
Using AToM
�

as a Meta-CASE Tool

Juan de Lara
��� �

�
ETS Informática, Universidad Autónoma de Madrid

Ctra. Cantoblanco km.15, Madrid, Spain
Juan.Lara@ii.uam.es

Hans Vangheluwe
�

�
School of Computer Science, McGill University
3480 University Street, Montreal, Canada

hv@cs.mcgill.ca

Keywords: Meta-Modelling, Multi-Formalism Modelling, Graph Grammars, Meta-CASE tools, Visual Languages.

Abstract:

1 INTRODUCTION

AToM � is a visual Meta-Modelling tool developed
by the authors, which supports modelling of com-
plex systems. Complex systems are characterized by
– possibly large numbers of – components and as-
pects whose structure as well as behaviour cannot be
described in a single formalism. Examples of com-
monly used modelling formalisms are Differential-
Algebraic Equations (DAEs), Bond Graphs, Petri
Nets, DEVS, Entity-Relationship (ER) diagrams, and
Structure Charts (SC).

Meta-CASE generators are tools capable of gener-
ating customized CASE tools. They are useful when
some minor variation of a formalism is needed for
which building a complete tool from scratch would be
too expensive. Meta-CASE tools solve this by allow-
ing a graphical, high-level description of the CASE
tool to be generated. Examples of such tools are
KOGGE (Ebert et al., 1997) and MetaEdit+ (Kelly et
al., 1996).

In analogy with string grammars, graph grammars
(Dorr, 1995) can be used to describe graph transfor-
mations, or to generate sets of valid graphs. Graph
grammars are composed of rules, each mapping a
graph on the left-hand side to a graph on the right-
hand side. When a match is found between the left-
hand side of a rule and a part of an input graph (called
host graph), this subgraph is replaced by the right-
hand side of the rule. A rewriting system iteratively
applies matching rules in the grammar to the graph,
until no more rules are applicable.

In this paper, we present AToM � (A Tool for Multi-
Formalism and Meta-Modelling). This tool has a
meta-modelling layer in which different graphical for-

malisms are modelled. From the meta-specification
(in the ER formalism extended with constraints),
AToM � generates a tool to process models described
in the specified formalism. Models are internally
represented using Abstract Syntax Graphs. As a
consequence, manipulations of models can be ex-
pressed as graph-grammars models. The latter are
also specified graphically in AToM � . Examples of
model manipulations are: optimization of models,
code synthesis, transformation of a model into an-
other (behaviourally-equivalent) model expressed in
a different formalism and simulation. Although graph
grammars have been used in very diverse areas such
as graphical editors, code optimization and computer
architecture (Ehrig et al., 1991), to our knowledge,
they have never been applied to formalism transfor-
mations.

Up to now we have used AToM � to model simu-
lation formalisms and to transform models between
such formalisms. In this paper, we demonstrate the
power of combining meta-modelling and graph trans-
formations by using the tool in a different application
domain, namely as a meta-CASE tool.

2 META-MODELLING

Apart from a large number of components, one of
the characteristics of complex systems is the diversity
of these components. Consequently, it is often de-
sirable to model the different components using dif-
ferent modelling formalisms. This is certainly the
case when inter-disciplinary teams collaborate on the
development of a single system. Flexibility is also
required as different teams may prefer slight varia-
tions of a particular formalism. A proven method to

1

Level Description Example
Meta-
Meta-
Model

Model describes a
formalism that will
be used to describe
other formalisms.

Description of
Entity-Relationship
Diagrams, UML
Class Diagrams

Meta-
Model

Model describes a
simulation formal-
ism. Specified under
the rules of a certain
Meta-Meta-Model

Description of De-
terministic Finite
Automata, Ordi-
nary Differential
Equations (ODE)

Model Description of an ob-
ject. Specified under
the rules of a certain
Meta-Model

�
	����� �
������� � �����������

(in
the ODE formalism)

Table 1: Meta-Modelling Levels.

achieve the required flexibility for a modelling lan-
guage that supports many formalisms and modelling
paradigms is to model the modelling language itself
(DOME, 1999) (Sztipanovits et al., 1995). Such a
model of the modelling language is called a meta-
model. It describes the possible structures which can
be expressed in the language. A meta-model can eas-
ily be tailored to specific needs of particular domains.
This requires the meta-model modelling formalism to
be rich enough to support the constructs needed to de-
fine a modelling language. Taking the methodology
one step further, the meta-modelling formalism itself
may be modelled by means of a meta-meta-model.
This meta-meta-model specification captures the ba-
sic elements needed to design a formalism. Table 2
depicts the levels considered in our meta-modelling
approach.

Formalisms such as ER or UML class dia-
grams (Precise UML group, 2002) are often used for
meta-modelling. To be able to fully specify mod-
elling formalisms, the meta-level formalism must be
extended with the ability to express constraints (lim-
iting the number of meaningful models). For exam-
ple, when modelling a Determinsitic Finite Automa-
ton, different transitions leaving a given state must
have different labels. This cannot be expressed within
ER diagrams alone. Expressing constraints is most
elegantly done by adding a constraint language to
the meta-modelling formalism. Whereas the meta-
modelling formalism frequently uses a graphical no-
tation, constraints are concisely expressed in textual
form. For this purpose, some systems (Sztipanovits et
al., 1995), including AToM � use the Object Constraint
Language OCL (OMG, 2002) used in the UML.

Figure 1 depicts the structure we propose for
a meta-modelling environment. For example, in
AToM � , the Meta-Meta Model contains a description
of ER, initially hand-coded. As the ER formalism
can be described in an ER model, the environment

was subsequently bootstrapped, although other meta-
formalisms (such as the UML) can also be described.
Details about the AToM � internals will be described
in section 4

Meta−Model
Processor

Processor
Meta−Model

Meta−Model

MF

User Input
− Create Entities
− Delete Entities
− Verify conditions (local, global)

User Input
− Create Entities
− Delete Entities
− Verify conditions (local, global)

Constraint Manager

Rewriting

Graph

Abstract

Syntax
Graphical

Model

U
se

r I
nt

er
fa

ce

Code Generator

Graph

AToM3 Processor

Processor

nodes
Graphical

nodesASG
ASG

AToM3 Meta*−
Models’ structure

Syntactic Actions

Model

... Meta−Meta Model

Load Formalism

Load Formalism

Model of formalism F

Model of formalism MF

MMF

F

Load Model

Save Model

Save Model

Load Model

Figure 1: Proposed working scheme for a meta-modelling
environment.

3 GRAPH GRAMMARS

In our approach, we use graph grammars to express
model manipulation. As stated in the introduction,
they are composed of rules, each mapping a graph on
the left-hand side (LHS) to a graph on the right-hand
side (RHS). A graph grammar is applied to an input
graph (called host graph) in order to perform a trans-
formation. When a match is found between the LHS
of a rule and a part of the host graph, this subgraph is
replaced by the RHS of the rule. Rules may also have
a condition that must be satisfied in order for the rule
to be applied, as well as actions to be performed when
the rule is executed. A rewriting system iteratively
applies matching rules in the grammar to the graph,
until no more rules are applicable (Dorr, 1995). Some
approaches also offer control flow specifications. In
our tool, rules are ordered based on a user-assigned
priority.

On the one hand, the use of a model (in the form of
a graph grammar) of graph transformations has some
advantages over an implicit representation (embed-
ding the transformation computation in a program)
(Blonstein et al., 1996):� It is an abstract, declarative, high level representa-

tion. This enables exchange, re-use, and symbolic
analysis of the transformation model.� The theoretical foundations of graph rewriting sys-
tems may assist in proving correctness and conver-
gence properties of the transformation tool.

On the other hand, the use of graph grammars is con-
strained by efficiency. In the most general case, sub-

2

graph isomorphism testing is NP-complete. However,
the use of small subgraphs on the left hand side of
graph grammar rules, as well as using node labels and
edge labels can greatly reduce the search space.

4 AToM
AToM � is a tool written in Python (Python, 2002)
which implements the above ideas. Its architecture
was shown on figure 1.

The main component of AToM � is the Processor,
which is responsible for loading, saving, creating and
manipulating models (at any meta-level), as well as
for generating code for customized tools. Both meta-
models and meta-meta-models can be loaded when
AToM � is invoked. The first kind of models allow
constructing valid models in a certain formalism, the
latter are used to describe the formalisms themselves.
In AToM � models at any meta-level are treated in the
same way.

The ER formalism extended with constraints is
available at the meta-meta-level. Constraints can be
specified as OCL or Python expressions, and the de-
signer must specify when (pre- or post- and on which
event) the condition must be evaluated. Events can be
semantic (such as editing an attribute, connecting two
entities, etc.) or graphical (such as dragging, drop-
ping, etc.)

When modelling at the meta-meta-level, the enti-
ties which may appear in a model must be specified
together with their attributes (name and type). We will
refer to this as the semantic information. For example,
to define the Data Flow Diagram formalism (DFD), it
is necessary to define Data Flows, Processes, Exter-
nal Entities and Data Stores. Furthermore, we need
to specify attributes for each of these entities. For ex-
ample, a Process has a Name (type: String), an ID
number (type: Integer), a textual description (type:
String), etc.

In AToM � a distinction is made between two kinds
of attributes: regular and generative. Regular at-
tributes are used to identify characteristics of the cur-
rent entity. Generative attributes are used to generate
new attributes at a lower meta-level. The generated
attributes may be generative in their own right. This
is useful if we are trying to model another meta-meta-
model, such as UML class diagrams, or when the ER
meta-meta-model was bootstraped. Both types of at-
tributes may contain data or code for pre- and post-
conditions. Only meta-meta-level entities are pro-
vided with generative attributes.

The above specification is used by the AToM � Pro-
cessor to generate some Python files, which, when
loaded by the Processor, allows manipulation of mod-
els in the defined formalism.

In the meta-meta-model, it is also possible to spec-
ify the graphical appearance of each entity of the

lower meta-level. This appearance is, in fact, a spe-
cial kind of generative attribute. For example, for
DFDs, we can choose to represent Processes as ovals
with the name and the ID number inside. That is,
we can specify how some semantic attributes are dis-
played graphically. Constraints can also be associated
with the graphical entities. Each graphical form, part
of the graphical entity, can be referenced through an
automatically generated name which has methods to
change its color, hide it, etc.

AToM � has a number of basic types, such as
Strings, Integers, and Floats. Each type in AToM �
has associated a Python class, which is responsible
for creating a widget to edit its value, checking the
validity of its value, making the variable persistent,
etc.

It is also possible to define composite types. Fol-
lowing the tool’s philosophy, composite types are
models. Which models are valid is described using a
Types meta-model. Thus, types are represented as di-
rected graphs, as proposed in (Aho et al., 1996). Type
models have a Root node, which is labeled with the
type’s name. From the Root node, Operator nodes
can be connected. The Operator type can be either
Product (to build tuples) or Union. Operator nodes
can be connected to other Operator nodes, to the
Root node (that is, we allow recursive types) or to
SubType nodes. The SubType node type can be any
valid type (basic or composite) in the current AToM �
session. SubType nodes cannot have any outgoing
connection, thus, these kind of nodes are the graph
leaves. SubType nodes may have associated a con-
straint to restrict the type value. This is useful for
example if we try to define subranges of a type. A
tool for processing types was generated automatically
from this meta-description and then incorporated into
the AToM � Processor. Consequently, types may be
loaded, saved and manipulated as any other model.
The meta-level has been constrained to avoid infinite
recursion in the type definition.

Some graph grammars have been defined to pro-
cess the type models. For example, we have imple-
mented a graph-grammar to generate the Python class
associated with the type.

For the implementation of the Graph Rewriting
Module, we have used an improvement of the algo-
rithm given in (Dorr, 1995), in which we allow non-
connected graphs in LHSs in rules. It is also possible
to define a sequence of graph grammars that have to
be applied to the model. This is useful, for example
to couple grammars to convert a model into another
formalism, and then apply model optimization. Rule
execution can either be continuous (no user interac-
tion) or step-by-step whereby the user is prompted
after each rule execution. As the LHS of a rule can
match different subgraphs of the host graph, we can
also control whether the rule must be applied in all

3

the subgraphs (if disjoint), if the user can choose one
of the matching subgraphs interactivelly, or the sys-
tem chooses a random one. As in grammars for for-
malism transformations we have a mixing of entities
belonging to different formalisms, it must be possible
to open several meta-models at the same time. Ob-
viously, the constraints of the individual formalism
meta-models are meaningless when entities in differ-
ent formalisms are present in a single model. Such
a model may come to exist during the intermediate
stages of graph grammar evaluation when transform-
ing a model from one formalism into another. It
is thus necessary to disable evaluation of constraints
during graph grammar processing (i.e. all models are
reduced to Abstract Syntax Graphs).

5 AN EXAMPLE: GENERATING
TOOLS FOR STRUCTURED
ANALYSIS AND DESIGN

5.1 Defining the meta-models

In this section, we will use AToM � to describe two
meta-models for structured analysis (DFD) and de-
sign (SC).

We need three entities to define the DFD formal-
ism: Processes, External entities, and Data Stores
and a DataFlow relationship. In addition, we need to
specify some constraints to prohibit drawing invalid
models, namely:
� Connections of two External Entities by means of

a DataFlow is not allowed. We have expressed this
as a local constraint on the entity DataFlow, which
will be evaluated when trying to connect it.� Data Stores can only be read or written by Pro-
cesses. This will also be expressed as a local
constraint on DataFlows, evaluated when trying to
connect it.� All DataFlow names must be unique. This can only
be implemented as a global constraint. As it may
not be desireable to maintain this restriction during
the whole modelling process, it will only be eval-
uated when trying to save the model. This ensures
that all the saved models are valid.� All Process, External Entity and Data Store names
must also be unique. This is implemented in a sim-
ilar way as above. Processes ID numbers must be
unique too.

Figure 2 shows AToM � loaded with the ER Meta-
Meta-Model, which is used to describe the DFD for-
malism. The dialog to edit the “Process” entity
is opened, and its graphical representation is being
edited. In Figure 3 AToM � is loaded with the gen-
erated DFD meta-model. It is noted that the entities

that can be created using this meta-model are different
from the ones that can be created with the ER meta-
meta-model.

Figure 2: Describing DFDs with AToM ! .

Figure 3: Generated DFD Tool.

The DataFlow relationship has been provided with
some attributes: a Name and a list of Data elements.
Data is a 4-element tuple (a composite type) contain-
ing: a Name (string), a Type (an enumerated type con-
taining the valid types), a Flow (an enumarated type
indicating the flow direction of the data, IN, OUT or
BOTH) and a Description (string). In Figure 3, a
DataFlow is being edited, and a Data element is be-
ing added to the list. The dialog window to edit these
Data elements has been generated from the type defi-
nition with a graph-grammar.

The SC meta-model is simpler as we only have
Modules and Data Flows. The latter are very simi-
lar to the ones in the previous meta-model, the former
are composed of a name and a description.

For this meta-model, there are also some con-
straints:

4

� The number of incoming connections of any mod-
ule entity must be strictly positive.

� The number of Data Flow elements without incom-
ing connections must be equal to one. This means
that a unique root node is present in the model.

� Module and Data Flow names must be unique.

The first condition can be implemented as a local
condition. The other two need information about the
whole model, so they should be global.

5.2 Defining model transformations

In this section, we will present some graph grammars
we have defined to manipulate DFD and SC models.
The first one is used to transform DFD into SC mod-
els, the second one to optimize the resulting SC mod-
els. It must be noted, that there are suggestions in the
literature on how to transform a DFD model into a SC
model (see for example (Pressmanm, 1997)), but to
our knowledge, this is the first time that these sugges-
tions have been implemented as a graph grammar for
the purpose of automatic formalism transformation.
Of course, these are suggestions and further manual
manipulation of the resulting models may be neces-
sary.

5.2.1 Transforming DFDs into SCs

In general, two strategies can be used when trans-
forming a DFD into an SC: transformation analysis
and transaction analysis. For brievity, we will only
deal with the first one. Transformation analysis is ap-
plied if there is a zone in the DFD model with trans-
formation characteristics, which are:
� One or more processes that capture data and con-

vert it to some internal format. This format facili-
tates the manipulation of the data.

� One or more processes dealing with the manipula-
tion of the data.

� One or more processes dealing with the transfor-
mation of the data into another format suitable for
output.

To implement this graph grammar, one field has
been added to the entity Process in the DFD meta-
model to indicate if the process deals with input, out-
put, transaction or transformation. Currently, this
field must be filled by the user, although in the future
we are planning to build a graph grammar to identify
transaction nodes. This field has also been added to
the Module entity in the SC meta-model, but is filled
by the graph grammar.

Figure 4 shows a part of the graph grammar used to
transform a DFD model into a SC model. For brevity,
only some of the rules involved in the transformation

analysis are presented. Rules dealing with the trans-
action analysis are also part of this graph grammar.

::=

Rule 2:

... ...

... ...

name=*
contents=*

type=out
name=*

type=Trf

name=’CtrlSys’

+node(2).name
contents.IN=
node(2).contents

node(2).contents
contents.OUT=
name=’CtrlTf’+node(2).name

name= Ctrl.Out.
Type=CtrlOutType=CtrlTrf

Ctrl.Transf.name=

node(3).name
name=

Type=Out

12’ 13’

10’ 11’

8’

6’ 7’

5’

9’

4’

1
2

3

name=*
type=Trf

1 2

name=*

name= Ctrl.System
Type=Control

name=’CtrlOut’

name=’Out’+

node(2).contents
contents.IN=
node(2).name

name=’Trf’+node(2).name
contents.OUT=node(2).contents

name= node(1).name
Type=Trf

name= Ctrl.Transf.
Type=CtrlTrf

5

4
contents=*
name=*

name=*
contents=*

name=*
Type=Trf

3

5’

7’ 4’

3’

name=’Trf’+node(2).name
contents.OUT=
node(2).contents

contents.IN+=

name+=’,’
node(2).name

node(2).contents

name=Ctrl.System
Type=Control

Rule 5: 7

6

name=
Type=CtrlTrf

Ctrl.Transf. 5

4

1

contents=*
name=*

2

contents=*
name=*

Type=Trf
name=*

3

7’

8’ 6’

5’

node(2).name
name=’CtrlInp’+
node(2).contents

contents.OUT=
contents=*
name=*

type=Inp
name=*

9’name=Ctrl.Inp.
Type=CtrlInp

10’

contents.IN+=
node(2).contents

name+=’,’
+node(2).name

4’
contents.IN+=
node(2).contents

name+=’,’

3’
+node(2).name

11’
::=

name=
node(1).name
Type=Inp

contents.OUT=
node(2).contents

name=’Inp’+

Rule 10:

 d.name+=’,’+node(1).name

ForAll DataFlow d | ancestor(d,node(2))
 d.contents.OUT+=node(1).contents

1
2

name=*
contents=*

Type=Out
name=*

::=
2’

ACTION:

Rule 1:

ACTION:
Copy input and output connections(!=node(2)):
From node(1) into node(12’)
From node(3) into node(13’)

6’
::=

Type=Trf
node(1).name
name=

 From node(1) into node(6’)
 Copy input and output connections(!=node(2)):
ACTION:

node(2).name

 From node(1) into node(11’)
 Copy input and output connections(!=node(2)):
ACTION:

Figure 4: Some rules of the graph-grammar to transform a
DFD model into an SC model.

In this graph grammar, entities are labeled with
numbers. RHS node labels are also decorated with
a prime, to distinguish them from LHS ones. If two
nodes in a LHS and a RHS have the same number, the
node must not disappear when the rule is executed.
If a number appears in a LHS but not in a RHS, the
node must be removed when applying the rule. If a
number appears in a RHS but not in a LHS, the node
must be created if the rule is applied. If a node in a
RHS is empty, their attributes will be left untouched,
otherwise their value is specified. For clarity, the con-
tents attribute of DataFlows is considered to have two
lists (IN and OUT) which contain the input and output
parameters to the module.

These rules will be tried in order by the graph
rewriting system. Rule number 1 is the first one to
be applied when a transformation zone is detected in
the DFD model. It starts building the transforma-
tion/output zone of the SC model. The second and
third rules add transformation processes to the SC
model, the fourth, fifth and sixth rules add input proc-
cesses to the SC model, rule seven adds output pro-
cesses to the model, rules eight, nine and ten elim-

5

inate DFD data flows between SC modules, adding
this data information properly to the corresponding
SC data flows. These three last rules incorporate
some actions to propagate the information found in
the DataFlow that is being deleted up in the modules
hierarchy.

Figure 5 shows AToM � after the execution of rule
5 on a DFD model.

Figure 5: AToM ! after execution of rule 5.

As it can be observed, during the application of
the graph-grammar, the model is a blend of a DFD
model and a SC model. At the end of the process
however, the model is entirely in the SC formalism.
This implies that during transformation, the DFD and
SC constraints check must be turned off, as stated in
section 4.

5.2.2 ’Optimizing’ SC models

We have implemented rules for simplification of
SC models in a different graph-grammar. This graph
grammar “optimizes” SC models, and hence, does
not perform formalism change. In our example, it
could be useful to execute this optimizing graph-
grammar after applying the one described before to
a DFD (AToM � allows applying sequences of graph-
grammars). Some of the rules of this optimizing
graph-grammar eliminate a control module if it has
only one “child” and others provide a module with
two “children” modules if it is considered complex.

Once the model is in the SC formalism, it is easy
to define other graph grammars, for example to gen-
erate code skeletons. In essence, the graph grammar
has to go through the modules hierarchy, and for each
module, take its input DataFlow to generate the func-
tion prototype, and for each DataFlow connected as
output, generate a function call.

6 Related work

A similar approach is ViewPoint Oriented Software
Development (Finkelstein, 1990). Some of the con-
cepts introduced by the authors have a clear counter-
part in our aproach (for example, ViewPoint templates
are equivalent to meta-models, etc). They also intro-
duce the relationships between ViewPoints, which are
similar to our coupling of models and graph transfor-
mations.

Although this approach has some characteristics
that our approach lacks (such as the work plan ax-
ioms), our use of graph transformations allows to ex-
press model’s behaviour and formalism’s semantics.
These graph transformations allow us to transform
models between formalisms, optimize models, or de-
scribe basic simulators. For example, we have imple-
mented a simulator for block diagrams using graph
grammars (AToM3, 2002). Another advantage of our
approach, is that we use meta-modelling, in this way
we don’t need different tools to process different for-
malisms (ViewPoints), as we can model them at the
meta-level.

Other approaches to interconnecting formalisms
are Category Theory (Fiadeiro, 1995), in which for-
malisms are cast as categories and their relationships
as functors. See also (Zave and Jackson, 1993) and
(Niskier at al., 1989) for other approaches.

There are other visual tools to describe for-
malisms using meta-modelling, among them DOME
(DOME, 1999), Multigraph (Sztipanovits et al.,
1995), MetaEdit+ (Kelly et al., 1996) or KOGGE
(Ebert et al., 1997). Some of them allow to ex-
press formalism semantics by means of a textual lan-
guage (KOGGE for example uses a Modula-2-like
language). Our approach is quite different. We ex-
press semantics by means of graph grammar models.
We believe that graph grammars are a natural, declar-
ative, and general way to express transformations. As
graph grammars are highly amenable to graphical rep-
resentation, they are superior to a purely textual lan-
guage. Some of the rationale for using graph gram-
mars in our approach has been show in section 3.
Also, none of the tools consider the possibility to
transform models between different formalisms.

On the other hand, there are some systems and
languages for graph-grammar manipulation, such as
PROGRES (PROGRES, 2002), GRACE (GRACE,
2002) and AGG (AGG, 2002). None of these have
a Meta-Modelling layer. Work on using graph-
grammars to specify software architecture transfor-
mations can be found at (Fahmy et al., 2000).

Our approach is original in the sense that we take
the advantages of Meta-Modelling (e.g., to avoid ex-
plicit programming of customized tools) and com-
bine them with those of graph transformation systems
(e.g., to express model behaviour, formalism transfor-

6

mation). Our main contribution is thus in the field of
multi-paradigm modelling (Vangheluwe, 2000) as we
provide a general means to transform models between
different formalisms and to manipulate them.

7 Conclusions and future work

In this paper, we have presented AToM � , a tool
for multi-formalism meta-modelling. The meta-
modelling layer allows a high-level description of
models. Using this meta-information, AToM � can
generate automatically a tool to process these models.
Manipulations of models can be expressed as graph
grammars, at the meta-level. Some of these manipula-
tions are the behaviour-preserving transformations of
models between formalisms, optimization, code gen-
eration and simulation.

Particularlly, in this paper we have shown the use
of AToM � to generate a structured analysis and de-
sign CASE tool. A graph grammar has been defined
to transform DFD models into SC models. Our ap-
proach allows the creation of new tools (by meta-
modelling them with AToM �) and connecting them
by defining appropriate graph-grammars to transform
models between tools. For example, it is possible to
define a graph grammar to extract information about
the module parameters in the SC model and use it to
produce test cases.

The advantages of using such an automated tool
for generating customized model-processing tools are
clear: instead of building the whole application from
scratch, it is only necessary to specify –in a graphi-
cal manner– the kinds of models we will deal with.
This highly reduces the effort needed to build such
a tool. For example, the tools described in this pa-
per have been built in a few hours. Our approach is
also highly applicable if we want to work with a slight
variation of some formalism, where we only have to
slightly modify the formalism’s meta-model. We may
also specify the meta-model for a new formalism and
a tranformation into a “known” formalism (one that
already has the appropriate transformation available,
such as a simulator). AToM � is available at (AToM3,
2002).

In the future, we will explore software process
modelling (Koskinen and Marttiin, 1997). A process
may be composed of different tasks, each one imply-
ing the use of a different meta-model to obtain the
desired product. Also, it could be useful to let the de-
gree of specificity (i.e. the constraints that the model
must satisfy to be valid) of a modelling formalism
change during the modelling process. It is envisioned
that this evolution of the formalism during the mod-
elling life-cycle will eventually be specified using a
variable-structure meta-model (such as a DFA with
ER states).

In 1997, the OMG (OMG, 2002) proposed a

Meta-Data standard, called the Meta-Object Facility
(MOF) (MOF, 2002). In this approach, meta-models
are described using UML and are stored in a standard
format. From these meta-models, by means of XMI,
it is possible to automatically obtain DTDs and XML
documents. We consider the possibility to make com-
patible with MOF the way we store (meta-)models.
Of particular interest is the standard representation of
model transformations (in the form of graph-grammar
models), as they would allow the translation of data
between different DTDs in a meaningful and auto-
mated fashion.

We are also planning to extend the tool in several
ways:
� Describing another meta-meta-model in terms of

the current one (the ER meta-meta-model) is pos-
sible. In particular, we will describe UML class
diagrams. For this purpose, relationships between
classes such as inheritance need to be described.
Due to our meta-modelling approach, we will be
able to describe different subclassing semantics and
its relationships with subtyping (Abadi, 1996).

� We should explore more in detail the implications
of hierarchical modelling, and their relationship
with graph transformations. Although our tool al-
lows for hierarchical modelling, further study is
needed on how to apply graph grammars on dif-
ferent hierarchical levels of the model. For this
purpose, the replacement of the basic internal data
structure for representing models (graphs) by the
more expressive HiGraphs (Harel, 1988) is under
consideration. HiGraphs are more suitable to ex-
press and visualize hierarchies, they add the con-
cept of orthogonality, and connections use hyper-
edges.

� We will extend the tool to allow collaborative mod-
elling. This possibility as well as the need to ex-
change and re-use (meta-) models raises the issue
of formats for model exchange. A viable candidate
format is OMG’s MOF combined with XML.

ACKNOWLEDGMENT

This paper has been partially sponsored by the
Spanish Interdepartmental Commission of Science
and Technology (CICYT), project number TEL1999-
0181. Prof. Vangheluwe gratefully acknowledges
partial support for this work by a National Sci-
ences and Engineering Research Council of Canada
(NSERC) Individual Research Grant.

REFERENCES

Abadi, M., Cardelli, L. 1996. A Theory of Objects.
Monographs in Computer Science. Springer

7

AGG Home page: http://tfs.cs.tu-berlin.de/agg/

Aho, A.V., Sethi, R., Ullman, J.D. 1986. Compilers,
principles, techniques and tools. Chapter 6, Type
Checking. Addison-Wesley.

AToM � home page:
http://moncs.cs.mcgill.ca/MSDL/research/
projects/ATOM3.html

Blonstein, D., Fahmy, H., Grbavec, A.. 1996. Issues
in the Practical Use of Graph Rewriting. Lecture
Notes in Computer Science, Vol. 1073, Springer-
Verlag, pp.38-55.

DOME guide. http://www.htc.honeywell.com/dome/,
Honeywell Technology Center. Honeywell,
1999, version 5.2.1

Dorr, H. 1995. Efficient Graph Rewriting and its im-
plementation. Lecture Notes in Computer Sci-
ence, 922. Springer.

Ebert, J., Sttenbach, R., Uhe, I. 1997 Meta-
CASE in Practice: a Case for KOGGE In A.
Olive, J. A. Pastor: Advanced Information Sys-
tems Engineering, Proceedings of CAiSE’97,
Barcelona. LNCS 1250. pp.:203-216, Springer.
See KOGGE home page at: http://www.uni-
koblenz.de/ ist/kogge.en.html

Ehrig, H., Kreowski, H.-J., Rozenberg, G. (eds.)
1991. Graph Grammars and their application to
Computer Science: 4th International Workshop,
Bremen, Germany, March 5-9, 1990, Proceed-
ings. LNCS, 532. Springer.

Fahmy, H., Holt, R.C. 2000. Using Graph Rewrit-
ing to Specify Software Architectural Transfor-
mations, Proceedings of 15th IEEE Conference
on Automated Software Engineering, Grenoble,
France.

Fiadeiro, J.L., Maibaum, T. 1995. Interconnecting
Formalisms: Supporting Modularity, Reuse
and Incrementality Proc.3rd Symposium on
the Fundations of Software Engineering,
G.E.Kaiser(ed),pp.: 72-80, ACM Press.

Finkelstein, A., Kramer, J., Goedickie, M. ViewPoint
Oriented Software Development Proc, of the
Third Int. Workshop on Software Engineering
and its Applications, Tolouse, December 1990.

GRACE Home page: http://www.informatik.uni-
bremen.de/theorie/GRACEland/GRACEland.html

Harel, D. On visual formalisms. Communications of
the ACM, 31(5):514–530, May 1988.

Kelly, S., Lyytinen, K., Rossi, M. MetaEdit+: A fully
configurable Multi-User and Multi-Tool CASE
and CAME Environment In Constantopoulos,
P., Mylopoulos, J., Vassiliou, Y: Advanced In-
formation System Engineering; LNCS 1080.

Berlin: Springer 1996. See MetaEdit+ Home
page at: http://www.MetaCase.com/

Koskinen, M.; Marttiin, P. 1997. Process support
in MetaCASE: implementing the conceptual ba-
sis for enactable process models in MetaEdit+.
Eighth Conference on Software Engineering En-
vironments, pp.: 110-122.

Meta-Modelling Facility, from the precise UML
group:
http://www.cs.york.ac.uk/puml/mmf/index.html

Meta-Object Facility, from the OMG:
http://www.omg.org/cwm

Niskier, C., Maibaum, T., Schwabe, D. 1989 A plu-
ralistic Knowledge Based Approach to Software
Specification 2nd European Software Engineer-
ing Conference, LNCS 387, Springer Verlag
1989, pp.:411-423

OMG Home Page: http://www.omg.org

Pressman, R.S. 1997. Software Engineering: A prac-
titioner’s approach. McGraw-Hill.

PROGRES home page:
http://www-i3.informatik.rwth-
aachen.de/research/projects/progres/main.html

Python home page: http://www.python.org

Sztipanovits, J., et al. 1995. ”MULTIGRAPH: An
architecture for model-integrated computing”.
In ICECCS’95, pp. 361-368, Ft. Lauderdale,
Florida, Nov. 1995.

Vangheluwe, H. 2000. DEVS as a common denom-
inator for multi-formalism hybrid systems mod-
elling. In Andras Varga, editor, IEEE Interna-
tional Symposium on Computer-Aided Control
System Design, pp.:129–134. IEEE Computer
Society Press. Sept.2000. Anchorage, Alaska.

Zave, P., Jackson, M. 1993. Conjunction as Composi-
tion ACM Transactions on Software Engineering
and Methodology 2(4), 1993, 371-411.

8

