done==0: f << "TERMINATE 1"
N(2).done=1

6.−Backtrack

ACTION
if N(1).done==0: f << "TERMINATE 1"
N(1).done=1

MACHINE:MACHINE:

done = 1done == 0

Idle Idle
<ANY> <COPIED>

<COPIED><ANY>

5

3

4
61

4

3

1

5.−genMachine

LHS

LHS RHS

LHS RHSRHS

ACTION

ACTION

f << "ADVANCE %N(1).Tproc%, 0"
f << "RELEASE R%N(1).Name%"
f << "TRANSFER ,L%N(2).Name%"
if N(2).done==0:
 f<<"L%N(2).Name% "
 if N(2) has outgoing connections: f << "QUEUE %N(2).Name%"
 else: f << "TERMINATE 1"

N(2).done=1

7.−FinishGraph

<ANY>
<COPIED>

<COPIED>

<COPIED> <ANY><ANY>

<ANY>

<COPIED>

2

3

2

5 4

2

1

33
6

12

2

11

Fig. 13. Rules 5, 6 and 7 for GPSS code generation.

J. de Lara, H. Vangheluwe / Journal of Visual Languages and Computing 15 (2004) 309–330 325

be eliminated in many ways, for example, if we reduce the rate at which Pieces

are generated from 4 to 5 and increase the efficiency of Machine M3 from 7 to 5
time units.

8. Related work

In the graph grammar community there are other similar tools, most of them use a
pure graph grammars approach. For example, GenGED [13] is a tool built on top of
the graph transformation tool AGG [18] which supports the definition of VLs.
Model correctness is guaranteed by defining creation or parsing graph grammars. On
the contrary, in AToM3 (pure meta-modelling approach) we rely on the evaluation of
constraints (defined in the meta-model) when the user builds the model. In our
experience, the definition of constraints usually requires less effort than building a
creation or parsing graph grammar, but, as stated before, the pure graph grammar

approach can take advantage of the theoretical foundations of graph transforma-
tions for proving properties of the generated languages. Additionally, meta-
modelling techniques are heavily used in the context of UML and the Model
Driven Architecture (MDA) [19]. Model transformation plays a central role for the
later technology, and we believe that the combination of meta-modelling and graph
transformation can be a very suitable approach.

Although in GenGED graph grammars can be defined for simulation and
animation [20], we also deal with other kinds of manipulations, such as
transformation into other formalisms, code generation and optimization. In
particular, for the specification of transformations between formalisms, we allow
the use of several meta-models at the same time. GenGED uses a constraint
language to specify the graphical layout, while we associate constraints (which may
have lateral effects, such as performing graphical layouts) with events in a similar
way as event programming languages such as Visual Basic. This is lower-level, but
usually more efficient. The mapping from abstract to concrete syntax is very simple
in AToM3; as each abstract syntax entity or connection should have an associated
concrete syntax symbol (icon or arrow-like). In GenGED this mapping can be more
sophisticated. Thus, the approach of AToM3 makes easy the definition of graph-like
VLs, while arbitrary languages with complicated layouts (such as Nassi–Schneider-
man diagrams for example) are much more difficult to describe. However, most VLs
we deal with in modelling and simulation are graph-like.

Although other tools based on graph grammars (such as DiaGen [21]) use the
concept of bootstrapping, in AToM3 there is no structural difference between the
generated editors (which could be used to generate other ones!), and the editor which
generated them. In fact, one of the main differences of the approach taken in AToM3

with other similar tools, is the concept that (almost) everything in AToM3 has been
defined by a model (under the rules of some formalism, including graph grammars)
and thus the user can change it, obtaining more flexibility.

With respect to graph grammars, an interesting alternative to our approach for
formalism transformation is the use of triple graph grammars [22]. In this way, one

ARTICLE IN PRESS
J. de Lara, H. Vangheluwe / Journal of Visual Languages and Computing 15 (2004) 309–330326

could obtain translators from the source to the target formalism and vice versa with
the same grammar. The approach is mostly useful for syntax-directed environments,
in which the editing actions are specified by means of graph grammar rules. In this
way, while the user is building a model in the source formalism, the triple graph
grammar creates the equivalent model in the target formalism. That is, it is not
straightforward to use this approach to translate an existing model, as in this case the
graph grammar rules must be monotonic (that is any production’s LHS must be part
of its RHS [22]).

Other kind of model transformation to take into account is that of meta-model
evolution. That is, changes made to a meta-model to add new features or constructs
to the VL it describes [23]. In that case, one would like a means to translate the
models, valid instances of the old meta-model into the syntax of the new one. This
can be regarded as a particular case of formalism transformation, and could be
modeled with graph transformation rules, as in the example in Section 5.

Other commercial meta-modelling tools, such as DoME [24] or MetaEdit+ [25]
use a textual, low-level language (Alter in the case of DoME) for the definition of the
model manipulations. In contrast, in our approach the user can define transforma-
tions as models in the graph grammars formalism. As stated before, graph grammars
are a high-level, formal and visual notation, which frees the user with the necessity of
having to know many details of the internals of the tool, and to maintain textual
code.

In the simulation community, there have been very few attempts to combine meta-
modelling and graph transformation techniques. For example, in the approach of
[26], DoME was used to implement several editors for continuous (sequential
function charts) and discrete formalisms (Statecharts). The user builds his composite
models with these editors, and they are subsequently translated into the object-
oriented simulation language Modelica [27]. This is the only transformation they
implement (code generation), and was specified using the textual language Alter. In
this area, the approach of Ptolomey [28] (which uses the co-simulation approach) and
GME [29] are also worth mentioning. The latter tool has lately incorporated graph
grammar techniques for model manipulation [30].

To the authors’ knowledge, the systematic approach presented in this paper is
novel. The approach combines meta-modelling to define VLs and graph grammars
to specify simulators, transformations, optimizations and code generation. This
work can thus be considered as an approach for rapid prototyping by means of
visual programming.

9. Conclusions

This paper has shown a framework for the generation of visual modelling tools
based on meta-modelling and graph grammars. We define the abstract and
concrete syntax of the notation using meta-formalisms such as UML class or Entity
Relationship Diagrams. With this information, AToM3 is able to automatically
generate a tool to process (load/save/verify its correctness) models in the

ARTICLE IN PRESS
J. de Lara, H. Vangheluwe / Journal of Visual Languages and Computing 15 (2004) 309–330 327

described notation. The generated tool’s functionality can be further extended by
defining manipulations in the graph grammar formalism. This has the advantage of
being a high-level, visual and formal notation. As an example of these concepts, we
have defined a visual formalism for discrete simulation together with graph
grammars for simulation, transformation, optimization and code generation.

In some cases, adding the tool’s functionality by means of graph grammars
improves productivity as the abstraction level of graph grammars is higher than
usual textual programming languages. Additionally, the user does not have to know
implementation details of the tool, and the maintenance is done at the level of
models, and not of code. In AToM3; graph grammars are highly reusable, because it
is possible to apply the same graph grammar to models in which there is not an exact
match with the LHS of the rules, but a subtyping relationship. On the
contrary, computations specified by means of graph transformation are usually less
efficient than computations specified with lower level programming
languages. Nonetheless, in the opinion of the authors, and for the kind of
applications to which this approach has been applied, the benefits are bigger than the
drawbacks.

AToM3 has been used by students in pre- and post-graduate courses at McGill
and in Madrid for building small projects. Additionally, it has been used to build
modelling environments for DEVS [31], OOCSMP [32] and UML
(to analyse model properties via model-checking) [6] as well as to create Zope
products [31].

Textual languages can still be processed by AToM3; as one can build a
meta-model for the Abstract Syntax Graph (the structure used by compilers to store
a parsed program). Although possible, manually drawing a graph representing a
textual program is not a very appealing approach. While visual languages are
naturally described by means of (graphical) meta-models, textual languages are
more effectively described using Chomsky string grammars [10]. We are currently
working in automating as much as possible the translations of meta-models into
string grammars and the opposite operation [33].

Another area that is worth exploring is the applicability of graph grammars in
education [11]. Not only are they useful to illustrate Discrete-Event
Simulation concepts (such as simulation), but their use is also applicable to
teaching in other areas, for example to show the animation of algorithms on data
structures such as lists, stacks, vectors, and of course graphs. We are also
working in formalising concepts applicable to many formalisms, such as
inheritance, hierarchy and multiple abstraction levels. Finally, we want to fully
automate the process of multi-formalism modelling.

Acknowledgements

The authors would like to thank the anonymous referees for their accurate and
very useful comments. This work has been partially sponsored by the Spanish
Ministry of Science and Technology (TIC2002-01948).

ARTICLE IN PRESS
J. de Lara, H. Vangheluwe / Journal of Visual Languages and Computing 15 (2004) 309–330328

References

[1] F.P. Brooks, The Mythical Man Month, Addison-Wesley, Reading, MA, 1995.

[2] H. Ehrig, G. Engels, H.-J. Kreowski, G. Rozenberg, Handbook of Graph Grammars and Computing

by Graph Transformation, Vol. 1, World Scientific, Singapore, 1999.

[3] J. de Lara, H. Vangheluwe, AToM3: a tool for multi-formalism modelling and meta-modelling, in:

Proceedings of ETAPS/FASE’02, Lecture Notes in Computer Science, Vol. 2306, Springer, Berlin,

2002, pp. 174–188. See also the AToM3 home page: http://atom3.cs.mcgill.ca (last visited 2003-

03-16).

[4] J.L. Peterson, Petri Net Theory and the Modeling of Systems, Prentice-Hall, Englewood Cliffs, NJ,

1981.

[5] G. Gordon, System Simulation, 2nd Edition, Prentice-Hall, Englewood Cliffs, NJ, 1996.

[6] E. Guerra, J. de Lara, A Framework for the Verification of UMLModels. Examples using Petri Nets.

Jornadas de Ingeniera del Software y Bases de Datos, JISBD, Alicante, Spain, 2003, pp. 325–334.

[7] G.S. Fishman, Discrete event simulation, Modeling, Programming and Analysis, Springer Series in

Operations Research, Springer, New York, 2001.

[8] C. Ramchandani, Performance evaluation of asynchronous concurrent systems by timed petri nets,

Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, 1973.

[9] Minuteman Software Home page: http://www.minutemansoftware.com (last visited 2003-03-16).

[10] A.V. Aho, R. Sethi, J.D. Ullman, Compilers, Principles, Techniques and Tools, Addison-Wesley,

Reading, MA, 1986.

[11] J. de Lara, Educational simulation by means of meta-modelling and graph grammars, Revista de

Enseñanza y Tecnolog!ia 23 (2002) 5–17 (in Spanish).

[12] J.B. Warmer, A. Kleppe, The Object Constraint Language: Precise Modeling with UML, Addison-

Wesley Object Technology Services, Reading, MA, 1999.

[13] R. Bardohl, A Visual Environment for Visual Languages, Sci. Comput. Programming 44 (2002)

181–203 See also the GENGED home page: http://tfs.cs.tu-berlin.de/~genged/ (last visited

2003-03-16).

[14] H. Vangheluwe, DEVS as a common denominator for multi-formalism hybrid systems modelling,

IEEE Symposium on Computer-Aided Control System Design, Anchorage, UDA, IEEE Computer

Society Press, Silver Spring, MD, 2000, pp. 129–134.

[15] P. Fishwick, B.P. Zeigler, A multimodel methodology for qualitative model engineering, ACM

Transactions on Modelling and Computing Simulation 1 (2) (1992) 52–81.

[16] R. Razouk, The derivation of performance expressions for communication protocols from timed petri

net models, Proceedings of 2nd Conference on Communications Architectures and Protocols,

Montreal, Canada, 1984, pp. 210–217.

[17] J.P. Hayes, Computer Architecture and Organization, McGraw-Hill, New York, 1988.

[18] C. Ermel, M. Rudolf, G. Taentzer, The AGG approach: language and tool environment, in: H. Ehrig,

G. Engels, H.-J. Kreowski, G. Rosenberg (Eds.), Handbook of Graph Grammars and Computing by

Graph Transformation, Vol. 1, World Scientific, Singapore, 1999, pp. 551–604. See also the AGG

Home page: http://tfs.cs.tu-berlin.de/agg/ (last visited 2003-03-16).

[19] MDA specification at the OMG’s home page: http://www.omg.org (last visited 2003-03-16).

[20] C. Ermel, R. Bardohl, Multiple Views of Visual Behavior Models in GenGed Electronic Notes in

Theoretical Computer Science (ENTCS), Vol. 72(3), Elsevier, Amsterdam, 2003.

[21] M. Minas, Bootstrapping visual components of the DiaGen specification tool with DiaGen,

Proceedings of AGTIVE’03 (Applications of Graph Transformation with Industrial Relevance),

Charlottesville, USA, 2003, pp. 391–406. See also the DiaGen home page: http://www2.informa-

tik.uni-erlangen.de/DiaGen/ (last visited 2003-03-16).

[22] A. Sch .urr, Specification of Graph Translators with Triple Graph Grammars, in Lecture Notes in

Computer Science, Vol. 903, Springer, Berlin, 1994, pp. 151–163.

[23] J. Sprinkle, A. Agrawal, T. Levendovsky, F. Shi, G. Karsai, Domain model evolution in visual

languages using graph transformations, 2nd OOPSLA Workshop on Domain Specific Visual

Languages, Seattle, USA, 2002.

ARTICLE IN PRESS
J. de Lara, H. Vangheluwe / Journal of Visual Languages and Computing 15 (2004) 309–330 329

http://atom3.cs.mcgill.ca
http://www.minutemansoftware.com
http://tfs.cs.tu-berlin.de/~genged/
http://tfs.cs.tu-berlin.de/agg/
http://www.omg.org
http://www2.informatik.uni-erlangen.de/DiaGen/
http://www2.informatik.uni-erlangen.de/DiaGen/

[24] See the DOME home page: http://www.htc.honeywell.com/dome/ (last visited 2003-03-16),

Honeywell Technology Center.

[25] R. Pohjonen, J.-P. Tolvanen, Automated Production of Family Members: Lessons Learned,

Proceedings of PLEES’02, Seattle, USA, 2002, pp. 49–57. See also the MetaEdit+ home page.

http://www.metacase.com/ (last visited 2003-03-16), MetaCase Consulting.

[26] M. Pereira Remelhe, S. Engel, M. Otter, A. Derarade, P. Mosterman, An environment for integrated

modelling of systems with complex continuous and discrete dynamics, Lecture Notes in Control and

Information Systems, Vol. 279, 2002, pp. 83–105.

[27] H. Elmqvist, S.E. Mattson, An introduction to the physical modeling language modelica, Proceedings

of the 9th European Simulation Symposium ESS’97, SCS International Erlangen, 1997, pp. 110–114.

See also http://www.Modelica.org (last visited 2003-03-16).

[28] E.A. Lee, Embedded Software, in: M. Zelkowitz (Ed.), Advances in Computers, Vol. 56, Academic

Press, London, 2002. See also: http://ptolomey.eecs.berkeley.edu (last visited 2003-03-16).

[29] A. L!edczi, A. Bakay, M. Mar !oi, P. V .ogyesi, G. Nordstrom, J. Sprinkle, G. Karsai, Composing

Domain-Specific Design Environments, IEEE Computer, November 2001, pp. 44–51. See also the

GME home page: http://www.isis.vanderbilt.edu/Projects/gme/default.html (last visited

2003-03-16), Vanderbilt University.

[30] G. Karsai, A. Agrawal, F. Shi, J. Sprinkle, On the use of graph transformation in the formal

specification of computer-based systems, Workshop on Formal Specification of Computer-Based

Systems, Huntsville, USA, 2003, pp. 19–27.

[31] A. Levytsky, E. Kerckhoffs, E. Posse, H. Vangheluwe, Creating DEVS components with the

Metamodelling tool AToM3; Proceedings of ESS (European Simulation Symposium), Society for

Modelling and Simulation International, Delft, 2003, pp. 91–103.

[32] J. de Lara, H. Vangheluwe, M. Alfonseca, Meta-modelling and graph grammars for multi-paradigm

modelling with AToM3; Software and Systems Modelling (2003), to appear.

[33] J. de Lara, E. Guerra, Towards the uniform manipulation of visual and textual languages in AToM3;
in: Proceedings of PROLE, Alicante, Spain, 2003, pp. 45–59.

ARTICLE IN PRESS
J. de Lara, H. Vangheluwe / Journal of Visual Languages and Computing 15 (2004) 309–330330

http://www.htc.honeywell.com/dome/
http://www.metacase.com/
http://www.Modelica.org
http://ptolomey.eecs.berkeley.edu
http://www.isis.vanderbilt.edu/Projects/gme/default.html

	Defining visual notations and their manipulation through meta-modelling and graph transformation
	Introduction
	Graph grammars: a brief introduction
	Meta-modelling a process interaction notation with AToM3
	Defining a simulator
	Transforming into timed transition Petri nets
	Optimization
	Code generation
	Related work
	Conclusions
	Acknowledgements
	References

