Electronic Notes in Theoretical Computer Science 72 No. 3 (2002)
URL: http://www.elsevier.nl/locate/entcs/volume72.html 15 pages

Using Meta-Modelling and Graph Grammars
to create Modelling Environments

Juan de Lara Jaramillo?!

ETS Informdtica
Universidad Auténoma de Madrid
Madrid, SPAIN

Hans Vangheluwe 2

School of Computer Science
McGhll University
Montreal, CANADA

Manuel Alfonseca Moreno ?

ETS Informdtica
Universidad Auténoma de Madrid
Madrid, SPAIN

Abstract

This paper presents the combined use of meta-modelling and graph grammars for the
generation of visual modelling tools for simulation formalisms. In meta-modelling,
formalisms are described at a meta-level. This information is used by a meta-model
processor to generate modelling tools for the described formalisms. We combine
meta-modelling with graph grammars to extend the model manipulation capabilities
of the generated modelling tools, as we store (meta-)models as graphs, and thus,
express model manipulations as graph grammars.

We show the design and implementation of these concepts in AToM? (A Tool for
Multi-formalism, Meta-Modelling). As an example we will present a meta-model
for Causal Block Diagrams and a graph grammar to generate OOCSMP code, a
continuous simulation language which has a compiler able to generate Java applets
from the simulations models.

! Email: Juan.Lara@ii.uam.es
2 Email: hv@cs.mcgill.ca
3 Email: Manuel.Alfonseca@ii.uam.es

(©2002 Published by Elsevier Science B. V.

DE LARA, VANGHELUWE AND ALFONSECA

1 Introduction

Meta-Modelling is the process of modelling formalisms. In the context of
Modelling and Simulation we are interested in formalisms such as Petri-Nets,
DEVS, Causal Block Diagrams (CBDs) and Ordinary Differential Equations
(ODEs).

A model of a formalism should contain enough information to permit the
automatic generation of a tool to check and build models subject to the de-
scribed formalism syntax. The advantage of this meta-modelling approach is
clear: instead of building a whole application from scratch, it is only necessary
to specify the kind of models we will deal with. If this specification is done
graphically, the time to develop a modelling tool can be drastically reduced
to a few hours. Other benefits, such as reduction of testing, ease of change
and maintainability are also obtained.

At least, the generated tool should be able to allow the construction of
valid models and discover errors in their construction. If (meta-)models are
stored as graphs, further manipulations of the models can be described as
graph grammars [5]. In Modelling and Simulation we are interested in model
manipulations such as:

e Model simulation.
e Model optimization, for example, reducing its complexity.

e Model transformation into another (behaviourally equivalent) model, ex-
pressed in a different formalism.

» Generation of (textual) code for existing simulators or tools. In this paper
we will focus on this application of model transformation.

In this article, we present AToM? [4], a tool which implements the ideas
presented above. AToM? has a meta-modelling layer in which formalisms
are modelled graphically. From the meta-specification (a model in the Entity
Relationship formalism extended with constraints), AToM? generates a tool to
process models described in the specified formalism. Models are represented
internally using Abstract Syntax Graphs, a generalization of the concept of
Abstract Syntax Trees in compilers, which represents — in the form of a graph
— the semantic information of the model built by the user. As a consequence,
model manipulation can be expressed as graph grammars.

As an example, we will show the generation of a tool to graphically manip-
ulate CBD models. We will also define a graph grammar to generate textual
code for the object-oriented continuous simulation language OOCSMP [1].
CBD models are compiled within AToM? by invoking the OOCSMP compiler
— which is able to produce Java applets — and then executed by launching
the Java Virtual Machine. This is the alternative approach to the one taken
in [9], in which we defined a graph grammar (with AToM?) to simulate the
model inside AToM? itself.

DE LARA, VANGHELUWE AND ALFONSECA

Level Description Example

Meta-Meta- Model describes a formalism Description of Entity-

Model that will be used to describe Relationship Diagrams,
other formalisms. UML Class Diagrams

Meta-Model Model describes a simulation Description of Deterministic

formalism. Specified under the Finite Automata, Ordinary
rules of a certain Meta-Meta- Differential Equations (ODE)

Model

Model Description of an object. Spec- f/(x) = —sina, f(0) = 0 (in
ified under the rules of a certain ~ the ODE formalism)
Meta-Model

Table 1
Meta-Modelling Levels.

2 Meta-Modelling

Meta-Modelling is the process of modelling formalisms. Formalisms are de-
scribed as models using meta-formalisms. The latter are nothing but for-
malisms expressive enough, such as Entity Relationship diagrams or UML
class diagrams. A model of a meta-formalism is called a meta-meta-model; a
model of a formalism is called a meta-model. Table 2 depicts the levels consid-
ered in our meta-modelling approach. Note that we only consider three levels,
although it can be the case that a meta-formalism mf; is powerful enough to
describe the meta-meta-model of another meta-formalism mf,. We consider
both mf; and mf, as meta-formalisms and place them in the same meta-level.
As we will see later, in AToM? it is usually the case that meta-formalisms can
describe meta-formalisms as well as formalisms.

To be able to fully specify modelling formalisms, the meta-formalism may
have to be extended with the ability to express constraints (limiting the num-
ber of meaningful models). For example, when modelling a Deterministic
Finite Automaton, different transitions leaving a given state must have dif-
ferent labels. This cannot be expressed within Entity-Relationship diagrams
alone. Expressing constraints is most elegantly done by adding a constraint
language to the meta-formalism. Whereas the meta-formalism frequently uses
a graphical notation, constraints are concisely expressed in textual form. For
this purpose, some systems [6] (including ours) use the Object Constraint Lan-
guage OCL [8] used in UML. As AToM? [2] is implemented in the scripting
language Python [10], arbitrary Python code can also be used.

Other alternative to using constraints is to express in a graph grammar the
kind of editing actions the user can perform at each moment in the modelling
phase. This approach is called syntaz-directed [3]. Other kind of visual editors
are called free-hand [7] and allow the user more flexibility in the model editing
phase, but they have to check that the model the user is building is correct.

3

DE LARA, VANGHELUWE AND ALFONSECA

In AToM3, free-hand editing is the default approach, and model correctness
is guarenteed by evaluating the constraints defined at the meta-level (and
associated with events) when the user is building her model. In AToM?3, free-
hand editing can be combined with the syntax-directed approach by building
graph grammar rules for editing tasks. See section 6 for some comments about
this.

3 AToM?: An Overview

AToM? is a tool which uses and implements the concepts presented above. As
it has been implemented in Python, it is able to run (without any change) in
all platforms in which an interpreter for Python is available: Linux, Windows
and McIntosh. The main idea of the tool is: “everything is a model”, in the
sense that, during the implementation, the AToM? kernel has been grown
from a small initial kernel, models were defined for other parts of it, code was
generated and then later incorporated into it. Also, for AToM? users, it is
possible to modify some of this model-defined components, such as the type
system, the (meta-)formalisms, the user interface, etc.

AToM?’s architecture is shown in Figures 1 and 2. In both of them, models
are represented as white boxes, having on their upper-right corner an indica-
tion of the meta-...model (formalism) they were specified with. In Figure 1,
and for the example in this paper, meta-modelling CBD, the meta-meta-model
is Entity-Relationship (the MMF is also Entity-Relationship, as this meta-
formalism was bootstraped) as we used this meta-formalism to describe what
the syntax of CBD is. The Meta-Model obtained is thus CBD, the meta-
formalism MF' is Entity-Relationship. Finally, using this CBD meta-model,
it is possible to build CBD models such as the one shown in Figure 5, which
describes the harmonic movement in one dimension.

In figure 2, it can be seen that, in the case of a graph grammar model,
to convert a model from formalism Fyoyree t0 Fyes, it is necessary to use
the meta-models of both Fy,,.c. and Fy.s, together with the meta-model for
graph-grammars. The graph grammar we are presenting in this paper, which
generates OOCSMP textual code from CBD models, is indeed not a model
transformation. That is, our source formalism (Fyource in figure 2) is CBD,
but we do not need a meta-model for OOCSMP (F in figure 2) as we are
directly generating OOCSMP textual code from the CBD model, rather than
representing internally the OOCSMP models as Abstract Syntax Graphs.

The main component of AToM? is the AToM? Kernel, which is responsible
for loading, saving, creating and manipulating models (at any meta-level, via
the Graph Rewriting Processor), as well as for generating code for customised
tools. Both meta-models and meta-meta-models can be loaded into AToM? as
shown in Figure 1. The first kind of models allows constructing valid models in
a certain formalism, the second is used to describe the formalisms themselves.

The Entity-Relationship formalism extended with constraints is available

4

DE LARA, VANGHELUWE AND ALFONSECA

AToM3 (Meta-)4
Models’ structure

Meta—Meta Model
Model of formalism MF

Load Formalism = Graph
Rewriting

Save Model ——— Processor
A

— ”| Meta-Model Vi v

< Model of formalism F Constraint Manager Code Generator

Load Model

Load Formali h
User Input f oad Formalsm AToM3 Kernel

~ Create Entities Save Model
A
> Model
A

- Delete Entities.
«<
Load Model

AToM3 Kernel

- Verify conditions (local, global) AToM3 Kernel

User Input

- Create Entities
- Delete Entities
~ Verify conditions (local, global)

Fig. 1. Meta-... Modelling in AToM?.

Meta-Model
Model of formalism
'Graph Grammar'

Load Formalism

Model of Transformation
from Fsource to Fdest

Save Mod&
User Input Ll

- Create Entities
- Delete Entities
- Verify conditions (local, global)

AToM3 Kernel

<«
Load Model
Load Graph-Grammar

Model-1

Fig. 2. Model Transformation in AToM?3.

AToM3 Kernel

at the meta-meta-level. As stated before, it is perfectly possible to define other
meta-formalisms using Entity-Relationship. Constraints can be specified as
OCL or Python expressions, and the designer must specify when (pre- or post-
and on which event) the condition must be evaluated. Events can be semantic
(such as editing an attribute, connecting two entities, etc.) or graphical (such
as dragging, dropping, etc.)

When modelling at the (meta-)Tlevel, the entities that may appear in a
model must be specified together with their attributes. We will refer to this
as the semantic information. For example, to define the Petri Net Formalism,
it is necessary to define both Places and Transitions. Furthermore, for Places
we need to add the attributes name and number of tokens. For Transitions,
we need to specify the name.

The (meta-)Tinformation is used by the AToM? Kernel to generate some
Python files, which, when loaded by the Kernel, allow the processing of mod-
els in the defined formalism (see upper-right corner in Figure 1, labeled as
“AToM? (meta-)"models structure”.)

5

DE LARA, VANGHELUWE AND ALFONSECA

One of the components of the generated files is a model of a part of the
AToM? user interface. This User Interface model follows the “Buttons” formal-
ism, and has its own meta-model. Initially, this model represents the necessary
buttons to create the entities defined in the formalism’s meta-model, but can
be modified to include, for example, buttons to execute graph grammars on
the current model. In the example of this paper, we will define a graph gram-
mar to generate OOCSMP code from the CBD models. In this way, we will
add a button to the user interface to execute this graph grammar, invoke
the OOCSMP compiler with the generated code, and execute the resulting
applets.

In AToM?, entities may have two kinds of attributes: reqular and gener-
ative. Regular attributes are used to identify characteristics of the current
entity. Generative attributes are used to generate new attributes at a lower
meta-level. The generated attributes may be generative in their own right.
Both types of attributes may contain data or code for pre- and post-conditions.

Entities are connected by means of ports, which can be named or unnamed.
An entity may have both types of ports. Unnamed ports are used when all
the connections are semantically equal and we do not need to distinguish
them. A typical example is Petri-Nets, in which places have unnamed ports to
connect to transitions. Named ports are used when we have different meanings
for the same types of connections. A typical example of this is in the CBD
formalism, where some entities represent functions to which other entities may
be connected, representing the function’s parameters. One needs to know
exactly which parameter corresponds to each connection. For example, an
INTEGRAL block has two parameters: the initial condition and the value to
be integrated. If we connect a block to an INTEGRAL, we need to know if
this connection is to be interpreted as the initial condition or as the value. In
this way, two named ports are needed for the INTEGRAL block to store the
connections to each parameter.

In the meta-model, it is also possible to specify the graphical appearance
of each entity of the defined formalism. This appearance is, in fact, a special
kind of generative attribute. Objects’ graphical appearance can be icon-like or
arrow-like with optional icon decorations in the center, segments and extremes.
For example, for Petri Nets, we can choose to represent Places as circles with
the number of tokens inside the circle and the name beside it, and Transitions
as thin rectangles with the name beside them. That is, we can specify how
some semantic attributes are displayed graphically. For connections between
Places and Transitions, we can choose arrow-like appearances with the weight
shown on top of these arrows. Constraints can also be associated with the
graphical entities. Each graphical form, part of the graphical entity, can be
referenced by an automatically generated name that has methods to change
its colour or hide it.

DE LARA, VANGHELUWE AND ALFONSECA

AToM3 vD.2.1 using: Entity Relationship

Hie Model Transformation Graphics

Eriity fidationzhio | Model ops | Editentity | Connect | Delete | Insertmodel | Expand model | et

Visualops | Smooth | Insertpoint | Delete point | Change connector

Entity

rel,

Contral_Variable

EBlock Type type=Enum init.valup
Zonnected_Cr f "

Type type=Enum init valup

Value type=Float init val gonnected_CH

Mame type=String initval

Initial Candition type=Par
Vaiable type=For inity

Constant
Name type=String initval
onnacted_C Value type=Floal initval

Output
Type type=Enum initvalug
Location type=Enum init.y Lofinected_out_bid

Independent type=Port in
Dependent type=Port init

= g

Fig. 3. Meta-model of CBDs, expressed in the ER formalism. (AToM? running on
Linux)

4 Describing the Causal Block Diagrams Formalism

In AToM3, we can describe meta-models in the ER formalism. The basic ele-
ment of the CBD formalism is the Block, which represents transfer functions,
such as arithmetic operators or integrators. Blocks can be connected to other
blocks, these connections transmit signals between blocks. Signals are func-
tions of time. In the meta-model in figure 3 we have also included entities to
represent constants, control variables (such as TIME, the basic time interval,
etc.), and outputs. These last elements will be connected to the blocks whose
values we want to visualize (print or plot) in the simulation execution. Thus,
the meta-model is made of the following entities:

e Block entities, composed of a field named Type, which is an enumerate type
that indicates the kind of function this block performs. These functions
include infix n-ary operators, such as “+” and “*”, prefix unary operators,
such as “” and “1” (the inverse operator), and functions such as INTE-
GRAL, DERIVATIVE, etc. Block entities also have a Value, which is the
result of the application of the block’s function to its parameters; a Name,
which is a string, and several named ports to connect its parameters.

e (Constant entities, which represent values that do not change during the
simulation. They are composed of a Value (a float) and a Name (a string).
The Name attribute in both Block and Constant entities is a unique identifier
which is automatically generated by AToM?3, although the user can modify
it.

* Qutput entities are used to indicate which Block values should be displayed.
This entity is composed of an attribute named Type to select whether the

7

DE LARA, VANGHELUWE AND ALFONSECA

Editing appearance of class Outpul

Attributes Appearance

twe [T |
Location) _—

Independent[~~ PORT ==| || }NDEF] DEF _
Dependent[™ PORT **] 4’

Fig. 4. Defining the graphical appearance of Output entities. (AToM? running on
Linux)

value should to be plotted or printed. They also have another attribute
called Location to select in which part of the user interface the output panel
should be located. It accepts nine possible values: NW, N, NE, W, C,
E, SW, S, SE. Two additional named ports, Dependent and Independent,
allow us to distinguish between dependent and independent variables while
plotting. Figure 4 shows a dialog window used to describe the graphical
appearance of Qutput entities. The list on the left shows the semantic
attributes of the entity. The canvas in the middle allows the user to draw
the graphical appearance that will be associated with the entity. In this
canvas, it is possible to show semantic attributes. In this case the canvas
shows the Type attribute. Notice also that it is possible to put in the
canvas as many instances of the named ports (the two last attributes in
the Attributes list) as desired, but all connections to any of the instances
of the same named port are stored in the same semantic attribute. In this
example, we have added two instances of ports Dependent and Independent
(shown as little circles in the border of the rectangles). The button labeled
Connector is used to add unnamed ports to the canvas. Notice also that it
is possible to specify graphical constraints by means of the “Set Constraint”
button.

e Control_Variable entities are used to include in the model variables that are
used by the simulator to control the simulator execution. These entities have
only one attribute, which is an enumerate type with the control variable to
be selected: TIME (the simulation time), delta, (the time step size for the
numerical integration) PRdelta and PLdelta (communication intervals, that
is, time elapsed between output refreshes, for printing panels and for plot
panels)

DE LARA, VANGHELUWE AND ALFONSECA

In order to keep the model correct, some constraints have to be added:

e The number of connections to the Independent port of Output entities is
one. This constraint is local to Qutput entities and must be verified before
saving and before applying a graph grammar. In this way, we ensure that
all saved models are correct and that all models to which a graph grammar
is applied (such as the one for code generation explained in section 5) are
also correct.

e The number of connections that Block entities can receive depends on its
type. For example, integrators receive two, whereas adders can receive a
number of connections greater than one, etc. This means that we cannot set
the exact number as the arity of the relationship Connected_to_Block in the
meta-model. We have to set a local constraint on Block entities, that makes
sure that depending on the Type attribute, the number of connections is the
correct one.

With this information, AToM? generates some Python files (see figure 1)
that, when loaded on top of AToM?, allow the user to build CBD models.
One of these generated Python files is a model of the User Interface that will
appear in this CBD tool. The model is expressed in the “Buttons” formalism.
This formalism allows the user to define the buttons that will appear in a user
interface, their text or icon, and the associated action. By default, AToM?
generates a model with a Button to create each entity and relationship in the
meta-model. Of course, this model can be modified. In our case we have
modified the model to delete the buttons corresponding to the relationship,
and to add a new one to execute a graph grammar to generate OOCSMP
code, and to execute the resulting applet after compiling it with the OOCSMP
compiler. Additionally, images have been assigned to the buttons.

AToM? generates this user interface model by executing a graph grammar
(expressed in the Entity Relationship formalism) on the meta-model whose
interface is to be generated. The graph grammar traverses the model and
converts each entity and each relationship into a Button (the basic entity of
the Buttons formalism). When a formalism is loaded, this user interface model
is interpreted by AToM? to create the real buttons in the user interface.

Figure 5 shows the generated tool to process CBD models. In this figure
we can see a model of the 1D harmonic movement without friction which, for
example, governs the movement of a mass attached to a spring (in the absence
of friction). The equation describing this movement is:

2
(1) A
dt? M
In the CBD formalism, it is possible to directly express this second deriva-
tive, but as the simulation will be carried out numerically, the solution will be
more accurate if we transform the equation in such a way that only integrals
are left, that is, if we integrate twice both sides of the equation. The resulting

9

DE LARA, VANGHELUWE AND ALFONSECA

AToM3 v0.2.1 using: BlockDiagram (O] x]
File Model Transfomation Graphics
ElockDiagram|| Medsl sps Eﬂml Dct-:ll MII Ir—ilwbll Enl'ﬂruﬁll E_nl
Visual ops Srwlll hnipztl M-ml Ch.pwn-:tul

Q—q} TIME
Canst
Dutuut ’ o

Enn!rnl

Fig. 5. Generated tool to process CBD models. (AToM? running on Windows)

equation is thus:

(@) x—xo—i-/vo——/xdt

which is the equation that has been coded in the model in figure 5 (xg and
vy are the initial conditions, initial position and initial velocity respectively).
On the left of the model, the block labeled with the product symbol 7 cal-
culates — M, where K has been assigned a value of 4.0 and M a value of 1.0
(constants on top of the blocks labeled as “-” and as “1”). The other two
blocks perform the integrations: in port “/C” they receive the initial condition
and in the other port the value to be integrated. It must also be noted that
the result of these integrals is going to be shown in print and plot panels (see
the Plot and Print blocks).

5 Generating OOCSMP code

OOCSMP [1] is an Object Oriented extension of the CSMP Continuous Sim-
ulation Language, developed at the Universidad Auténoma de Madrid. A
compiler (called C-OOL) is able to produce Java applets from the OOCSMP
models. These applets can be inserted in web documents and placed in the
web. One of the main drawbacks of the system is the lack of a graphical mod-
elling environment, models are textual files which must be coded by hand. The
work in this paper aims to provide such an environment for a small subset of
the OOCSMP syntax.

In OOCMSP models, instructions are indeed equations, which the compiler
sorts appropriatelly in order to be able to solve them. Equations are arranged
in procedures, the main one called DYNAMIC, which is the main section of

10

DE LARA, VANGHELUWE AND ALFONSECA

the model and gets solved once for each instant of time. In OOCSMP models,
one should also specify control variable values. These variables control some
of the simulator solver parameters, such as the time step, the communication
interval, etc. As an example, listing 1 shows the OOCSMP program equivalent
to the graphical model in figure 5. It must be noted, that, in truly object-
oriented OOCSMP models, definitions and instantiations of classes are also
found.

TITLE HARMONIC 1D WITHOUT FRICTION
* Author: Juan, Hans, Manuel
DATA K:=4.0
DATA M:=1.0
DATA VO0:=1.0
DATA X0:=0.0
DYNAMIC

MK:=-K

KBY1M:=MK*1M*X

1M:=1/M

V:=INTGRL(VO,KBY1M)
X:=INTGRL(X0,V)
PLOT [C], V, X, TIME
PRINT [E], V, X
TIMER delta:= 0.1,PLdelta:= 0.1,PRdelta:= 1.0,FINTIM:= 10.0

Listing 1: OOCSMP code equivalent to model in figure 5

In this section we show how to use the modelling environment generated
in the previous section to generate OOCSMP code. We do this by defining a
graph grammar to traverse the CBD model and generate the OOCSMP code.
In AToM3, graph grammars can include actions to be performed before and
after the graph grammar execution. In our case, before the graph grammar
execution, we open a file to store the OOCSMP code and add an extra at-
tribute (wvisited) to all the nodes of the graph. This attribute controls whether
code for that node has been already generated, and is initialized to 0. This
initial action also writes the name of the simulation model and the author in
the file (see the first two lines in listing 1)

The graph grammar is composed of three rules, none of which changes the
matching subgraph:

e Rule number one is applied when a Constant node is found that has not
been previously processed. The rule generates a DATA statement for the
constant node and marks it as visited. This rule generates the four data
sentences in listing one, for constants K, M, V0 and X0.

* Rule number two is applied when a Block node is found that has not been
previously processed. It generates the appropriate OOCSMP syntax, de-
pending on the type of the block, and marks it as visited. The first time it
generates a block, it writes the beginning of the DYNAMIC section. This

11

DE LARA, VANGHELUWE AND ALFONSECA

s =10l x|
Current time 110 00000 Final time !10.0
a FTp 1]
1 TERICT Printvariables 0
e — HARNONIC 1D WITHOUT FRICTION |
[_ =lo)x] TINE v Z
v 0.0000000 1.0000000D00 0.0000D00000
1.0000000 -0.4228708899 0.0000000000
x 2.0000000 -0.642942924Z 0.0000000000
5 ; 3.0000000 0.9654466377 0.0000000000
| Y / \ /\ 4.0000000 -0.1721266450 D.0000D0O00O
§ ! / 5 5.0000000 =-0.3193459399 0.000000DDO

i | \ /l \\ ! 6.0000000 0.8635872892 0.0000000000
1 \ /l \ / \ f 7.0000000 0.0893044140 0, 0000000000
4 g \ { 8.0000000 -0.9385292928 0.0000000000

\ / \ / \ / 9.0000000 0.7037425912 0.0000000000
B e 10.000000 0.3440410430 0.0000000000

X Maxima 100
¥ Minima 0o

¥ Maxima 24
¥ Minima: -15

M ons st T x [v ‘ ll Variable

stop | Reset| Glonals | contnue | ClogE]

0.00 10.00

Fig. 6. A moment in the execution of the applet generated by the OOCSMP com-
piler.

rule generates the six lines after the data declaration section.

e Rule number three is applied when an Output node is found that has not
been previously processed. It generates the necessary OOCSMP code to
output the variables connected to it. Outputs can be plotted or printed.
This rule generates the two lines beginning with PLOT and PRINT in listing
1. We create two panels, one in the center (parameter “/CJ”) for plotting
the V and X variables with respect to TIMFE, and the other to the east
(parameter “/E]”), to print also the values of variables V and X.

The final action in the grammar generates code to give values to the con-
trol variables, including the final time, the communication intervals (PLdelta
and PRdelta) and the time advance (delta). These were indicated as global
attributes of the model (see last line in listing 1). Finally, we have assigned the
execution of this graph grammar to a button (labeled as OOCSMP in figure 5.
This is done by modifying the user interface model that AToM? generates, as
mentioned in the previous section.

Figure 6 shows a moment in the execution of the applet generated by the
OOCSMP compiler. This corresponds to the model in listing one, which was
obtained by applying this graph grammar to the model in figure 5. More
information about OOCSMP can be found at:
http://www.ii.uam.es/~jlara/investigacion

Of course, there are more efficient ways to generate code from visual models
than by using a graph grammar. But they provide high level control mech-
anisms which allow the user to perform complex manipulations and graph
matching, and the user can specify model manipulations without any knowl-
edge of the AToM? internals.

12

DE LARA, VANGHELUWE AND ALFONSECA

6 Related work

There are some other similar tools, such as GenGed [3], which is a tool to build
syntax directed visual environments. Their ideas are similar to ours, except
that we usually do not use a syntax directed approach for the environments
we generate, although perfectly possible in AToM3. We feel that, for some
cases, a syntax directed environment is too difficult and restrictive for the final
user. We also do not pose the diagram’s graphical appearance as Constraint
Satisfaction Problems: it is the meta-model designer who, by means of pre-
and post- conditions and actions, expressed as Python code, must take care
of the graphical layout.

Other tools, such as DiaGen [7] (and AToM?), may combine characteristics
of free-hand and syntax- directed editors. DiaGen is a tool based on hypergraph
grammars. The user inputs a textual specification of the visual language and
obtains a set of Java classes which are complemented by a Java library (which
is part of the OOCSMP distribution) to obtain the visual environment. In
AToM?3, the specification of the visual language (the meta-model) is specified
graphically, and the generated files are indeed loaded again on top of AToM?3.
There is no structural difference between the generated editors (which in fact,
could be used to generate other ones!), and the editor which generated them.
In fact, one of the main differences with other similar tools of the approach
taken in AToM?, is the concept that (almost) everything in AToM? has been
defined by a model (under the rules of some formalism), and thus, the user
can change it.

7 Conclusions and Future work

In this paper we have presented an overview of AToM?, a tool which makes
the generation of modelling tools possible by combining meta-modelling and
graph grammars. By means of meta-modelling, it is easy to define the (graph-
ical) syntax of the kind of models we are interested in. By means of graph
grammars we can express model manipulation, such as simulation, optimiza-
tion, transformation and code generation. As an example, we have presented
the generation of a visual modelling environment for a small part of the OOC-
SMP syntax. For that purpose, we have designed a meta-model for causal
block diagrams, and a graph grammar to generate OOCSMP code.

The advantages of using an automated tool for generating customized
model-processing tools are clear: instead of building the whole application
from scratch, it is only necessary to specify —in a graphical manner— the kind
of models we will deal with. The processing of such models can be expressed
by means of graph grammars, at the meta-level. Our approach is also highly
applicable if we want to work with a slight variation of some formalism, where
we only have to specify the meta-model for the new formalism and a tran-
formation into a “known” formalism (for example, one that already has a

13

DE LARA, VANGHELUWE AND ALFONSECA

simulator available). We then obtain a tool to model in the new formalism,
and are able to convert models in this formalism into the other for further
processing.

In the future, we plan to extend the tool in several ways:

* Describing another meta-meta-model in terms of the current one (the Entity-
Relationship meta-meta-model) is possible. In particular, we plan to de-
scribe UML class diagrams. For this purpose, relationships between classes
such as inheritance should be described. Thanks to our meta-modelling ap-
proach, we will be able to describe different subclassing semantics and their
relationship with subtyping. Furthermore, as the semantics of inheritance
will be described at the meta-level, code can be generated in non-object-
oriented languages.

e Exploring the automatic proof of behavioural equivalence between two mod-
els in different formalisms by bi-simulation. This may help in validating that
a graph grammar for formalism transformation is correct.

e Integrating a module to help the user to decide which alternatives are avail-
able at a certain moment of the modelling of a multi-formalism system.
This module may assist in deciding which formalism to use to transform
cach component (following the Formalism Transformation Graph, see [11]).

* Extending the tool to allow collaborative modelling. This possibility, as
well as the need to exchange and re-use (meta-...) models, raises the issue
of formats for model exchange. A viable candidate format is XML.

With respect to AToM? as a front end for OOCSMP, we would like to
improve the graph grammar for code generation, to distinguish expressions
whose value is not going to change during the simulation (for example, ex-
pressions MK:=-K and 1M:=1/M). These values may be calculated at the
begining of the simulation (in a section called INITIAL) rather than at each
time step, in the DYNAMIC section.

We are also working to create a meta-model for UML class diagrams, where

methods can be specified as CBD models. This will allow us to generate truly
object-oriented OOCSMP models.

Acknowledgements

This paper has been partially sponsored by the Spanish Interdepartmental
Commission of Science and Technology (CICYT), project number TEL1999-
0181. Prof. Vangheluwe gratefully acknowledges partial support for this work
by a National Sciences and Engineering Research Council of Canada (NSERC)
Individual Research Grant. The authors would like to thank three anonymous
referees and Simon Lacoste-Julien for their useful comments.

14

DE LARA, VANGHELUWE AND ALFONSECA
References

[1] Alfonseca,M., Pulido, E., Orosco, R., de Lara, J. 1997. OOCSMP: An Object-
Oriented Simulation Language. Proceedings of the 9th European Simulation
Symposium ESS97, SCS Int., Erlangen, Germany, pp. 44-48. See the OOCSMP
home page at:
http://www.ii.uam.es/~jlara/investigacion/download/00CSMP.html.

[2] AToM? home page:
http://moncs.cs.mcgill.ca/MSDL/research/projects/ATOM3.html

[3] Bardohl, R., 2002 A Visual Environment for Visual Languages Science of
Computer Programming 44, pp.: 181-203.

[4] de Lara, J., Vangheluwe, H. 2002 AToM?: A Tool for Multi-Formalism Modelling
and Meta-Modelling. In European Conferences on Theory And Practice
of Software Engineering ETAPS02, Fundamental Approaches to Software
Engineering (FASE). Lecture Notes in Computer Science 2306, pp.: 174 - 188.
Springer-Verlag.

[5] Dorr, H. 1995. Efficient Graph Rewriting and its implementation. Lecture Notes
in Computer Science, 922. Springer.

[6] Gray J., Bapty T., Neema S. 2000. Aspectifying Constraints in Model-Integrated
Computing, OOPSLA 2000: Workshop on Advanced Separation of Concerns,
Minneapolis, MN, October, 2000.

[7] Minas, M. 2002. Concepts and Realization of a Diagram Editor Generator Based
on Hypergraph Transformation Science of Computer Programming 44, pp.: 157-
180.

[8] OMG Home Page: http://www.omg.org

[9] Posse, E., de Lara, J., Vangheluwe, H. 2002. Processing Causal Block
Diagrams with Graph Grammars in AToM?. In Proceedings of Applied Graph
Transformations, AGT’2002. pp.: 23-34. Grenoble.

[10] Python home page: http://www.python.org

[11] Vangheluwe, H. 2000. DEVS as a common denominator for multi-formalism
hybrid systems modelling. In Andras Varga, editor, IFEFE International
Symposium on Computer-Aided Control System Design, pages 129-134. IEEE
Computer Society Press. Anchorage, Alaska.

15

