Guest Editorial: Special Issue on
Computer Automated Multi-Paradigm Modeling

Modeling and simulation are becoming increasingly important enablers for the analysis
and design of complex systems. To tackle problems of ever growing complexity, the focus
of modeling and simulation research is shifting from simulation techniques to modeling
methodology and technology. This trend is also visible in the software engineering com-
munity. Most noticeable is the shift from programming to modeling. Examples of this are
the use of the Unified Modeling Language (UML) in the context of the Model Driven Ar-
chitecture (MDA) and of (domain specific) tools to automatically generate prototype and
even production quality code from high-level models.

In this special issue, the emerging field of Computer Automated Multi-Paradigm Mod-
eling (CAMPaM) is presented. Because of the heterogeneous nature of embedded systems
and the many implementation technologies, multi-paradigm modeling is a critical enabler
for holistic design approaches (such as mechatronics) to avoid overdesign and to support
system integration. Multi-paradigm techniques have been successfully applied in the field
of software architectures, control system design, model integrated computing, and tool
interoperability.

Multi-paradigm modeling spans the study of physical as well as software systems and
combinations thereof. It adresses and integrates three orthogonal directions of research:

(1) model abstraction, concerned with the relationship between models at different levels
of abstraction;

(2) multi-formalism modeling, concerned with the coupling of and transformation be-
tween models described in different formalisms;

(3) meta-modeling, concerned with the description (models of models) of classes of mod-
els. More explictly, the specification of formalisms.

Multi-paradigm modeling explores the possible combinations of these notions. It com-
bines, transforms and relates formalisms, generates maximally constrained domain- and
problem-specific formalisms, methods, and tools, and verifies consistency between multi-
ple views.

Modeling and Simulation

At a first glance, it is not easy to characterize the field of modeling and simulation. Cer-
tainly, a variety of application domains such as fluid dynamics, energy systems, and lo-
gistics management make use of it in one form or another. Also, a plethora of techniques
from mathematics, artificial intelligence, numerical analysis, etc. are used. As a paradigm,
modeling and simulation is a way of representing our knowledge about structure and be-
havior of systems and answering questions about them. Whereas the goal of modeling is
to meaningfully describe a system, presenting information in an understandable, re-usable
way, the aim of simulation is to be efficient and accurate. Crucial to the modeling and
simulation endeavour is that there is a homomorphic relation between model and system:
building a model of a real system and subsequently simulating its behavior should yield

ACM Transactions on Modeling and Computer Simulation, Vol. 12, No. 4, October 2002, Pages 1-0??.



the same results as performing a real experiment followed by observation and codifying
the experimental results.

Abstraction

Models of system behavior can be described at different levels of abstraction or detail as
well as by means of different formalisms. The particular formalism and level of abstraction
chosen depends on the background and goals of the modeler as much as on the system
modeled. This level of abstraction, which may be different for each of the components or
views of a complex system, is determined by the available knowledge, the questions to be
answered about the system’s behavior, the required accuracy of answers, etc.

In “Modeling Methodology for Integrated Simulation of Embedded Systems” by Ledeczi,
Davis, Neema, and Agrawal (forthcoming in a regular issue of TOMACS), it is shown
how the execution (or interpretation) of models at different levels of abstraction can be
facilitated. A model interpreter translates the model into an executable form. This multi-
grained simulation allows simulation of individual subsystems in isolation as well as re-
placing detailed behavior of aggregate subsystems by a high-level behavioral model that
is more efficient. It even allows concurrent hardware/software simulation. Here, syn-
chronous and asynchronous dataflow constitute the glue to combine the separate parts. Be-
cause modelers frequently switch between different levels of abstraction to answer different
questions, inherent support for this is indispensable in modern system design projects.

Introducing hierarchy and subsequently replacing parts of the hierarchy by atomic com-
ponents is an intuitively appealing way to “abstract” models. Abstracting can be seen
as a special kind of transformation which preserves some properties of the system. The
challenge is to model these transformations, and use these models to automate model ab-
straction and abstraction level selection.

Formalism

Orthogonal to the choice of model abstraction level is the selection of suitable formalisms
in which the models are described. The choice of formalism is related to the abstraction
level, the amount of data that can be obtained to calibrate the model, the availability of
solvers/simulators for that formalism, as well as to the kind of questions that need to be
answered.

A formalism specifies all valid models that are part of it. Models in a formalism may
be represented in a textual or graphical fashion, or both, depending on the formalism. A
formalism typically has both syntactic and semantic parts. The syntactic part pertains to
the form and structure of valid models whereas the semantic part pertains to the meaning
of the models. In general, the syntax of a formalism, i.e., the elements of its language,
is separated into a concrete and an abstract part. The concrete part concerns the actual
appearance (e.g., whether an assignment is written as ‘:=’ or ‘=" or whether a sum of three
variables is written in infix ‘x+y+z’ or in prefix ‘plus(x,y,z)’ notation). The abstract part
concerns how the language elements are connected together (e.g., that an assignment has a
left-hand side and a right-hand side).

On the one hand, the meaning of a model can be expressed in an operational fashion by
explicitly describing how a model can be simulated/executed/solved. On the other hand,
meaning can be expressed in a denotational or transformational fashion by mapping the
model onto an equivalent representation in a “known” formalism. For example, the mean-
ing of a bond graph model can be obtained by mapping it onto a set of differential and

ACM Transactions on Modeling and Computer Simulation, Vol. 12, No. 4, October 2002.



algebraic equations (DAE). Note how even the operational approach is in essence a trans-
formation, transforming a model onto a behavior trace that is a model in an appropriate
state trajectory formalism.

Robin Milner, in his 1991 Turing Award lecture, rejects the idea that there can be a
unique conceptual model, or one preferred formalism, for all aspects of something as large
as concurrent systems. Rather, many different levels of explanation, different theories, and
languages are needed. This is even more true in the general context of complex systems
modeling, where the need for different formalisms, as well as their combination and inte-
gration is driven by their increasing heterogeneity. This multifarious character emerges for
one from the integration of different implementation technologies in the present-day de-
sign process. For example, the mechatronics design process advocates such an integrated
system view to achieve optimal performance, given demanding cost contraints. In addition,
models at different levels of abstraction are used to quickly evaluate design decisions, even
combining hardware and software, both in production as well as in prototype form. Thus,
high level behavior may have to be studied in conjunction with low level detailed effects
for which different formalisms are best suited.

Not only do multiple formalisms need to be used, but a modeler must also be able to
combine models in different formalisms through coupling and transformation. Within
CAMPaM, this is called multi-formalism modeling. The Ptolemy project described in
“A Component-Basesd Approach to Modeling and Simulating Mixed-Signal and Hybrid
Systems” by Liu and Lee provides a sound theoretical basis for modeling different mod-
els of execution by dataflow based on token exchange. It shows how hierarchy can be the
basis for using multiple models of computation in conjunction with one another. At each
level in the hierarchy, a component acts as part of a model of computation but it may be
implemented by a different model of computation at the more refined level. This is also
referred to as heterogeneous refinement. Liu and Lee show in particular how the finite
state machine (FSM), discrete event (DE), and continuous time (CT) formalisms operate
and interact.

Here, the continuous time formalism takes a special place because it is fundamentally
different from discrete event formalisms. Even though its execution is often performed by
discretization in time, continuity assumptions govern the quality of sophisticated numerical
solvers. Combining such continuous behavior with discrete state changes leads to hybrid
dynamic systems, which entail very specific problems. In “Modeling, Simulation, Sensi-
tivity Analysis and Optimization of Hybrid Systems” by Barton and Lee an overview of
these is given including event detection and location, re-initialization of continuous state
variables, sensitivity to parameter variations and the effect on optimization.

Meta-modeling

A proven method to achieve flexibility for a modeling language to support many for-
malisms is to model the language itself. Such a model is called a meta-model. If we
consider a modeling language as a concrete representation of a formalism, a meta-model
describes a formalism. As a meta-model is a model in its own right, it must be expressed
in the context of some formalism. This meta-formalism may again be described in a meta-
meta-model. Traditionally, meta-models specify the syntax of a class of models. This
notion can be generalized to include the semantics of the models (for example, by means
of models of transformation). Such a meta-model specification of syntax and semantics
is sufficient to automatically generate a full domain- and problem-specific modeling, and

ACM Transactions on Modeling and Computer Simulation, Vol. 12, No. 4, October 2002.



possibly simulation, environment.

The advantages of such an approach are numerous. For example, by adapting the model
of a formalism, and automatically generating a prototype modeling environment, design
choices can be rapidly evaluated. Constructing problem-specific formalisms is preferable
to the construction of all-encompassing, unifying formalisms. Not only is it hard to make
the latter consistent and to provide a sufficiently powerful simulation engine, but too much
flexibility puts the burden of restraint on the user. This is especially important in collab-
orative projects typical in industry where style guides are commonplace to give models
a uniform look and feel that is easily interpreted by others. In addition, domain specific
constraints provide an initial level of confidence in the designed model (e.g., that it satisfies
cconservation of energy in case of a physical system).

The first project to extensively apply meta-modeling notions as its very foundation,
aimed to support the exchange of models and data between Computer Aided Software/Systems
Engineering (CASE) tools, and was called CDIF (CASE Data Interchange Format). It al-
lowed the use of “best-of-class” tools for any one particular task without the need for
duplicate data entry, and also facilitated “live” coupling of different tools. The original
motivation of CDIF is presented in the overview “Metamodeling in EIA/CDIF - Meta-
Metamodel and Metamodels” by Flatscher, which shows the CDIF technology to be of
industrial strength. It adopted a four layer meta-modeling architecture: the base layer rep-
resents the data, followed by a model layer which contains the models to produce this data.
On top of this, the first meta-model layer captures the modeling languages. This could
include models of formalisms for control design such as the block diagram language with
its gain blocks, integrators, and summing blocks, but it could also model formalisms such
as bond graphs which have a different language consisting of junctions, dissipation, and
storage. Each of the layers in this architecture is an “instance of” a layer one level up.

In order to exchange models between tools, the formalism these models are expressed in
needs to be available. The strength of CDIF is that this information can be included in the
exchange data as a model itself, i.e., as a meta-model. The CASE tool first processes the
meta-model so it “understands” the data that follows. For this scheme to work, only the
formalism to describe the meta-model has to be shared across tools. This shared formalism
can then be a more compact language based on entities, attributes, and relations, that proves
itself powerful enough to model any of the domain-specific formalisms that are used for
the exchanged models.

Because of its successful use, this four layer architecture was adopted in the UML as
well. The instantiation relation introduced by the object-oriented nature of UML, how-
ever, is different from the one between the meta-levels in the four layer architecture. In
“Rearchitecting the UML Infrastructure” by Atkinson and Kiihne, this is discussed in de-
tail and the orthogonality of the two relations is presented to put forward a sound theory of
meta-modeling in the context of object-oriented languages. Indeed, when the concept of
meta-modeling is used loosely, i.e., it is not a strict requirement of instantiation between
meta levels, it reduces to little more than a “packaging” notion as employed by modern pro-
gramming and modeling languges. In an extension of the meta-modeling research, Ledeczi
et al discuss the compositionality of meta-models.

Transformation

Transformation of models relates the three orthogonal directions of CAMPaM: formalisms,
abstraction, and meta-modeling. Some of the interesting model manipulations are:

ACM Transactions on Modeling and Computer Simulation, Vol. 12, No. 4, October 2002.



—Formalism transformation: given a model in a certain formalism, these transformations
convert it into a model expressed in another formalism. For modeling and simulation,
possible transformations can be presented in a Formalism Transformation Graph (FTG).

—DModel optimization: these transformations do not change the formalism in which the
model is expressed. Their application results in a reduction of model complexity.

—Code Generation: these transformations produce a textual representation of the model
(subject to syntactic constraints) suitable for interpretation by a simulator.

—Simulator specification: these specifications give the operational semantics of the model.

Formalism transformation has many uses. One use is the answering of particular ques-
tions about the system. Some questions can only be answered in the context of a particular
formalism. For example, the hybrid dynamic systems formalism formulated by Barton and
Lee is based on hybrid automata, and, therefore, well suited for numerical analyses. The
% language discussed in “Declaration of unknowns in hybrid system specification” by Van
Beek, Bos and Rooda (forthcoming in a regular issue of TOMACS), on the other hand,
is at a higher level than hybrid automata, and, therefore, more amenable to the modeling
task: though the introduced “unknown” operator allows convenient specification of model
initialization, it is less applicable from the point of view of numerical analysis.

An important characteristic of the work by Barton and Lee and Van Beek et al is that
it facilitates general differential and algebraic equation (DAE) modeling as opposed to re-
quiring an explicit ordinary differential equation (ODE) representation. The use of DAEs
is especially important for plant modeling, a field that historically and currently applies
continuous time models quite extensively. Discrete event models have deep roots in con-
trol theory, where continuous time models are captured by the ODE formalism that is
amenable to execution in a discrete event framework. This is discussed by Liu and Lee for
Ptolemy, as well as in “Dynamic Structure Multi-Paradigm Modeling and Simulation” by
Barros (forthcoming in a regular issue of TOMACS), whose Heterogeneous Flow System
Specification also facilitates continuous-time simulation.

In contrast, plant modeling based approaches rely on a dedicated continuous-time nu-
merical solver for differential and algebraic equations. In addition to the support for im-
plicit modeling, it also allows increased accuracy and the use of dedicated solvers depend-
ing on the characteristics of the simulation trajectories (for example, particular types of
stiffness), instead of building the solver type into the model of computation. Here, the
transformation of a model into a trajectory is more complex but the model itself may be
simpler. This demonstrates how the complexity of the model-solver combination is invari-
ant under behavior-preserving formalism transformations.

As mentioned earlier, the formalism transformation approach is typically applied to map
the execution of a new formalism onto the (nearest) existing executable formalism. If this
can be achieved, a simulation engine may be readily available. Typically, it is meaningful
to introduce a new formalism for a specific application, encoding particular properties and
constraints of the application. Often, translation involves some loss of information. This
loss may be a blessing in disguise as it entails a reduction in complexity, hopefully leading
to an increase in (simulation) performance. Usually, the aim of multi-step transformation
is to eventually reach the trajectory level. In a denotational sense, performing a sequence
of formalism transformations makes the semantics of models in formalisms explicit: the
meaning of a model/formalism is given by mapping it onto some known formalism (whose
meaning may in turn be given by mapping it onto an even more basic formalism and so

ACM Transactions on Modeling and Computer Simulation, Vol. 12, No. 4, October 2002.



on). Though a multi-step mapping may seem cumbersome, it can be perfectly and correctly
performed by tools. Note how the larger the number of intermediate formalisms becomes,
the higher the potential for optimization (i.e., model complexity reduction) along the way.

It is critical that the selected model of execution to be associated with the model of a
syntax be sufficiently powerful to capture the required interpretation idiosyncrasies. For
example, a state transition diagram has no notion of time, and therefore, would not be
suitable to model ordinary differential equations. In general, a formalism with extensive
computation facilities may introduce overspecification, however. If, for example, a global
notion of time is inherent in the model of computation, it imposes additional constraints on
the implementation which may not be desirable.

Many formalisms have proven capable of representing the execution semantics of a wide
variety of discrete event formalisms. The underlying formalism used by Van Beek et al
is that of Communicating Sequential Processes (CSP). In “Formal Modeling of Discrete
Event Systems: A Holistic and Incremental Approach Using Petri Nets” by Bobeanu,
Kerckhoffs and Van Landeghem (forthcoming in a regular issue of TOMACS), it is
place/transition Petri nets with time extensions (timed transitions with atomic firing), and
in the work by Barros it is a variant of a discrete event system specification (DEVS) model.

Implementation of transformations depends on the formalisms involved. However, since
models determined by some meta-model can always be described as graphs (subject to
the constraints given by the meta-model), transformation may be performed by a generic
graph-transformation. Therefore, it makes sense to combine meta-modeling and graph-
grammars in a unifying framework. Meta-models determine the classes of graphs that are
allowed on the left-hand side (LHS) and right-hand side (RHS) of a graph-grammar rule.
A graph rewriting system will match LHS patterns in a host graph (the model) and replace
them by the RHS. A graph-grammar can be viewed as a model in the graph-grammar
formalism, which itself is specified in a meta-model.

In Closing

This issue touches upon many aspects of the entire spectrum of modeling & simulation,
mostly from a theoretical/methodological perspective. The interested reader is referred to
a forthcoming special issue of IEEE TRANSACTIONS ON CONTROL SYSTEM TECHNOL-
OGY on the same topic, for specific applications of Computer Automated Multi-Paradigm
Modeling (CAMPaM) in the field of control system technology.

We sincerely enjoyed putting this Special Issue together. We hope it provides a clear
perspective on the activities in the field of CAMPaM, and the way it addresses present day
issues in modeling & simulation. We wish to thank the authors who responded to the call
for papers as well as the numerous referees who kindly provided in-depth reviews of the
manuscripts. Thanks also to David Nicol, the editor-in-chief, for the opportunity to present
CAMPaM to the Modeling & Simulation research community through ACM TOMACS
and to John Konkle, editorial assistant, for his abundant and efficient organizational sup-
port.

PIETER J. MOSTERMAN HANS VANGHELUWE
The MathWorks, Inc. McGill University
Natick, Massachusetts Montreal, Canada

ACM Transactions on Modeling and Computer Simulation, Vol. 12, No. 4, October 2002.



