
Meta-Modelling, Graph Transformation and Model
Checking for the Analysis of Hybrid Systems

Juan de Lara1, Esther Guerra1 and Hans Vangheluwe2

1 Escuela Polit́ecnica Superior
Ingenieŕıa Informática

Universidad Aut́onoma de Madrid
(Juan.Lara, Esther.Guerra Sanchez)@ii.uam.es

2 School of Computer Science
McGill University, Montŕeal

Québec, Canada
hv@cs.mcgill.ca

Abstract. This paper presents the role of meta-modelling and graph transfor-
mation in our approach for the modelling, analysis and simulation of complex
systems. These are made of components that should be described using differ-
ent formalisms. For the analysis (or simulation) of the system as a whole, each
component is transformed into a single common formalism having an appropriate
solution method. In our approach we make meta-models of the formalisms and
express transformations between them as graph transformation. These concepts
have been automated in the AToM3 tool and as an example, we show the analysis
of a hybrid system composed of a temperature controlled liquid in a vessel. The
liquid is initially described using differential equations whose behaviour can be
abstracted and represented as a Statechart. The controller is modelled by means
of a Statechart and the temperature as a Petri net. The Statechart models are trans-
lated into Petri nets and joined with the temperature model to form a single Petri
net, for which its reachability graph is calculated and Model-Checking techniques
are used to verify its properties.

Keywords: Graph Rewriting, Meta-Modelling, Multi-Paradigm, Hybrid Systems,
Model-Checking.

1 Introduction

Complex systems are characterized by interconnected components of very different na-
ture. Some of these components may have continuous behaviour while the behaviour of
other components may be discrete. Systems with both classes of components are called
hybrid systems. There are several approaches to deal with the modelling, analysis and
simulation of complex systems. Some approaches try to use a formalism general enough
(a “super-formalism”) to express the behaviour of all the components of the system. In
general this is neither possible nor adequate. Other approaches let the user model each
component of the system using the most appropriate formalism. While inco-simulation
each component is simulated with a formalism-specific simulator; inmulti-formalism



modelling a single formalism is identified into which each component is symbolically
transformed [10]. Inco-simulationthe simulator interaction due to component coupling
is resolved at the trajectory (simulation data) level. With this approach it is no longer
possible to answer questions in a symbolic way about the behaviour of the whole sys-
tem.

In multi-formalism modellinghowever, we can verify properties of the whole sys-
tem if we choose a formalism with appropriate analysis methods for the transformation.
The Formalism Transformation Graph (FTG) [10] can help in identifying a common,
appropriate formalism to transform each component. The FTG depicts a part of the
“formalism space”, in which formalisms are shown as nodes in the graph. The arrows
between them denote a homomorphic relationship “can be mapped onto”, using sym-
bolic transformations between formalisms. Other arrows (vertical) denote the existence
of a simulator for the formalism.

Multi-Paradigm Modelling [10] combines multi-formalism, meta-modelling, and
multiple levels of abstraction for the modelling, analysis and simulation of complex
systems. Meta-modelling is used to describe different formalisms of the FTG and gen-
erate tools for them. In our work, we propose to model both transformation and simula-
tion arrows of the FTG as graph transformation, as meta-models can be represented as
attributed, typed graphs. Other model manipulations, for optimisation and code gener-
ation can be expressed with graph transformation as well. We have implemented these
concepts in the Multi-Paradigm tool AToM3 [5], which is used in the following section
to model and analyse a simple hybrid system.

2 Example: A Temperature-Controlled Liquid in a Vessel

As a very simple example to help clarifying our Multi-Paradigm modelling approach,
we show the modelling and analysis of a temperature-controlled liquid in a vessel. The
system is composed of a continuous part which represents the liquid behaviour and a
discrete part which controls the temperature. The continuous part is described by the
following equations:

dT

dt
=

1
H

[
W

cρA

]
(1)

is cold = (T < Tcold) (2)

is hot = (T > Thot) (3)

WhereW is the rate at which heat is added or removed,A is the cross-section
surface of the vessel,H is the level of the liquid,c is its specific heat andρ, its density.
This system can be observed through two output sensorsis cold andis hot, which are
set in equations 2 and 3. These sensors allow us to discretize the state-space [10], in
such a way that the system can be represented as a finite state automaton (shown to the
left of Figure1). The system’s behaviour is governed by equation (1) in each automaton
state, while transitions are fired by equations (2) and (3). Though at a much higher level
of abstraction, the automaton alone (without the equation) captures the essence of the
system’s behaviour.



Heating

Neutral

CoolingT_high

T_med

T_low

controlplant

/ Heat

[in plant.T_low]

/ Cool

[in plant.T_high]

/ Heat

[in plant.T_low]

/ Cool

[in plant.T_high]

[in plant.T_med]

[in plant.T_med]

is_hot

!is_cold

!is_hot

is_cold

Fig. 1.Statechart Representing the Behaviour of a Temperature-Controlled Liquid.

The controller can also be represented as a state automaton, and is shown to the right
of Figure1. We have combined both automata in a single Statechart with two orthogonal
components, named asplantandcontrol, using the meta-model for Statecharts available
in AToM3. The sensors in equations 2 and 3 have been modelled using a Petri net (shown
to the right of Figure2). This Petri net has a placeTempto represent the temperature
value. TheHeatandCoolmethods invoked by the controller are modelled by transitions
which add and remove a token fromTemp. The number of tokens inTempremains
bounded (between 0 and 30 in this example) using a well-known technique for capacity
constraining. This technique consists on creating an additional placeTemp’, in such a
way that the number of tokens in both places is always equal to 30. Using the value of
both places, we can model the eventsis cold, !is cold, is hot and !is hot (that can be
considered as events produced bysensors). In this example we set the intervals [0-10]
for cold and [21-30] for hot.

The Statechart can be automatically converted into Petri nets and joined with the
component which models the temperature. The transformation from Statecharts into
Petri nets was automated with AToM3 using the graph transformation described in [6].
States and events are converted into places, current states in orthogonal components
are represented as tokens. Once the model is expressed in Petri nets, we can apply
the available analysis techniques for this formalism. In AToM3 we have implemented
transformations to obtain the reachability graph, code generation for a Petri net tool
(PNS), simulation and simplification. The latter can be applied before calculating the
reachability graph to help reducing the state-space. The Petri net model, after applying
the simplification graph transformation is shown in Figure2.

The reachability graph is shown in Figure3 (labels depict tokens in places). Note
how the reachability graph calculation is indeed another formalism transformation,
from Petri nets into state automata. We have manually set priorities on the Petri net
transitions to greatly reduce the state-space. We have setpr(Tis cold)>pr(Tis not hot),
pr(Tis hot)>pr(Tis not cold), the probabilities ofHeatandCool bigger than any other
and the probabilities of theplant transitions larger than the ones in thecontroller. Once



Temp is_hot
0

Temp !is_hot
0

Temp is_cold
0

T_high
0

T_med
0

T_low
1

Temp !is_cold
0

Neutral
1

Heating
0

Cooling
0

Cool
0

Heat
0

Temp
9 Temp’

21

!is_cold
is_cold

is_hot !is_hot

in plant.T_highCC

in plant.T_highNCin plant.T_medCN

in plant.T_medHN
in plant.T_lowNH

in plant.T_lowHH

cool

Heat

Tis_hot Tis_not_hot

Tis_cold
Tis_not_cold

Empty_is

Empty_!is

Empty_ic

Empty_!ic

21

10

20

11

21

10

20

11

Fig. 2.Petri Net Generated from the Previous Model.

we have the reachability graph, we can formalize the properties we want to check using
Computational Tree Logic (CTL) and check the graph using a simple explicit Model-
Checking algorithm [4] and a meta-model for CTL we have implemented in AToM3.
The user can specify the CTL formula in two ways: graphically (drawing the graph of
the CTL formula using the meta-model), or textually. In the latter case the formula is
parsed and translated into anAbstract Syntax Graph(ASG). Note how if the user graph-
ically specifies the formula, he is directly building the ASG. In the example, we may ask
whether the plant reaches a certain temperature, or theT medstate (interval [11-20]),
or whether the controller heats the liquid and eventually stops heating. With our initial
conditions (liquid at 9 degrees), all these properties are true, given appropriatefairness
constraints allowing the eventual firing of enabledplant andcontrol transitions when
the sensor transitions are alsoenabled.

3 Related Work

There are similar tools in the graph grammars community. For example, GENGED [2]
has a similar approach: the tool allows defining visual notations and manipulate them by
means of graph grammars (the graph rewriting engine is based on AGG [1]). Whereas
the visual language parsing in the GENGED approach is based on graph grammars, in
AToM3 we rely on constraints checking to verify that the model is correct. The mapping
from abstract to concrete syntax is very limited in AToM3, as there is a “one to one”
relationship between graphical icons and entities. On the contrary, this mapping is more



T_low, Neutral, Temp(9), Temp’(21)

T_low, Heating, Heat, Temp(9), Temp’(21)

T_low, Heating, Temp(10), Temp’(20)

T_low, Heating, Heat, Temp(10), Temp’(20)

T_low, Heating, Temp(11), Temp’(19)

T_low, Heating, Temp !is_cold, Temp(11), Temp’(19)

Tmed, Heating, Temp(11), Temp’(19)

Tmed, Neutral, Temp(11), Temp’(19)

T_low, Neutral, Temp is_cold, Temp(9), Temp’(21)

T_low, Heating, Temp is_cold, Temp(10), Temp’(20)

T_low, Heating, Temp !is_hot, Temp(11), Temp’(19)

Tmed, Neutral, Temp !is_cold, Temp(11), Temp’(19) 

Tmed, Neutral, Temp !is_hot, Temp(11), Temp’(19)

Tmed, Heating, Temp !is_cold, Temp(11), Temp’(19)

Tmed, Heating, Temp !is_hot, Temp(11), Temp’(19)

in plant.T_lowNH

Heat

in plant.T_lowHH

Heat

Tis_not_cold

!is_cold

in plant.T_medHN

Tis_cold

Empty_ic

Empty_!is

Empty_!is

Empty_!ic

Empty_!is

Empty_ic

Tis_cold

Tis_not_hot

Tis_not_cold

Tis_not_hot

Tis_not_hot

Empty_!ic

Tis_not_cold

Fig. 3.The Reachability Graph for the Petri Net with Priorities.

flexible in GENGED, which in addition uses a constraint language for the concrete
syntax layout. In AToM3 this layout should be coded as Python expressions. This is
lower-lever, but usually more efficient.

Although other tools based on graph grammars (such as DiaGen [8]) use the con-
cept of bootstraping, in AToM3 there is no structural difference between the generated
editors (which could be used to generate other ones!), and the editor which generated
them. In fact, one of the main differences of the approach taken in AToM3 with other
similar tools, is the concept that (almost) everything in AToM3 has been defined by a
model (under the rules of some formalism, including graph grammars) and thus the user
can change it, obtaining more flexibility.

With respect to the transformation into Petri nets, the approach of [3] is similar, but
they create two places for each method in the Statechart (one for calling the method and
the other for the return). Other approach for specifying the transformation is the use of
triple graph grammars [9].



4 Conclusions

In this paper we have presented our approach (Multi-Paradigm) for modelling and anal-
ysis of complex systems, based on meta-modelling and graph grammars. We make
meta-models of the formalisms we want to work with, and use graph transformation
to formally and visually define model manipulations. These include formalism trans-
formation, simulation, optimisation and code generation. To analyse a complex system,
we transform each component into a common formalism where the properties of inter-
est can be checked. In the example, we have modelled a simple system, composed of
a Statechart and a Petri net component into a single Petri net. Then we have calculated
the reachability graph and verified some properties using Model-Checking. It must be
noted however that we have made large simplifications for this problem. For example,
for more complex systems, an explicit calculation of the reachability graph may not be
possible, and other symbolic techniques should be used.

We are currently working in demonstrating properties of the transformations them-
selves, such as termination, confluence and behaviour preservation. Theory of graph
transformation, such as critical pair analysis [7] can be useful for that purpose.

Acknowledgements: We would like to aknowledge the SEGRAVIS network and the
Spanish Ministry of Science and Technology (project TIC2002-01948) for partially
supporting this work, and the anonymous referees for their useful comments.

References

1. AGG home page:http://tfs.cs.tu-berlin.de/agg/
2. Bardohl, R., Ermel, C., Weinhold, I. 2002AGG and GenGED: Graph Transformation-Based

Specification and Analysis Techniques for Visual LanguagesIn Proc. GraBaTs 2002, Elec-
tronic Notes in Theoretical Computer Science 72(2).

3. Baresi, L., Pezze, M..Improving UML with Petri nets. Electronic Notes in Theoretical Com-
puter Science 44 No. 4 (2001).

4. Clarke, E. M., Grumberg, O., Peled, D. A. 1999.Model Checking. MIT Press.
5. de Lara, J., Vangheluwe, H. 2002AToM3: A Tool for Multi-Formalism Modelling and Meta-

Modelling.In ETAPS02/FASE. LNCS 2306, pp.: 174 - 188. See also the AToM3 home page:
http://atom3.cs.mcgill.ca .

6. de Lara, J., Vangheluwe, H. 2002Computer Aided Multi-Paradigm Modelling to process
Petri Nets and Statecharts.ICGT’2002. LNCS 2505. Pp.: 239-253.

7. Heckel, R., K̈uster, J. M., Taentzer, G. 2002.Confluence of Typed Attributed Graph Trans-
formation Systems. In ICGT’2002. LNCS 2505, pp.: 161-176. Springer.

8. Minas, M. 2003.Bootstrapping Visual Components of the DiaGen Specification Tool with
DiaGen Proceedings of AGTIVE’03 (Applications of Graph Transformation with Indus-
trial Relevance), Charlottesville, USA, pp.: 391-406. See also the DiaGen home page:
http://www2.informatik.uni-erlangen.de/DiaGen/ .

9. Scḧurr, A. 1994.Specification of Graph Translators with Triple Graph Grammars. LNCS
903, pp.: 151-163. Springer.

10. Vangheluwe, H., de Lara, J., Mosterman, P. 2002.An Introduction to Multi-Paradigm Mod-
elling and Simulation.Proc. AIS2002. Pp.: 9-20. SCS International.


	Meta-Modelling, Graph Transformation and Model Checking for the Analysis of Hybrid Systems
	 Juan de Lara, Esther Guerra and Hans Vangheluwe 

