
UML 2003, 20 October 2003

A Case Study: Consistency Problems

in a UML Model of a Chat Room

Thomas Huining Feng and Hans Vangheluwe

MSDL, McGill
http://msdl.cs.mcgill.ca/

http://msdl.cs.mcgill.ca/

Introduction

Goal

• Demonstrate modelling (and simulation) based design using the UML.

• Discuss consistency problems.

Model/Component-based Design

• Modularity.

• Reusability.

Consistency

• Intra-consistency. Among artifacts within a given model.

• Inter-consistency. Between different models evolved during the software
development process.

MSDL Slide 2

Outline

Part I – An Introduction to SVM

• Statechart basics.

• SVM extensions to statecharts.

Part II – Chat Room Model Design

• Requirements (Use Cases/Protocol).

• Class design.

• Sequence diagrams.

• Statecharts.

• Model execution in SVM.

Conclusions

MSDL Slide 3

Part I

An Introduction to SVM

SVM Design

Goals

• Extend the Statechart formalism.

• Implement a virtual machine for simulation and RT execution.

General considerations

• Interpretation vs. Compilation.

• Virtual-time Simulation and Real-time Execution.

• Textual vs. Visual.

• Portability. Python.

MSDL Slide 5

Statechart Introduction

Statecharts = State Machines + Hierarchy + Orthogonality + Broadcast

Statechart Elements

MSDL Slide 6

A Simple Statechart Model

STATECHART:
S1 [DS]
S2
S3 [FS]

TRANSITION:
S: S1
N: S2
E: e1
O: [DUMP("e1 triggers transition")]

TRANSITION:
S: S2
N: S1
E: e2
O: [DUMP("e2 triggers transition")]

TRANSITION:
S: S2
N: S3
E: e3
O: [DUMP("finish")]

MSDL Slide 7

Hierarchical Statechart Model

STATECHART:
A [DS] [HS*]

C [DS]
D

B
......
TRANSITION:
S: A.C
N: A.D
E: cd

TRANSITION: [HS]
S: B
N: A
E: bahs

......

MSDL Slide 8

Extension 1: Importing Models (Dynamically)

Motivation

Divide a large model into smaller parts and assemble them when needed.

Note: Statecharts were non-modular (but are in UML 2.0).

SVM: importing models

An imported model is a Statechart model in its own right.

Place all states and transitions in a state of the importing model.

Only import model when needed (e.g., in entry action) !

MSDL Slide 9

Extension 2: Transition Priorities

Motivation

Two or more transitions enabled by the same event → conflict.

UML semantics: source state of transition is substate of source state of the
other → gets higher priority (inner-first).

STATEMATE semantics: it gets lower priority (outer-first).

Desirable to support both of these schemes (and more).

SVM Extension A.

Every model has a global option: InnerTransitionFirst.

If the current state is S1.S3 and event e occurs, the new state will be S1.S4.

MSDL Slide 10

SVM Extension B.

Every state can be associated with one of the following properties:

• ITF. Inner transition first.

• OTF. Outer transition first.

• RTO. Reverse transition order. (If parent state is ITF, it is OTF and vice
versa.)

The property of a state overrides the setting of its parent in its scope.

MSDL Slide 11

SVM Extension C.

Every transition can be associated with an integer priority number (by default,
it is 0). For conflicts which cannot be solved by extensions A and B, a transition
with the smallest priority number is fired.

When e occurs, if the model is in state A and both conditions are true{
x = 1
y = 1

the state will change to B.

MSDL Slide 12

SVM Extension D.

If unresolved (by extensions A, B and C) conflicts still remain at run-time, the
choice is random according to a uniform distribution.

Note: This usually indicates a design flaw. The designer did not foresee a
potential conflict in the model.

MSDL Slide 13

Extension 3: Parametrized Model Templates

Motivation

Re-use of a design usually requires change or customization.

The importing model should be able to customize the imported model before
placing it in one of its states.

The customization should be restricted and modular.

SVM Extension

Macros can be defined and used anywhere in its description.

MACRO:
MYEVENT = e

......
TRANSITION:
S: A
N: B
E: [MYEVENT]

......

MSDL Slide 14

SVM Extension (Continued)

The designer is allowed to redefine the macros when reusing a model.

The outside world is able to modify the behavior of a model only through
parameters.

There is no other way to modify a model.

MSDL Slide 15

Part II

Chat Room Model Design

The Model-based Development Process

MSDL Slide 17

Use Case: The Communication Protocol

1. 5 clients and 2 chat rooms. Initially, clients are not connected. They try to
connect to a random chat room every 1 to 3 seconds. No delay for requests.

2. A chat room accepts at most 3 clients. It accepts a connection request if and
only if its capacity is not exceeded.

3. The requesting client receives an acceptance or rejection notice immediately.

4. A client must be accepted by a chat room before it may send chat messages.

5. When connected, a client sends random messages to its chat room every 1 to
5 seconds. No delay for messages. The chat room takes 1 second to process a
message and broadcast it to all other clients connected to it.

6. No delay for the broadcast.

MSDL Slide 18

Design: Classes

• ChatRoom. 2 instances.

request(clientID, roomID)
send(clientID, roomID, msg)

• Client. 5 instances.

accept(clientID)
reject(clientID)
broadcast(clients, msg)

• Manager. 1 instance relays all events between clients and chat rooms.

mbroadcast(clientID, roomID, msg)

MSDL Slide 19

Design: Class Diagram

MSDL Slide 20

Consistency Check 1: Class Diagram → Use Case

Though this API definition is not functional, the behavior behind the interface
is easily understood. Checking its consistency with the requirements is however
difficult or even impossible because of the following reasons:

• Behavior is hidden behind the interface.

• The use case is specified in natural language.

• For a well-defined system there can be a number of interface designs. They
may differ substantially.

MSDL Slide 21

Design: Sequence Diagrams

Sequence diagrams specify constraints on communication between class
instances.

Indirectly, this imposes constraints on allowed method implementations.

Timing

According to the use case description, more than one action may happen at the
same time.

There may be a causal relationship however.

request at time 1; accept at time 1
√

accept at time 1; request at time 1 ×
A tuple (t, s) is used to represent time.

request at time (1.0s, 0); accept at time (1.0s, 1)
√

accept at time (1.0s, 0); request at time (1.0s, 1) ×

MSDL Slide 22

Sequence Diagrams (Continued)

Request pattern

MSDL Slide 23

Sequence Diagrams (Continued)

Message pattern

MSDL Slide 24

Consistency Check 2: Sequence Diagrams → Class Diagram

Components must be instances of existing classes.

Collect all method calls (or incoming events) of a component and check if they
have corresponding definitions in the component’s class design.

For example:

In the request pattern, Manager receives events mrequest, maccept and
mreject. In the message pattern, it receives msend and mbroadcast. These
2 patterns cover all possible uses of Manager. So, its class design must have (and
only have) definitions for the corresponding 5 public methods.

This consistency check can be automated.

MSDL Slide 25

Consistency Check 3: Sequence Diagrams → Use Case

Consistency with the use case can only be partially checked.

For example:

In the request pattern, if a ChatRoom receives a request at time 0, it accepts
or rejects the Client at time 0. The absolute values of the two times are not
important. Important is that the reply is sent back at exactly the same time, as
specified in the requirements.

A rule-based approach will be introduced later (convert the use case/protocol
into extended REs, then use the REs to check the sequence diagrams.)

MSDL Slide 26

Consistency Check 3: Sequence Diagrams → Use Case (Continued)

However, checking is limited due to expressiveness of sequence diagrams.

For example:

• Sequence diagrams cannot describe “what should not happen at a certain
time or in a certain period.”

• In the request pattern, if a client sends an mrequest, then the manager sends
a request without time advance, then the chat room sends maccept or mreject
. . .

Unfortunately, a “dead” client which does not send any request cannot be
detected as a problem.

MSDL Slide 27

Design: Statecharts

The detailed behaviour of components Client, ChatRoom and Manager is
described in separate statecharts. Model Chat (the complete system) imports five
instances of Client, two instances of ChatRoom and one Manager.

MSDL Slide 28

Client Component

Initially, in the nochat state. Repeatedly tries to connect to the chat room via
the manager by broadcasting an mrequest event every 1 to 3 seconds (uniformly
distributed), until the request is accepted.

• uniform is a Python function which returns a random real number in a range.
• randint returns a random integer.
• [EVENT(...)], [PARAMS] and [DUMP(...)] are pre-defined. [ID] is user-defined.
• after event is raised at a certain time after a state is entered.
• accept, reject and broadcast are incoming events.
• mrequest and msend are outgoing events.

MSDL Slide 29

ChatRoom Component

Uses a list messages[ID] to queue incoming messages.

Every chat room has its own queue.

MSDL Slide 30

Manager Component: relay messages

rec comm(client, room) records a connection in a list when a chat room
accepts a client.

get clients(room, client) looks up the list and returns all the clients in
chat room room, except client.

get room(client) returns the room ID for client.

MSDL Slide 31

Consistency Check 4: Statecharts → Class Diagram

Sender-receiver consistency of all the method calls can be checked automatically.

For example:

Manager accepts event maccept. This means it must provide method maccept
in its class definition.

maccept /

rec conn([PARAMS][0],[PARAMS][1]),[EVENT("accept",[[PARAMS][0]])]

In the guard and output of the transition that handles this event, [PARAMS][0]
and [PARAMS][1] are used, so maccept requires at least two parameters.

In the whole Chat model, this method is only called (asynchronously) by the
ChatRoom component. The call indeed uses exactly two parameters.

request [[PARAMS][1]==[ID] and clientNum<3] /

[EVENT("maccept",[[PARAMS][0],[ID]])],clientNum+=1

Note the relationship between method/event/message

MSDL Slide 32

Model Execution

The statechart model is executed using SVM. The trace is saved as a list of
messages. Each message contains: the time as a tuple (t, s), the sender or receiver
with their unique ID, and the message body.

.
CLOCK: (10.5s,0)

Client 0

Says "Hello!" to ChatRoom 1

.
CLOCK: (11.5s,0)

ChatRoom 1

Broadcasts "Hello!" to all clients except Client 0

.
CLOCK: (11.5s,2)

Client 1

Receives "Hello!" from Client 0

.

MSDL Slide 33

Model Execution in SVM

MSDL Slide 34

Consistency Check 5: Output Trace → Sequence Diagrams

MSDL Slide 35

Consistency Check 5: Output Trace → Sequence Diagrams

Extended RE (Regular Expression)

A rule contains 4 parts:

• Pre-condition, a regular expression used to match a part of the output trace.

• Post-condition, another RE to be found in the output.

• Guard (optional), a boolean expression defining the applicable condition.

• Counter-rule property (optional).

MSDL Slide 36

Consistency Check 5: Output Trace → Sequence Diagrams

Example: “the sender of a message does NOT receive the broadcast after 1 second”

pre-condition CLOCK: \((\d+\.{0,1}\d*)s,(\d+\.{0,1}\d*)\)\n\Client
(\d+)\nSays "(.*?)" to ChatRoom (\d+)\n

post-condition CLOCK: \([(\1+1)]s,(\d+\.{0,1}\d*)\)\nClient [(\3)]\n
Receives "[(\4)]" from Client [(\3)]\n

guard
[(\1+1)]<50

counter-rule true

MSDL Slide 37

Consistency Check 6: Output Trace → Use Case

It is difficult, if not impossible, to prove the model is completely consistent with
the use case/protocol.

A rule-based approach does not work, as it is hard to transform the use
case/protocol (described in natural language) into a formal representation.

MSDL Slide 38

Performance Analysis

MSDL Slide 39

Conclusion

Part I

SVM implements an extended statechart formalism simulator/executor.

Part II

MSDL Slide 40

Future Work

• Use most appropriate formalisms/techniques (e.g., Petri Nets)

• Meta-model the formalisms → syntax check, visual environment

• Use graph grammars to model consistent transformations

http://msdl.cs.mcgill.ca/

MSDL Slide 41

http://msdl.cs.mcgill.ca/

Meta-Modelling in AToM3

MSDL Slide 42

