
AN INTRODUCTION TO
MULTI-PARADIGM MODELLING AND SIMULATION

Hans Vangheluwe

School of Computer Science
McGill University, Montréal

Québec, Canada
hv@cs.mcgill.ca

Juan de Lara

E.T.S. de Informática
Universidad Autonóma de Madrid

Madrid, Spain
Juan.Lara@ii.uam.es

Pieter J. Mosterman

Simulation and Real-Time Technologies
The MathWorks, Inc.

Natick, MA, USA
pieter j mosterman@mathworks.com

ABSTRACT

Modelling and simulation are becoming increasingly im-
portant enablers in the analysis and design of complex sys-
tems. To tackle problems of ever increasing complexity,
modelling and simulation research is shifting from simula-
tion techniques to modelling methodology and technology.
In this article, the emerging field of Computer Automated
Multi-Paradigm Modelling is presented. Multi-paradigm
modelling adresses and integrates three orthogonal direc-
tions of research:

1. multi-formalism modelling, concerned with the cou-
pling of and transformation between models described
in different formalisms,

2. model abstraction, concerned with the relationship be-
tween models at different levels of abstraction, and

3. meta-modelling, concerned with the description (mod-
els of models) of classes of models, which allows for-
malism specification.

The article first introduces the general concepts of Mod-
elling and Simulation theory, and explains how rigourous
application thereof provides a sound basis for the mean-
ingful exchange and re-use of knowledge about the be-
haviour of complex systems. The representation of mod-
els in diverse formalisms, at different levels of abstraction,
and the (behaviour-conserving) transformation between the
formalisms is demonstrated.

1 MODELLING AND SIMULATION

At a first glance, it is not easy to characterize modelling
and simulation. Certainly, a variety of application domains
such as fluid dynamics, energy systems, and logistics man-
agement make use of it in one form or another. Depending
on the context, modelling and simulation is often seen as
a sub-set of Systems Theory, Control Theory, Numerical
Analysis, Computer Science, Artificial Intelligence, or Op-
erations Research. Increasingly, modelling and simulation
integrates all of the above disciplines. As a paradigm, it is
a way of representing problems and thinking about them as

Real-World
entity

Base
Model

System S

only study behaviour in
experimental context

experiment
within context

Model M

Simulation ResultsExperiment
Observed Data

within context

simulate
= virtual experiment

Model Base
a-priori knowledge

validation

REALITY MODEL

GOALS

Modelling and Simulation
Process

Figure 1: Modelling and Simulation concepts.

much as a solution method. The problems cover the analy-
sis and design of complex dynamical systems. In analysis,
abstract models are built inductively from observations of a
real system. In design, models deductively derived from a
priori knowledge are used to build a system, satisfying cer-
tain design goals. Often, an iterative combination of analy-
sis and design is needed to solve real problems. Though the
focus of modelling and simulation is on the time-varying
behaviour of dynamical systems, static systems (such as
Entity-Relationship (ER) models, described in the Unified
Modeling Language (UML) (Rumbaugh et al., 1999)) are
a limit-case. Both physical (obeying conservation and con-
straint laws) and non-physical (informational, such as soft-
ware) systems and their interactions are studied.

1.1 Concepts

Figure 1 presents modelling and simulation concepts as in-
troduced by Zeigler (Zeigler, 1984b; Zeigler et al., 2000).

Real World Entity or object can exhibit widely varying
behaviour depending on the context in which it is stud-
ied as well as the aspects of its behaviour which are
under study.

Base Model is a hypothetical, abstract representation of
the object’s properties, in particular, its behaviour,
which is valid in all possible contexts, and describes
all the object’s facets.

System is a well defined object in the Real World under
specific conditions, only considering specific aspects
of its behaviour.

Experimental Frame (EF) describes a limited set of cir-
cumstances under which a system (real or model) is to
be observed or subjected to experimentation. As such,
the Experimental Frame reflects the objectives of the
experimenter who performs experiments on a real sys-
tem or, through simulation, on a model.

(Lumped) Model (not to be confused with a lumped pa-
rameter model (Cellier, 1991)) is an abstract represen-
tation of a system within the context of a given Exper-
imental Frame. Usually, certain properties of the sys-
tem’s structure and/or behaviour are reflected by the
model (within a certain range of accuracy).

Experimentation is the act of carrying out an experiment.
An experiment may interfere with system operation
(influence its input and parameters) or it may not. As
such, the experimentation environment may be seen as
a system in its own right (which may itself be modelled
in a lumped model). Also, experimentation involves
observation. Observation yields measurements.

Simulation of a lumped model in a certain formalism
(such as Petri Net, Differential Algebraic Equations
(DAE) or Bond Graph) computes the dynamic in-
put/output behaviour. Simulation may use symbolic
as well as numerical techniques. Simulation, which
mimics the real-world experiment, can be seen as vir-
tual experimentation. Whereas the goal of modelling
is to meaningfully describe a system, presenting infor-
mation in an understandable, re-usable way, the aim of
simulation is to be fast and accurate. Symbolic tech-
niques are often favoured over numerical ones as they
allow the generation of classes of solutions rather than
just a single one (e.g., sin

�
x � as a solution to the har-

monic equation as opposed to one single approximate
trajectory solution). Furthermore, symbolic optimiza-
tions have a much larger impact than numerical ones
thanks to their global nature. Crucial to the System–
Experiment/Model–Virtual Experiment scheme is that
there is a homomorphic relation between model and
system: building a model of a real system and subse-
quently simulating its behaviour should yield the same
results as performing a real experiment followed by
observation and codifying the experimental results.

Verification is the process of checking the consistency of a
simulation program with respect to the lumped model
it is derived from.

Experimental Frame Definition

Structure Characterisation

Parameter Estimation

Simulation

Validation

class of parametric model candidates

parametric model

model with meaningful parameter values

simulated measurements

validated model

a priori

knowledge

modeller’s and
experimenter’s

goals

experiment observation
(measurement)

data

Information Sources Activities

Figure 2: Model-based systems analysis.

Validation is the process of comparing experiment mea-
surements with simulation results within the context
of a certain Experimental Frame (Balci, 1997). When
comparison shows differences, the formal model built
may not correspond to the real system. A large num-
ber of matching measurements and simulation results,
though increasing confidence, does not prove valid-
ity of the model however. For this reason, Popper
has introduced the concept of falsification (Magee,
1985), the enterprise of trying to falsify or disprove
a model. It is to be noted that the correspondence in
generated behaviour between a system and a model
will only hold within the limited context of the Ex-
perimental Frame. Consequently, when using mod-
els to exchange information between human or com-
puter agents, a model must always be matched with an
Experimental Frame before use. Conversely, a model
should never be developed without simultaneously de-
veloping its Experimental Frame. This requirement
has its repercussions on the design of model represen-
tation languages.

1.2 The Modelling and Simulation Process

The use of simulation has proven to be invaluable in the
study of complex systems. The simulation activity is part
of the larger model-based systems analysis enterprise. A
framework for these activities is depicted in Figure 2. The
Framework starts by identifying an Experimental Frame.
As mentioned above, the frame represents the experimen-
tal conditions under which the modeller wants to investi-
gate the system. As such, it reflects the modeller’s goals
and questions. Based on a frame, a class of matching mod-
els can be identified. Through structure characterization,
the appropriate model structure is selected based on a priori
knowledge and measurement data. Subsequently, during
model calibration, parameter identification (or estimation)

is_full

is_empty
heat

off

cool

is_cold
is_hot

fill empty
closed

Figure 3: T � l controlled liquid in a vessel.

yields optimal parameter values for reproducing a set of
measurement data. Using the identified model and param-
eters, simulation allows one to mimic the system behav-
ior (virtual experimentation). The question remains how-
ever whether the model has predictive validity: is it capa-
ble not only of reproducing data which was used to choose
the model and to identify parameters, but also of predicting
new behavior ? In Figure 2, one notices how each step in
the modelling process may introduce errors. As indicated
by the feedback arrows, a model has to be corrected once
falsified.

2 ABSTRACTION AND FORMALISM

Abstract models of system behaviour can be described at
different levels of abstraction or detail as well as by means
of different formalisms. The particular formalism and level
of abstraction depends on the background and goals of the
modeller as much as on the system modelled. As an exam-
ple, a temperature and level controlled liquid in a vessel is
considered. This is a simplified version of the system de-
scribed in (Barros et al., 1998), where structural change is
the main issue. On the one hand, the liquid can be heated or
cooled. On the other hand, liquid can be added or removed.
In this simple example phase changes are not considered.
The system behaviour is completely described by the fol-
lowing Ordinary Differential Equation (ODE) model:�������� �������

dT
dt � 1

l � W
cρA 	 φT

dl
dt � φ if 0 � l � H else 0

is low � �
l � llow �

is high � �
l � lhigh �

is cold � �
T � Tcold �

is hot � �
T � Thot �

The inputs are the filling (or emptying if negative) flow rate
φ, and the rate W at which heat is added (or removed if
negative). This system is parametrized by A, the cross-
section surface of the vessel, H, its height, c, the spe-

level

temperature
cold T_in_between hot

on
off

off
off

of
on

is_cold sensor
is_hot sensor

full

l_in_between

empty

on off

off off

off on

is_full sensor

is_empty sensor

Continuous State Trajectory
Discrete State Trajectory

fill

fill

heat

heat

Figure 4: Trajectories.

level

temperaturecold T_in_between hot

full

l_in_between

empty (cold,empty)

emptyfill

emptyfill

cool

heat

cool

heat (hot,full)

(hot,empty)

(cold,full)

(cold,l_ib) (T_ib,l_ib) (hot,l_ib)

(T_ib,full)

(T_ib,empty)

Figure 5: FSA formalism.

cific heat of the liquid c, and ρ, the density of the liq-
uid. The state of the system is characterized by vari-
ables T , the temperature and l, the level of the liquid.
The system is observed through threshold output sensors
is low � is high � is cold � is hot. Given input signals, param-
eters, and a physically meaningful initial condition

�
T0 � l0 � ,

simulation of the behaviour yields a continuous state trajec-
tory as depicted in Figure 4. By means of the binary (on/off)
level and temperature sensors introduced in the differential
equation model, the state-space may be discretized. The
inputs can be abstracted to heater heat/cool/off and pump
fill/empty/closed. At this level of abstraction, a Finite State
Automaton representation (with 9 possible states) of the dy-
namics of the system as depicted in Figure 5 is most appro-
priate. Though at a much higher level of abstraction, this
model is still able to capture the essence of the system’s
behaviour. In particular, there is a behaviour morphism
between both models: model discretization (from ODE to
FSA) followed by simulation yields the same result as sim-
ulation of the ODE followed by discretization.

2.1 Systems Theory

In general systems theory (Wymore, 1967), a causal (output
is the consequence of given inputs), deterministic (a known
input will lead to a unique output) system model SYS is
defined. It is a template for a plethora of different formal-
ims such as Ordinary Differential Equations, Finite State
Automata, Difference Equations, Petri Nets, etc. Its general
form is

SYS �� T � X � Ω � Q � δ � Y � λ �
T time base
X input set
ω : T � X input segment
Q state set
δ : Ω � Q � Q transition function
Y output set
λ : Q � Y output function�

tx � � ti � t f

δ
�
ω � ti � t f � � qi � � δ

�
ω � tx � t f � � δ � ω � ti � tx � � qi ���

The time base T is the formalisation of the independent
variable time, also known as the indexing variable (Nance,
1981). The input set describes all possible allowed inputs
(possibly a product set). An input represents input dur-
ing a time-interval. The history of system behaviour is
condensed into a state. The dynamics is described in a
transition function which takes a current state, and applies
an input segment ω � Ω to it to obtain a new state. The
system may generate output. The output is obtained as a
function λ of the state. State and transition function must
obey the composition or transitivity property. This prop-
erty, whereby a transition over a time interval � ti � t f
 can al-
ways be split into a composition of transitions over arbitrary
sub-intervals, is the basis of all model simulators. As the
output function is described separately, efficient simulators
will only invoke it when the user desires to observe output.
As SYS is a template for different formalisms, it is possible
to describe both models of the vessel example. In the ODE
case, the time base is continuous (�). The transition func-
tion is written in integral form. Different numerical approx-
imations of the integral can be used in the implementation
of an abstract simulator.

SYSODE
VESSEL � � T � X � Ω � Q � δ � Y � λ �

T � �
X � ����� ��� �W � φ ���
ω : T � X
Q � �! "�#�$ ��� � T � l �%�
δ : Ω � Q � Q
δ
�
ω � ti � t f � � � T � ti ��� l � ti �&��� ��

T
�
ti �('*) t f

ti

1
l
�
α � � W �

α �
cρA 	 φ

�
α � T � α �+
 dα � l

�
ti �('*) t f

ti
φ
�
α � dα �

Y �-, � , � , � ,.��� � is low � is high � is cold � is hot ���
λ : Q � Y

Q T : Continuous T : Discrete T : / NOW 0
Continuous DAE Difference Eqns. Algebraic Eqns.

Discrete Discrete-event FSA Integer Eqns.
Naive Physics Petri Nets

Table 1: Formalism classification.

λ
�
T � l � � ��� l � llow �1� � l � lhigh ��� � T � Tcold ��� � T � Thot ���

At a higher level of abstraction, we have represented time
as a discrete integer index. The transition function lists all
possible state transformations.

SYSFSA
VESSEL � � T � X � Ω � Q � δ � Y � λ �

T �32
X �4� heat � cool � o f f �5� � f ill � empty � closed �
ω : T � X
Q �4� cold � Tbetween � hot �6� � empty � lbetween � f ull �
δ : Ω � Q � Q
δ
���

o f f � f ill �1� � cold � empty �&� � � cold � lbetween �
δ
���

o f f � f ill �1� � cold � lbetween �&� � � cold � f ull ���
δ
���

o f f � f ill �1� � cold � f ull �&��� � � cold � f ull �&�
...

δ
���

heat � f ill ��� � hot � f ull ���&� � � hot � f ull ���
Y �., � , � , � ,
λ : Q � Y
λ
�
T � l � � ��� l � low �1� � l � high ��� � T � cold ��� � T � hot ���

Apart from the two causal, deterministic formalisms pre-
sented above, a host of other formalisms are in use. In
particular, through time-scale or parameter abstraction, re-
ality is often represented by means of discrete-event mod-
els. In these models, time evolves continuously (T � �),
but the state of the system only changes at a finite num-
ber of points in time in a bounded time-interval. These
times are called event-times. A number of discrete-event
formalisms, called world views were constructed. World
views range from Event Scheduling which expresses events
and their consequences explicitly, focussing on the sim-
ulation efficiency, over Activity Scanning and the Three
Phase Approach which emphasize changing conditions in
the system, to Process Interaction which represents the sys-
tem in terms of interacting processes (Balci, 1988). Zeigler
(Zeigler, 1984a) developed the DEVS discrete-event sys-
tem specification. It allows other discrete-event formalisms
to be expressed in terms of DEVS.

2.2 Formalism Classification

Formalism classification based on the general system model
structure in Table 1 shows how different instantiations of
that structure lead to different formalisms. For continuous
models, classification according to physical domains such

M,S

M,S

M,S M,S

Q

M,S

Q

M,S

M,S M,S M,S

PaperPulp mill Waste Water Treatment Plant

Fish Farm

Effluent

Recycle (return) flow

Clarifier
(DESS)

Activated sludge unit
(DESS)

Mixing
Aeration Sedimentation

Influent

Stormwater tank 1

Stormwater tank 2
overflow

Switch

WWTP (DESS)

System of WWTP and Stormwater tanks (DEVS)

Input/Output function

Input
function

Output
function

algae

fish

GE

RRA

X

CFA

+

CFF

EDRF +

GF
X

X

Figure 6: Complex system example.

as mechanical, electrical, and hydraulical, is meaningful.
The variety of classifications leads to the insight that ulti-
mately, one should picture a vast formalism-space and clas-
sify that space according to various criteria. Different crite-
ria will lead to different equivalence classes. The SYS time
base and state set allow for a high-level classification of for-
malisms. Whithin the discrete-event realm, the world views
provide a further means of classification. Note how many
languages and tools correspond to each single formalism.
Though quite generic, the formalisms presented do not de-
scribe non-causal models. When describing physical sys-
tems, non-causal models describe conservation laws and
constraints without imposing a computational causality.
Non-causal modelling formalisms and how they enable
meaningful model re-use are described in (Cellier, 1991).

3 MULTI-FORMALISM MODELLING

Complex systems are characterized, not only by a large
number of components, but also by the diversity of the com-
ponents. One of the observations of the European Com-
mission’s ESPRIT Basic Research Working Group 8467
(Vangheluwe and Vansteenkiste, 1996) “Simulation for the
Future: New Concepts, Tools and Applications” was that
for the analysis and design of such complex systems, it is
no longer sufficient to study the diverse components sepa-
rately, using the specific formalisms these components were
modelled in. Rather, it is necessary to answer questions
about properties –most notably behaviour– of the whole
system. Also, to communicate knowledge about these sys-
tems, one must deal with the diversity of the information.

3.1 A Complex System Example

To focus the attention, Figure 6 presents a complex system.

The complexity lies in the diversity of the different compo-
nents, both in abstraction level and in formalism used:7 A paper and pulp mill produces paper from trees with

polluted water as a side-effect. This system is mod-
elled as a process interaction discrete-event scheduling
system (in particular, in GPSS (Gordon, 1996)).7 A Waste Water Treatment Plant (WWTP) purifies the
polluted effluent from the mill. Some solid waste is
taken to a landfill. The partially purified water flows
into a lake. This system is modelled using Differential
Algebraic Equations (DAEs) describing the biochem-
ical reactions in the WWTP.7 A Fish Farm grows fish in the lake. The fish feed on
algae which are highly sensitive to polluted water. The
water is also used for a tree plantation which supplies
the paper mill. This eco-system is modelled using the
Forrester System Dynamics formalism. The dotted
feedback arrow from the fish farm to the paper mill in-
dicates the possible disastrous impact of poisoned fish
on the productivity of workers in the mill.

It is obvious that decision-making for this system will re-
quire understanding of the behaviour of the overall system.
Studying the individual components will not suffice. The
complexity of this system and its model is due to7 the number of interacting, coupled, concurrent com-

ponents. Complex behaviour is often a consequence
of a large number of feedback loops;7 the variety of component formalisms. Often, a mix of
software and hardware, continuous and discrete com-
ponents occurs;7 the variety of views, at different levels of abstraction.

A model of a system such as the one described above
may be valid (within a particular experimental context) at
a certain level of abstraction. This level of abstraction,
which may be different for each of the components, is de-
termined by the available knowledge, the questions to be
answered about the system’s behaviour, the required accu-
racy of answers, etc. Orthogonal to the choice of model
abstraction level is the selection of suitable formalisms in
which the models are described. The choice of formalism
is related to the abstraction level, the amount of data that
can be obtained to calibrate the model, the availability of
solvers/simulators for that formalism, as well as to the kind
of questions which need to be answered.

3.2 Forrester System Dynamics

To fully explain the model, we now present the semantics
of the Forrester System Dynamics (FSD) formalism. The
FSD formalism (Cellier, 1991) describes the variation of
material-like quantities or levels. The variation is deter-
mined by birth rates (BR) and death rates (DR). BR and DR
are graphically represented as valves to the left and right
respectively of boxes denoting the levels. Levels may in-
fluence each other by influencing each other’s BR and DR.

Predator Prey

Grazing_efficiency

uptake_predator
loss_prey

predator_surplus_DR

prey_surplus_BR

2−species predator−prey system

Figure 7: Predator-prey, FSD formalims.

state trajectory data (observation frame)

DAE a-causal set

DAE causal set

DAE causal sequence (sorted)

Difference Equations

System Dynamics

Transfer
Function

Figure 8: Formalism transformation.

The influences are given by algebraic functions. Figure 7
shows a typical interaction between a predator and a prey.
The (product) interaction between predator and prey pop-
ulations influences the predator’s birth rate and the prey’s
death rate. The System Dynamics semantics is given by
mapping each of the level/BR/DR combinations onto an Or-
dinary Differential Equation

d level
dt � BR 	 DR 8

The operations such as product and sum are mapped
onto the appropriate algebraic equations and couplings are
mapped onto algebraic equalities.
Based on this relationship between the System Dynamics
and the ODE formalisms, translation of any model in the
first formalism to the same model described in the second
formalism is possible. In practice, this implies that a com-
piler can translate any model in the first formalism onto a
(behaviourally equivalent) model in the second formalism.
In Figure 8, a small part of “formalism space” is depicted in
the form of a Formalism Transformation Graph (FTG). The
different formalisms described before are shown as nodes
in the graph. The vertical striped line denotes the distinc-
tion between continuous models (on the left) and discrete

models (on the right). The well known Difference Equa-
tions formalism is often implicitly used in numerical sim-
ulators: ODEs are discretised by means of a suitable nu-
merical scheme and the resulting difference equations are
iteratively solved. Suitable refers to the nature of the equa-
tions as well as to the accuracy requirements. The arrows
denote a homomorphic relationship “can be mapped onto”,
implemented as a transformation between formalisms. The
vertical, dotted lines denote the existence of a solver or sim-
ulation kernel which is capable of simulating a model, thus
generating a trajectory. A trajectory is really a model of
the system in the data formalism (time/value tuples). Ob-
viously, the experimental frame of a trajectory is very lim-
ited. In a denotational sense, traversing the graph makes
semantics of models in formalisms explicit: the meaning of
a model/formalism is given by mapping it onto some known
formalism (whose meaning may in turn be given by map-
ping it onto an even more basic formalism, etc.). Though a
multi-step mapping may seem cumbersome, it can be per-
fectly and correctly performed by tools. The advantage of
this approach is that the introduction of a new formalism
only requires the description of the mapping onto the near-
est formalism as well as the implementation of this mapping
in the form of a model translator. It is often meaningful to
introduce a new formalism for a specific application, encod-
ing particular properties and constraints of the application.
Often, translation involves some loss of information. This
loss may be a blessing in disguise as it entails a reduction
in complexity, hopefully leading to an increase in (simula-
tion) performance. Usually, the aim of multi-step mapping
is to eventually reach the trajectory level. Another major
use for formalism transformation is the answering of partic-
ular questions about the system. Some questions can only
be answered in the context of a particular formalism. In
case of a FSD model for example, the visual inspection of
the model can provide insight into influences. If the model
is mapped onto a set of Algebraic and Ordinary Differen-
tial Equations, a dependency analysis may reveal algebraic
cycles not apparent at the System Dynamics level. At this
same level, one may check whether parts of the model are
linear. If so, these parts may be solved symbolically by
means of computer algebra. Also, transformation to the
Laplace domain (i.e., to a Transfer Function form) leads to
a plethora of techniques for stability analysis. Finally, the
transformation, through numerical simulation, to the data
level, allows for quantitative analysis of problems posed in
initial value form.
Note how the larger the number of intermediate formalisms
becomes, the higher the possibility for optimization along
the way will be.
Above all, the traversal described above is the basis for the
meaningful coupling of models described in different for-
malisms. This will be discussed next.

Msub_1 Msub_2

CoupledModel

CouplingGraph

Msub_3

Figure 9: Multi-formalism coupled model.

3.3 Coupled Model Transformation

Figure 9 shows a multi-formalism coupled model (the dif-
ferent shades denote different formalisms). Models of this
type are said to belong to the network or coupled formal-
ism. When we observe a structured model at this level, we
can only make meaningful assertions about its structure, its
outside connections (its interface) and its components, not
about its overall meaning or behaviour ! Formally, a cou-
pled model has the form

CM 9� id � inter f ace � S � C �
The model is identified by a unique identifier id (for exam-
ple, a name or reference). The inter f ace is a set of connec-
tors or ports to the outside. Associated with the ports are
allowed values as well as causality. Meaningful causalities
are � in � out � inout � . The set S contains the sub-models (or at
least their unique identifiers). The coupling information is
contained in a graph structure C. For non-causal, continu-
ous models, the graph is undirected. For causal models, the
graph is directed. Obviously, a coupled model is only valid
if types and causalities of connected ports are compatible.
In certain cases, the graph may be annotated with extra in-
formation. In case of discrete-event models, a tie-breaking
function is usually required to select between simultaneous
events (Zeigler, 1984a).
If all the sub-models are described in the same formalism
F , it may be possible to (recursively, bottom-up, if the sub-
models are coupled models in their own right) replace the
coupled model (at least conceptually) by one atomic model
of type F. In this case, F is called closed under cou-
pling (or under composition). The closure property has
to be proven for each F . The property often holds by
construction. In case of Differential Algebraic Equations
(DAEs), connections � connect

�
porti � port j ��� are replaced

by porti � port j coupling equations. Together with the
sub-models’ equations, these form a DAE. In formalisms
such as Bond Graphs, information about the physical na-
ture of variables allows one to generate either the above
type of equations in case of coupling of across variables
(this corresponds to Kirchoff’s voltage law in electricity)
and an equation summing all connected values to zero for
through variables (this corresponds to Kirchoff’s current

law in electricity). In discrete-event models, implement-
ing closure involves the correct time-ordered scheduling of
sub-model events. The most imminent event will always be
processed first. The tie-breaking function is used to resolve
conflicts due to simultaneous events (an artifact of the high
level of abstraction).
If a coupled model consists of sub-models expressed in dif-
ferent formalisms, different approaches are possible:7 A super-formalism can be used which subsumes the

different formalisms of the sub-models. The differ-
ent sub-models are thus described in the same for-
malism. The Hybrid DAE (Vangheluwe, 2000) and
DEVS&DESS (Zeigler et al., 2000) formalisms in-
tegrate continous and discrete modelling constructs.
Meaningful super-formalisms which truly add expres-
siveness and reduce complexity are rare. Bond Graphs
(Cellier, 1991) are a good example of the integration
of different domains (mechanical, electrical, hydrauli-
cal).7 Another approach is to transform the different sub-
models to one common formalism. Which formalism
to transform to depends on the questions asked. The
closest common formalism for the WWTP (DAE) and
fish farm (System Dynamics) example is the DAE for-
malism. By transforming the fish farm model to a set
of DAEs, and using the closure property of the DAE
formalism, it becomes possible to answer questions
about the overall model. Often, the target formalism
is the trajectory level.7 In the co-simulation approach, each of the sub-models
is simulated with a formalism-specific simulator. In-
teraction due to coupling is resolved at the trajectory
level. Compared to transformation to a common for-
malim before simulation, this approach, though ap-
pealing from a software engineering point of view, dis-
cards a variety of useful information. Questions can
only be answered at the trajectory level. Furthermore,
there are obvious speed and numerical accuracy prob-
lems for continuous formalisms (Foster and Yelmgren,
1997). The approach is meaningful only for discrete-
event formalisms. In this realm, it is the basis of the
DoD High Level Architecture (HLA) for simulator in-
teroperability.

The transformation to a common formalism mentioned
above proceeds as follows:

1. Start from a coupled multi-formalism model. Check
consistency of this model (e.g., whether causalites and
types of connected ports match).

2. Cluster all models described in the same formalism.

3. For each cluster, implement closure under coupling.

4. Look for the “best” common formalism in the Formal-
ism Transformation Graph all the remaining different

formalisms can be transformed to. In the worst case,
this will be the trajectory level in which case the ap-
proach falls back to co-simulation. Which common
formalism is best depends on a quality metric which
can take into account transformation speed, potential
for optimization, etc. .

5. Transform all the sub-models to the common formal-
ism.

6. Implement closure under coupling of the common for-
malism.

Certain questions about a system can only be answered in
certain formalisms, necessitating model transformation to
the appropriate formalism. A side-effect of mapping onto
a common formalism is the great potential for optimization
of the flattened model, as well as the reduced number of
(optimized) simulation kernels needed. When models are
used to communicate knowledge between humans or tools,
the formalism used must be clearly and uniquely speci-
fied. As described further on, meta-modelling allows for
explicit reasoning about often subtle differences between
formalisms. This is achieved by explicitly modelling both
syntax and semantics of formalisms.

3.4 The Formalism Transformation Graph

To describe which formalism transformation are possi-
ble, the Formalism Transformation Graph (FTG) is used
(Vangheluwe, 2000). As an example, the transformations
currently known to the authors are shown in Figure 10. The
line at the bottom denotes the state trajectory formalism.
In principle, this should be a single node, but a line was
used for aesthetic purposes. The vertical dashed line de-
notes the crude division between continuous and discrete(-
event) models. Vertical dashed arrows denote the existence
of a simulator which maps an abstract model onto a state
trajectory (given initial conditions, parameters, etc.). It is
noted that iterative simulation can be seen as a special case
of model transformation.

4 META-MODELLING

A proven method to achieve flexibility for a modelling lan-
guage to support many formalisms is to model the language
itself. This approach is demonstrated in, among others,
the domain modelling environment (DOME) (Honeywell,
1999; Engstrom and Kruger, 2000) and the multigraph ar-
chitecture (MGA) (Karsai et al., 2000). To illustrate this
notion, consider the state transition diagram in Figure 11 (in
the Deterministic Finite State Automata formalism). When
in the ON state, a transition to the OFF state occurs when
the condition t � 2 becomes true and this generates an alarm
action. The state, transition, condition, and action elements
are part of any state transition diagram and their dependen-
cies can be modelled as shown in Figure 12 (in the Entity-
Relationship formalism). This model specifies a family of
state transition diagrams where each instantiation has states

OFFON
t > 2/alarm

Figure 11: A state transition diagram model.

Transition

1:1

1:1 1:1
1:N

1:1

1:N

Condition Action

State

a
0:11:1

a

Figure 12: A model of state transition diagram models.

that are connected by transitions. Each state can have any
number of outgoing transitions, indicated by the 1 : 1 and
1 : N cardinality on the downward arrow in the figure, i.e.,
each state can have between 1 and N transitions and each
transition has to exit between 1 and 1 states (i.e., it has to
be connected to one and only one state), where N repre-
sents any number. Each transition can enter only one state
and each state may have any number of entering transitions
indicated by the cardinality on the upward arrow. The tran-
sitions between states have two attributes, one condition
that allows the state transition to be taken and one optional
(indicated by the 0 : 1 cardinality) action. The model in
Figure 12 can be used to specify different state transition
diagram formalisms, e.g., the action attribute can be made
mandatory for each transition by changing the cardinality
from 0 : 1 to 1 : 1. Furthermore, actions can be associated
with states as well.
Such a model of the modelling language is called a meta-
model. It prescribes the possible mathematical structures
(formalisms) that can be expressed in the modelling lan-
guage and can be tailored to specific needs of particular
domains. From the meta-model specification, the mod-
elling language, graphical or textual, can then be instan-
tiated automatically. This requires the meta-model mod-
elling formalism to be sufficiently rich and support the con-
structs needed to define a modelling language. To allow for
easy extension, the meta-model modelling formalism can
be modelled by a meta-meta-model. This meta-meta-model
specification captures the basic elements that can be used
to design a meta-model modelling formalism. In case new
concepts and structures are required, these can be conve-
niently modelled at a meta-meta-level.
For example, the meta-model in Figure 12 is limited to the
family of state transition diagrams. This restriction can be
removed by modelling the model of state transition dia-
grams in Figure 12 by the meta-meta-model in Figure 13. It
contains an abstract representation of the mechanisms that
are part of the state transition diagrams meta-model, i.e.,
entities (states, transitions), attributes (actions and condi-
tions), and relations between them. This meta-meta-model
groups entities and relations by an object model component
and each of them optionally has any number of attributes.
It also shows that each relation connects to one entity as

DEVS

Process Interaction
Discrete Event

state trajectory data (observation frame)

Petri NetsStatecharts

scheduling-hybrid-DAE

Bond Graph a-causal

Bond Graph causal

DAE non-causal set

DAE causal set

PDE

Transfer Function

Difference Equations

System Dynamics

KTG Cellular Automata

Event Scheduling
Discrete Event

3 Phase Approach
Discrete Event

DAE causal sequence (sorted)

DEVS&DESS

Activity Scanning
Discrete Event

Timed Automata

Figure 10: Formalism Transformation Graph.

1:1 0:N

0:N

src

dst

atr

1:1

0:N1:1

Relation

Object Attribute

Entity

Figure 13: A state transition diagram meta-meta-model.

its source (marked src) and one entity as its destination
(marked dst), and, therefore, directed links can be used.
The meta-meta-model specification language has to con-
sist of entities, attributes to specify the cardinality and rela-
tions to specify the three types, (i) source relations (src), (ii)
destination relations (dst), and (iii) attribute relations (atr).
Given the meta-meta-model in Figure 13, a broader fam-
ily of meta-models can be described. For example, a Petri
net as illustrated in Figure 14 consists of places (shown as
transparent circles) and transitions (shown as solid rectan-
gles). Each place has connections to transitions and each
transition to places. A transition may have a condition and
when this condition is true and all its input places, i.e.,
places that are the source to the transition, contain a token
(shown as a black dot inside a place), it may fire (the corre-
sponding transition may be executed). The Petri nets meta-
model shown in Figure 15 specifies places and transitions
that can connect to one another. Furthermore, the tokens
are specified as optional attributes of a place and conditions
as an optional attribute of a transition. The family of Petri
nets that can be instantiated from this meta-model allows
places with multiple tokens. However, in some modelling
paradigms, only one token per place is allowed, which can
be conveniently changed in the meta-model by specifying

ON OFF
t > 2

Figure 14: A Petri net model.

1:1

1:1 1:11:10:1

0:N

0:N

1:1

1:1 0:N

1:1

1:1

Transition

Connection

Condition

Token Placea

a

Figure 15: A model of Petri net models.

0 : 1 cardinality, and, consequently, constraining the fam-
ily of Petri nets. Note that this represents both a static and
dynamic constraint. When the Petri net is initialized, it can
be ensured by the model editor that each place has been
assigned at most one token. However, it is still necessary
to dynamically check whether this constraint is violated
during execution. To be able to fully specify modelling
formalisms, a meta-level formalism is often extended with
a textual constraint language complementary to the often
graphical base. This language can be used to rule out se-
mantically incorrect models and greatly reduce the family

meta-meta
model

meta-model
processor

meta-model
user
input

a model of a class of models (the formalism MF)
semantics within formalism MMF
describes: structure and constraints

a model in formalism MF

-create
-delete
-verify (local, global)

meta-model
processor model

user
input

a model of a class of models (the formalism F)
semantics within formalism MF
describes: structure and constraints

a model in formalism F

-create
-delete
-verify (local, global)

MMF

MF

F

(ER)

(ER)

(FSA)

Figure 16: Meta- :�:&: models.

of models that can be modelled (Nordstrom, 1999). For ex-
ample, a model of a family of Petri nets could include the
constraint that there should never be more than ten tokens
in the net (to model a resources limit) by an additional spec-
ification Token.allInstances->size < 10.
The outlined meta-modelling approach leads to the layered
structure in Table 2. The model row represents a particu-
lar model such as the state transition diagram in Figure 11.
At a meta-level, the meta-model row represents a class of
models (or formalism), e.g., the model of the family of
state transition diagrams in Figure 12. This meta-model has
meaning within a formalism which is specified by a meta-
meta-model. This could be the model in Figure 13.
The apparent advantage of this approach is the tremendous
flexibility that can be achieved.
This is manifested in the ease with which new formalisms
can be designed. By adapting the model of a modelling
formalism, and automatically generating a prototype of the
modelling environment, design choices can be rapidly eval-
uated.
Figure 16 depicts how meta-models are models too. An
FSA model is constructed within the FSA formalism. In the
meta-modelling approach, the FSA formalism is explicitly
modelled. The FSA formalism’s meta-model has meaning
within the Entity-relationship formalism.

4.1 Meta-modelling Model Transformation

Upto now, only model syntax has been considered in meta-
modelling. It is however above all necessary to describe
model semantics. At the core of this is the specification of
model transformation.
Some of the manipulations we are interested in are:7 Formalism transformation: Given a model in a cer-

tain formalism, these transformations convert it into
a model, but expressed in another formalism. For
Modelling and Simulation, possible transformations
are found in the Formalism Transformation Graph.

meta-model a model in formalism ER

meta-model
processor

model

user
input

a model of a class of models
(the formalism NFA)
semantics within formalism ER

a model in formalism NFA

-create
-delete
-verify (local, global)

MF

F

(ER)

(NFA)

meta-model a model in formalism MF

meta-model
processor

model

user
input

a model of a class of models (the formalism F)
semantics within formalism MF
describes: structure and constraints

a model in formalism FSA

-create
-delete
-verify (local, global)

MF

F

(ER)

(FSA)
(multi-formalism)

model transformer
=

meta-model
processor

transformation
meta-model

MF (GGR)

Figure 17: Model transformation meta-specification.

7 Model optimization: These transformations do not
change the formalism in which the model is expressed.
Their application results in a reduction of model com-
plexity.7 Code Generation: These transformations produce a
textual representation of the model (subject to syntac-
tic constraints) suitable for interpretation by a simula-
tor.7 Simulator specification: These specifications give the
operational semantics of the model.

All these tasks depend on the formalisms of interest. How-
ever, since models determined by some meta-model can
always be described as graphs (subject to the constraints
given by the meta-model), these tasks can be performed
by a generic graph-transformation algorithm. Therefore
it makes sense to combine meta-modelling and graph-
grammars (Dorr, 1995) in a unifying framework. Meta-
models determine the classes of graphs that are allowed on
the LHS and RHS of a graph-grammar rule. Furthermore,
the rules themselves, and the grammars, can be viewed as
models in the graph-grammar (GGR) formalism, which it-
self is described in a meta-model. This is depicted in Fig-
ure 17. Graph Grammars are composed of rules, each map-
ping a graph on the left-hand side (LHS) to a graph on the
right-hand side (RHS). A graph-grammar is applied to an
input graph (called host graph) in order to perform a trans-
formation. When a match is found between the LHS of a
rule and a part of the host graph, this subgraph is replaced
by the RHS of the rule. Rules may also have a condition that
must be satisfied for the rule to be applied, as well as actions
to be performed when the rule is executed. A rewriting sys-
tem iteratively applies matching rules in the grammar to the
graph, until no more rules are applicable.
On the one hand, the use of a model (in the form of a graph
grammar) of graph transformations has some advantages
over an implicit representation (embedding the transforma-
tion computation in a program) (Blonstein et al., 1996):7 it is an abstract, declarative, high level representation,

and7 the theoretical foundations of graph rewriting systems
may assist in proving correctness and convergence
properties of the transformation tool.

Level Description Example

meta-meta-model Model used to specify Relation hasDestination Entity
modelling languages

meta-model Model used to specify models, State connectsTo Transition
an instantiation of a meta-meta-model

model The description of an object when t > 2 transition from ON to OFF
in a specific formalism

Table 2: Three layer meta-modelling structure.

Q

R

::=

Q

R

P R

Copy output edges from nodes Q and R into node QR
Set type of node QR to terminal if nodes Q or R are terminal

c/a

c/b

c/a b

Rule 1.

P Q ::= P PQ

Copy output edges from nodes P and Q into node PQ

c/a

c/b
c/a b

Q

Rule 2.

P
::=

If P has no input edges

c/a
Rule 3.

Set type of node PQ to terminal if nodes P or Q are terminal

P Q

Figure 18: NFA to DFA Graph Grammar.

On the other hand, the use of graph grammars is constrained
by efficiency. In the most general case, subgraph isomor-
phism testing is NP-complete. However, the use of small
subgraphs on the left hand side of graph grammar rules, as
well as using node labels and edge labels can greatly reduce
the search space.
As an example, Figure 18 gives the rules for transforming
a non-deterministic finite state automaton (NFA) into an
equivalent deterministic finite state automaton (DFA). Fig-
ure 19 shows the application of this graph grammar to a
simple NFA.
It should be noted that the operational semantics of a for-
malism may be expressed in the form of a graph grammar
model. This, by encoding the formalism’s transition func-
tion. As such, graph grammar application corresponds to
simulation. We can thus regard the graph grammar as an
executable specification. This approach is desirable for its
generality, since it can be applied to a wide class of for-
malisms. There is, however, a tradeoff made between gen-
erality and efficiency. As a general rule, customized, hand-
coded, formalism-specific simulation algorithms are more
efficient. The approach of relying on graph grammars is ex-
pensive due to the nature of the graph matching algorithm.

A

B

C

D

c/a

c/b

A

B

D

C

c/a b
d/e

d/f

g/h

d/e

g/h

d/e
d/f

A

g/h

B

c/a b
d/e

g/h

D

d/e

d/f
BC

BC d/f

d/f

DBCA

d/f

c/a b

d/e

g/h

A BC AD

c/a b

g/h

d/e f

D

BC ADA

g/h

c/a b d/e f

1.

3.
4.

5. 6.

rule 3

rule 1

rule 3

rule 1 rule 3

2.

Figure 19: NFA to FSA Transformation.

However, there are other motivations, both theoretical and
practical:7 Explicitly defining the operational semantics of any

formalism should be part of the design of a simulator.
The specification is then the basis for any implemen-
tation.7 The specification and its interpretation provide a
framework (a reference implementation) for verifying
and testing different (hand-crafted, efficient) imple-
mentations.7 It provides a portable simulator, since it is more ab-
stract than a hand-coded implementation.7 It allows for reasoning about the described systems.
For example, it allows for the definition of general al-
gorithms for bisimulation.

5 CONCLUSIONS

We have presented a comprehensive overview of multi-
paradigm Modelling and Simulation. The focus was
on the concept of multi-formalism modelling of com-
plex systems, and its relation to the semantics of mod-
els. Furthermore, meta-modelling was presented as a
means of dealing with multiple formalisms. Currently,

the first two authors are developing AToM3, a meta-
modelling environment. AToM3 uses graph grammars to
specify (at a meta-level), the transformations in the For-
malism Transformation Graph. AToM3 can be found at
http://moncs.cs.mcgill.ca/MSDL/research/projects/AToM3.

ACKNOWLEDGEMENT

Prof. Vangheluwe gratefully acknowledges partial support
for this work by a National Sciences and Engineering Re-
search Council of Canada (NSERC) Individual Research
Grant.

REFERENCES
Balci, O. (1988). The implementation of four conceptual frame-

works for simulation modeling in high-level languages. In
Abrams, M., Haigh, P., and Comfort, J., editors, Proceedings
of the 1988 Winter Simulation Conference, pages 287–295.
Society for Computer Simulation International (SCS).

Balci, O. (1997). Principles of simulation model validation, verifi-
cation, and testing. Transactions of the Society for Computer
Simulation International, 14(1):3–12. Special Issue: Princi-
ples of Simulation.

Barros, F. J., Zeigler, B. P., and Fishwick, P. A. (1998). Mul-
timodels and dynamic structure models: an integration of
DSDE/DEVS and OOPM. In Medeiros, D., Watson, E., and
M.S., M., editors, Proceedings of the 1998 Winter Simula-
tion Conference, pages 413–419. Society for Computer Sim-
ulation International (SCS).

Blonstein, D., Fahmy, H., and Grbavec, A. (1996). Issues in the
practical use of graph rewriting.

Cellier, F. E. (1991). Continuous System Modeling. Springer-
Verlag, New York.

Dorr, H. (1995). Efficient graph rewriting and its implementation.

Engstrom, E. and Kruger, J. (2000). A meta-modeler’s job is
never done: Building and evolving domain-specific tools
with DOME. In Varga, A., editor, IEEE International Sym-
posium on Computer-Aided Control System Design, pages
83–88. IEEE Computer Society Press. Anchorage, Alaska.

Foster, L. and Yelmgren, K. (1997). Accuracy in DoD High
Level Architecture Federations. In Obaidat, M. S. and Ill-
gen, J., editors, Summer Computer Simulation Conference
(SCSC’97), pages 451–460. Society for Computer Simula-
tion International (SCS). Arlington, Virginia.

Gordon, G. (1996). System Simulation. Prentice Hall of India,
second edition.

Honeywell (1999). DOME guide.
http://www.htc.honeywell.com/dome/, Honeywell Technol-
ogy Center, Honeywell. version 5.2.1.

Karsai, G., Nordstrom, G., Ledeczi, A., and Sztipanovits, J.
(2000). Specifying graphical modeling systems using
constraint-based metamodels. In Varga, A., editor, IEEE In-
ternational Symposium on Computer-Aided Control System
Design, pages 89–94. IEEE Computer Society Press. An-
chorage, Alaska.

Magee, B. (1985). Popper. Fontana Press (An Imprint of Harper-
Collins Publishers), London.

Nance, R. E. (1981). The time and state relationships in simulation
modeling. Communications of the ACM, 24(4):173–179.

Nordstrom, G. G. (1999). Metamodeling – Rapid Design and
Evoluion of Domain-Specific Modeling Environments. PhD
dissertation, Vanderbilt University, Electrical Engineering.

Rumbaugh, J., Jacobson, I., and Booch, G. (1999). The Unified
Modeling Language Reference Manual. Object Technology
Series. Addison-Wesley.

Vangheluwe, H. L. (2000). DEVS as a common denominator for
multi-formalism hybrid systems modelling. In Varga, A.,
editor, IEEE International Symposium on Computer-Aided
Control System Design, pages 129–134. IEEE Computer So-
ciety Press. Anchorage, Alaska.

Vangheluwe, H. L., Kerckhoffs, E. J., and Vansteenkiste, G. C.
(2001). Computer automated modelling of complex systems.
In Kerckhoffs, E. J. and Snorek, M., editors, 15th European
Simulation Multi-conference (ESM), pages 7–18. Society for
Computer Simulation International (SCS). Prague, Czech
Republic.

Vangheluwe, H. L. and Vansteenkiste, G. C. (1996). SiE: Simula-
tion for the Future. Simulation, 66(5):331 – 335.

Wymore, A. W. (1967). A Mathematical Theory of Systems Engi-
neering – the Elements. Wiley Series on Systems Engineer-
ing and Analysis. Wiley.

Zeigler, B. P. (1984a). Multifacetted Modelling and Discrete Event
Simulation. Academic Press, London.

Zeigler, B. P. (1984b). Theory of Modelling and Simulation.
Robert E. Krieger, Malabar, Florida.

Zeigler, B. P., Praehofer, H., and Kim, T. G. (2000). Theory of
Modelling and Simulation: Integrating Discrete Event and
Continuous Complex Dynamic Systems. Academic Press,
second edition.

