
Computer Automated Multi-Paradigm Modeling in

Control System Design

Pieter J. Mosterman1

Institute of Robotics and Mechatronics

DLR Oberpfaffenhofen, D-82230 Wessling, Germany

Pieter.J.Mosterman@dlr.de, http://www.op.dlr.de/~pjm

Hans Vangheluwe

School of Computer Science

McGill University, Montreal, Canada H3A 2A7

hv@cs.mcgill.ca, http://www.cs.mcgill.ca/~hv

Abstract

The complete control system design effort involves
many stages during which partial design tasks are com-
pleted. Each of these tasks requires different modeling
paradigms and different tools. Furthermore, the de-
signed embedded control system entails a wide variety
of implementation technologies that all require different
specification formalisms. To handle such a multitude of
modeling paradigms and different support tools: (i) a
unifying generic standard language can be applied, and
(ii) the required modeling paradigms can be modeled
by a meta model using a shared meta language. An
overview of the required parts and structure of a mod-
eling environment and of the two approaches is given.
The advantages with respect to multi-paradigm mod-
eling are discussed.

1 Introduction

The analysis and design of engineered systems involves
expertise from many disciplines and entails a variety of
implementation technologies (e.g., embedded software,
microelectromechanical systems, analog circuits, and
digital circuits) and the heterogeneous nature of these
systems invariably combines with an architecture of
different concurrent components that interact through
continuous signals or discrete message passing. The
corresponding complexity has led to the use of more
formal approaches to system design through realization
that apply dedicated modeling formalisms to differ-
ent aspects and/or components of the system. Conse-
quently, the complete system specification process com-
bines several modeling, design, implementation, and re-
alization paradigms such as differential equation mod-
eling, continuous time signal processing, and discrete
event controllers. Decomposition of the entire specifica-
tion task allows teams of experts to concurrently work
on their domain of expertise, e.g., control law design,
simulation, optimization, modeling, and verification.

1 Pieter J. Mosterman is supported by a grant from the DFG

Schwerpunktprogramm KONDISK.

To comprehensively handle control system design
in such a heterogeneous environment, multiple ap-
proaches based on different paradigms have to be com-
bined. In this paper, the following definition is used [23]
“A modeling paradigm is a set of requirements that
governs how any system in a particular domain is to
be modeled. These modeling requirements specify the
types of entities and relationships that can be modeled;
how best to model them; entity and/or relationship at-
tributes; the number and types of views or aspects nec-
essary to logically and efficiently partition the design
space; how semantic information is to be captured by,
and later extracted from, the models; any analysis re-
quirements; and, in case of executable models, run-time
requirements.”

A tool that ‘understands’ each of the corresponding
formalisms (i.e., has a model of them) can be used to
ensure consistency between different formalisms, allow
for quick adaptation to changing needs, exchange infor-
mation, and efficiently provide tailored modeling envi-
ronments that are maximally constrained with respect
to the domain of operation. For example, a designed
control law that is automatically translated into its
implementation, i.e., the hardware binding. Here the
control language focuses on stability and other control
characteristics, whereas the implementation has to deal
with issues such as schedulability, reliability, and secu-
rity, which requires different analysis formalisms. If
consistency and cross coupling across these languages
is ensured, implementation choices (e.g., the ‘time for
space’ trade-off) can be conveniently conveyed back to
the control design engineer.

Multi-paradigm modeling is also critical for reconfig-
urable systems as the supervising mechanisms that
combine with a flexible control architecture are based
on different modeling formalisms (even different plant
models) and need to integrate with the control architec-
ture. One solution is model integrated computing [25],
which allows changes in the system model/specification
and translates these automatically into software (or
even reconfigures hardware).

Control system design is achieved by using many soft-



ware tools, sophisticated development techniques and
methodologies relying on library components and auto-
matic (code) generation approaches. Specialized com-
puter automated tools for each of these domains are
very helpful or even indispensable to carry out the re-
lated tasks as the process of control design requires
the integration of, e.g., modeling, simulation, con-
trol law design, dynamic control law integration with
safety and redundancy management control logic (e.g.,
surveillance functionality), and control robustness as-
sessment. Typically, there is no one tool that addresses
all these issues, and, therefore, a suite of tools is used
throughout the design process. Because these tools
hardly ever are compatible, the sharing and coordi-
nating of information flow between project teams in-
evitably leads to a lot of overhead in terms of collabora-
tion and is very error prone, inefficient, and expensive.
Moreover, similar tasks may be carried out multiple
times and even simultaneously.

All these issues are addressed by adopting a meta mod-
eling approach to data exchange [4, 8, 9, 11] and mod-
eling paradigm and environment specification [7, 23].
This paper intends to provide an overview of the use of
meta modeling concepts as used in control system de-
sign. Section 2 reviews the specification requirements
for multi-paradigm modeling environments. Section 3
discusses the use of a generic unifying language. Sec-
tion 4 gives an overview of an alternative approach,
the use of meta modeling, and shows how this sup-
ports the required flexibility and specificity needed for
multi-paradigm modeling. Section 5 presents the con-
clusions.

2 Modeling Environment Requirements

To facilitate computer automated control system de-
sign, modeling, and analysis, computer based environ-
ments need to be available that are tailored to the par-
ticular task at hand. The most efficient and flexible
approach is to model the modeling environment and
automatically generate a complete specification that
can be directly compiled into an integrated develop-
ment environment. This requires the specifications to
be well structured, to define the precise syntax and
semantics of a language, and to not be mixed with lan-
guage implementation details.

A clean separation in concepts leads to [2, 23]: Syn-

tactic specifications that can be divided into (i) the
concrete syntax, which captures the actual representa-
tion, e.g., a textual language specified by Backus-Naur
Form (BNF) constructs, and (ii) the abstract syntax,
the language syntax devoid of implementation details,
which allows for the representation of the essential con-
stituents of a formalism. Semantic specifications that

may include model composition constraints to capture
domain specific concepts and constraints. These can
be classified as (i) static semantics that can be checked
during model composition (e.g., in logical circuits the
number of loading components allowed to connect to
one output), and (ii) dynamic semantics that can only
be checked during execution (e.g., whether a certain
state is reached). The distinction between static and
dynamic semantics is not related to representation, but
rather to the availability of sufficient information to as-
sert the validity of certain constraints before model ex-
ecution. If this is not the case, the constraints need to
be passed on to a model execution environment. Such
constraints can be represented in the meta model struc-
ture or by a constraint language (e.g., first order predi-
cate logic). Presentation specifications that are critical
for specification of the complete modeling environment
and that specify the appearance of entities, relation-
ships, and attributes. Interpreter specifications that
are necessary to extract information from each of the
models to allow, e.g., documentation and execution.

The first two specify the modeling language and the
latter two complete the specification of a modeling en-
vironment. In a graphical language, the syntax is a
collection of modeling object types, possible relations
between them, and their allowed attributes. Static
semantics pertain to the well-formedness of language
constructs, they represent an invariant that must hold
across the family of models that can be designed using
the modeling language. Dynamic semantics relate to
the interpretation of the model constructs and cannot
be specified by language constructs.

3 Multi-Paradigm Modeling With a Generic

Standard

One approach to deal with the issues of tool interoper-
ability and multi formalism approaches is to develop
a unifying generic standard, e.g., Modelica [10] and
VHDL-AMS [12]. If such a standard allows for the
use of multiple formalisms in one environment it corre-
sponds to a unifying super-formalism that can be used
for model exchange and mitigate the interoperability
problems.

Because of the variety of formalisms that address dif-
ferent aspects and types of specification that are used
throughout a control system design lifecycle, if possi-
ble it is difficult at best to establish one such a generic
formalism. For example, it would have to include
the rather different syntax, semantics, representation
and interpretation specifications of data flow diagrams,
control flow diagrams, formalisms such as statecharts,
Grafcet, and Petri nets, physical modeling formalisms
such as bond graphs and object diagrams, block dia-



grams, and process diagrams [5, 13, 14, 16, 21]. For ex-
ample, in terms of their interpretation, computational
models such as differential equations, state/event, dis-
crete event, synchronous/reactive, and (a)synchronous
message passing [6] are used. To capture all of these
would require one underlying computational model
that subsumes all others. However, modeling is not
just a question of whether it is possible with a certain
formalism, it critically depends on whether it can be
done elegantly and intuitively [17, 18].

A standard unifying formalism works well if the area
of application is sufficiently restricted [19, 20]. For ex-
ample, Modelica concentrates on physical system mod-
eling and builds on the combined differential equation
and state/event computational models. This allows for
a comprehensive language well suited to its purpose.
However, because it does not separate abstract from
concrete syntax, it may result in an overly rigid formu-
lation. For example, the abstract syntax of an iterator
construct contains an initial value, final value, and step
size. A design decision is required whether to use the
concrete syntax that corresponds to i=0: 10: 2 or to
use i=0: 2: 10. This choice will be incompatible with
particular domains and cause an increased threshold
to acceptance of the standard. Note that it is impossi-
ble to allow both variants, a common solution in case
of such design decisions, which leads to a bloated lan-
guage specification.

The use of standards relies heavily on the concept of
libraries, i.e., sets of predefined components typically
related to a specific domain. Each library embodies a
particular modeling paradigm. This implies that any
one particular control design tool is required to contain
a compiler for each of the included formalisms even
those not applicable to the particular task at hand.
Also, in Modelica, the presentation semantics are disso-
ciated from the language syntax and semantics. There-
fore, the choice between appearance of, e.g., an elec-
trical resistor is possible by constructing two separate
libraries. Because of the inheritance construct, each
of these components can inherit the same functionality
only specializing the graphical appearance. However,
if one imports an electrical circuit designed with a par-
ticular library, the graphical presentation is fixed, i.e.,
no automatic transformation to the desired presenta-
tion occurs because no knowledge is available of what
a resistor is.

The use of a standard works well for modeling affinitive
domains. In case of Modelica, this is the structure of a
physical system. Behavioral models, such as block dia-
grams and statecharts, require a graphical notation and
semantics that may differ significantly, and, therefore,
may be hard to capture in the standard. For example,
in physical systems, models based on energy flow have
no computational causality, and, therefore, the repre-

sentation does not concern direction of connections. In
block diagrams, on the other hand, causality of input
and output signals is inherent. Typically, this is in-
dicated by adorning the relation with an arrowhead.
The semantics of this cannot be easily added to a non
causal relation. For example, in the Modelica block
diagram library, the relations are still non causal, and
the input-output behavior is specified by the connected
objects. This specification is not related to the graph-
ical representation, though. So, for each port instance
it is specified separately, whether it operates on input,
output, or both. The graphical representation then is
drawn as an arrowhead without this having a direct
implication on the semantics.

In conclusion, the flexibility required for a standard
calls for increasingly generic constructs such as undi-
rected relations. Furthermore, given that the language
needs to be sufficiently powerful to specify a multitude
of formalisms, its genericity makes it hard to use it
for specific analyses, i.e., it becomes hard to proof cer-
tain characteristics of a model. Also, these languages
typically lack a constraint language to limit the family
of models one has to deal with. the requirement that
an electrical circuit includes at least one ground node
cannot be specified. This allows for an entire class of
electrical circuits (infinitely many) that can be mod-
eled but that cannot be executed. Finally, the rigidity
of such a generic standard makes it hard to keep up
with state of the art and disallows users to define addi-
tional model specifications that they need themselves.

4 Meta Modeling

A proven method to achieve the required flexibility for
a modeling language that supports many formalisms
and modeling paradigms is to model the language it-
self. This is exemplified by, a.o., the domain modeling

environment (DOME) [1, 7] and the multigraph archi-

tecture (MGA) [25]. To illustrate this notion, consider
the state transition diagram in Fig. 1. When in the
ON state, a transition to OFF occurs when the condi-

tion t > 2 is true and this generates an alarm action.
The state, transition, condition, and action elements
are part of any state transition diagram and their de-
pendencies can be modeled as shown in Fig. 2. This
model specifies a family of state transition diagrams
where each instantiation has states that are connected
by transitions. Each state can have any number of exit
transitions, indicated by the 1 : 1 and 1 : N cardi-
nality on the downward arrow in the figure, i.e., each
state can have between 1 and N transitions and each
transition has to exit between 1 and 1 states (it has
to be connected to one and only one state), where N

represents infinitely many. Each transition can enter
only one state and each state may have any number



of entering transitions (indicated by cardinality on the
upward arrow). The transitions between states have
two attributes, viz., one condition that allows the state
transition to be taken and one optional (indicated by
the 0 : 1 cardinality) action.

OFFON
t > 2/alarm

Figure 1: A state transition diagram model.

Transition

1:1

1:1 1:1
1:N

1:1

1:N

Condition Action

State

a
0:11:1

a

Figure 2: A model of state transition diagram models.

The model in Fig. 2 can be used to specify different
state transition diagram formalisms, e.g., the action
attribute can be made mandatory for each transition
by changing the cardinality from 0 : 1 to 1 : 1. Further-
more, actions can be associated with states as well and
hierarchical state machines can be modeled by giving
each state a state attribute (i.e., a relation with itself).

Such a model of the modeling language is called a meta

model. It prescribes the possible mathematical struc-
tures (formalisms) that can be expressed in the mod-
eling language and can be tailored to specific needs of
particular domains. From the meta model specifica-
tion, the modeling language can then be instantiated
automatically. This requires the meta model modeling
formalism to be sufficiently rich and support the con-
structs needed to define a modeling language. To allow
for easy extension, the meta model modeling formal-
ism can be modeled by a meta meta model. This meta
meta model specification captures the basic elements
that can be used to design a meta model modeling for-
malism. In case new concepts and structures are re-
quired, these can be conveniently modeled at a meta
meta level.

For example, the state transition diagram meta model
in Fig. 2 is limited to the family of state transition di-
agrams. This restriction can be lifted by modeling the
model of state transition diagrams in Fig. 2 by the meta
meta model in Fig. 3. It contains an abstract represen-
tation of the mechanisms that are part of the state
transition diagrams meta model, i.e., entities (states,
transitions), attributes (actions and conditions), and
relations between them. This meta meta model groups
entities and relations by an object model component
and each of them optionally has any number of at-
tributes. It also shows that each relation connects to
one entity as its source (marked src) and one entity as
its destination (marked dst), and, therefore, directed
links can be used. The meta meta model specification
language has to consist of entities, attributes to specify

the cardinality and relations to specify the three types,
(i) source relations (src), (ii) destination relations (dst),
and (iii) attribute relations (atr).

1:1 0:N

0:N

src

dst

atr

1:1

0:N1:1

Relation

Object Attribute

Entity

Figure 3: A state transition diagram meta meta model.

Given the meta meta model in Fig. 3, a broader family
of meta models can be described. For example, a Petri
net as illustrated in Fig. 4 consists of places (shown
as transparent circles) and transitions (shown as solid
rectangles). Each place has connections to transitions
and each transition to places. A transition may have
a condition and when this condition is true and all its
input places, i.e., places that are the source to the tran-
sition, contain a token (shown as a black dot inside a
place), it may fire (the corresponding transition may be
executed). The Petri nets meta model shown in Fig. 5
specifies places and transitions that can connect to one
another. Furthermore, the tokens are specified as op-
tional attributes of a place and conditions as an op-
tional attribute of a transition. The family of Petri nets
that can be instantiated from this meta model allows
places with multiple tokens. However, in some mod-
eling paradigms, only one token per place is allowed,
which can be conveniently changed in the meta model
by specifying 0 : 1 cardinality, and, consequently, con-
straining the family of Petri nets. Note that this rep-
resents both a static and dynamic constraint. When
the Petri net is initialized, it can be ensured by the
model editor that each place has been assigned at most
one token. However, a dynamic check is still required
whether this constraint is violated during execution.

ON OFF
t > 2

Figure 4: A Petri net model.

1:1

1:1 1:11:10:1

0:N

0:N

1:1

1:1 0:N

1:1

1:1

Transition

Connection

Condition

Token Placea

a

Figure 5: A model of Petri net models.

In addition to the elements of the graphical language,
often a constraint language is facilitated by a meta
modeling language to specify domain specific con-
straints that are hard to incorporate otherwise in the



Table 1: Four layer meta modeling structure.

Order Description Example

meta
meta
model

Modeling language for
specifying meta mod-
els.

Relation hasDestiny

Entity

meta
model

Modeling language for
specifying models, an
instantiation of a meta
meta model.

State connectsTo

Transition

model The model of an ob-
ject (that could be a
model), an instance of
a meta model.

when t > 2 transition

from ON to OFF

object
data

An instance of a
model.

0 < t ≤ 2 alarm = F

t > 2 alarm = T

meta model. This language can be used to rule out
semantically incorrect models and greatly reduce the
family of models that can be modeled [23]. For exam-
ple, a model of a family of Petri nets could include the
constraint that there should never be more than ten
tokens in the net (to model a resources limit) by an
additional specification Token.allInstances->size

< 10.

The outlined meta modeling approach leads to the four
layer structure in Table 1 [2]. The object data row
represents the data generated from a particular model,
e.g., the simulation results of a physical system model
in the time domain. This data is one instance of the
set of data that can be generated by the model. The
model row represents the particular model such as the
state transition diagram in Fig. 1. At a meta level,
the meta model row represents a class of models, e.g.,
the model of the family of state transition diagrams in
Fig. 2. This meta model is described by a language
that is specified by a meta meta model, the meta meta
model row. This could be the model in Fig. 3.

The apparent advantage of this approach is the tremen-
dous flexibility that can be achieved. Consider the it-
erator construct discussed in Section 3, at a meta level
it can be specified to consist of an initial value, final
value, and step size, but the concrete syntax can be
instantiated as desired. This does not affect the ab-
stract syntax nor the semantics, though, and exchange
of models with this construct is inherently supported.
Moreover, the concrete syntax of the iterator construct
will be automatically adapted to the desired form when
loaded by a different tool.

This flexibility also manifests in the ease with which
new formalisms can be designed. By adapting the
model of a modeling formalism, and automatically gen-
erating a prototype of the modeling environment, de-
sign choices can be rapidly evaluated. Furthermore,
if the same language for meta model specification is
used, consistency between different formalisms can be
achieved. For example, if a component in a block dia-
gram has certain output signals, these values have to be

computed internally. In case the particular component
is modeled by a state transition diagram, the output of
this model has to correspond with the block diagram
output at a higher level.

To allow deeper specification of the semantics of a mod-
eling formalism, it is often meaningful to express how
a model structure (meta model) can be mapped onto
other model structures. An invariant of this mapping
must obviously be the modeled system’s dynamic be-
havior. Examples of mappings are the transformation
between a bond graph and a corresponding system
of differential and algebraic equations (DAE), or be-
tween a statechart and an equivalent state transition
diagram. When analyzing models, or when generat-
ing code, transformations are used. It is meaningful to
chart possible formalism transformations in a formal-

ism transformation graph (FTG) [26], and to allow for
the specification of transformations which enables the
automatic generation of model transformers/compilers.

5 Conclusions

Control system design is a process that involves many
task specific activities that rely on dedicated for-
malisms and tailored tools. These formalisms are part
of widely differing modeling paradigms and may differ
considerably in their syntax, semantics, computational
model, and representation. To achieve a comprehensive
design approach, it is desirable to have these modeling
paradigms understand each other so data and model
fragments can be exchanged between formalisms and
tools. Two basic approaches handle this problem: (i)
the use of a generic standard and (ii) the use of a meta
modeling approach. To unify all aspects in one generic
standard is difficult to achieve in case of heterogeneous
modeling paradigms. Often compromises cannot be
avoided while any such diminishes the usuability of the
standard.

The meta modeling approach models each formalism
that is used by meta models that capture the family of
models that can be designed using a given formalism.
The model of the formalism then represents a meta
meta model that captures the concepts and structures
in a formalism. By using a common modeling language
for these meta meta models a tool that understands
this language can automatically instantiate any desired
modeling formalism that can be constructed from the
meta meta concepts and structures. By choosing these
sufficiently abstract (entities, attributes, relations), the
family of formalisms that can be captured ranges from
data flow diagrams to energy based physical system
modeling formalisms. Furthermore, meta meta model
descriptions allow for easy experimenting with new for-
malisms and highly constrained and tailored domain



specific formalisms can be developed.

The interpretation of multi-paradigm models relies on
different computational models where a distinct differ-
ence between continuous and discrete event behavior
exists: Continuous behavior is typically generated by
discrete points on interpolation polynomials with a cer-
tain degree of smoothness and communication require-
ments are much more stringent than for discrete event
message passing. This distinction between continuous
and discrete behavior is fundamental to analyses such
as simulation [3, 15] and verification [24, 22] of het-
erogeneous models and requires methodologies espe-
cially designed for mixed continuous/discrete, hybrid,
dynamic systems.

References

[1] DOME guide. http://www.htc.honeywell.com/dome/,
Honeywell Technology Center, Honeywell, 1999. ver-
sion 5.2.1.

[2] OMG unified modeling language specification,
June 1999. version 1.3, http://www.omg.org/.

[3] Paul I. Barton. Modeling, simulation, and sensi-
tivity analysis of hybrid systems: Mathematical foun-
dations, numerical solutions, and sofware implementa-
tions. In IEEE Intl. Symp. on CACSD, Anchorage,
Alaska, Sep. 2000.

[4] EIA/CDIF Technical Committee. CDIF CASE
data interchange format – overview, January 1994. EIA
Interim Standard EIA/IS-106.

[5] René David and Hassane Alla. Petri Nets &

Grafcet. Prentice Hall Inc., Englewood Cliffs, NJ, 1992.

[6] John Davis, II et al. Ptolemy II – het-
erogeneous concurrent modeling and design in java.
http://ptolemy.eecs.berkeley.edu, Dept. of EECS, Uni-
versity of Califoria at Berkeley, 1999. version 0.1.1.

[7] Eric Engstrom and Jonathan Krueger. A meta-
modeler’s job is never done: Building and evolving
domain-specific tools with DOME. In IEEE Intl. Symp.

on CACSD, Anchorage, Alaska, Sep. 2000.

[8] Johannes Ernst. Data interoperability between
CACSD and CASE tools using the CDIF family of
standards. In 1996 Intl. Symp. on CACSD, pp. 346–
351, Dearborn, MI, Sep. 1996.

[9] Johannes Ernst and Scott Washburn. Zero-
latency engineeringtm for control design. In IEEE Intl.

Symp. on CACSD, Anchorage, Alaska, Sep. 2000.

[10] Hilding Elmqvist et al. Modelicatm–a unified
object-oriented langauge for physical systems model-
ing: Language specification, December 1999. version
1.3, http://www.modelica.org/.

[11] Michael Fisher. Zero-latency engineeringtm. Avi-
atis Corp., White Paper, 1999.

[12] IEEE 1076.1 Working Group. IEEE standard
1076.1-1999, March 1999. http://www.vhdl.org.

[13] David Harel. Statecharts: A visual formalism for
complex systems. Science of Computer Programming,
8:231–274, 1987.

[14] Derek J. Hatley and Imtiaz Pirbhai. Strategies for

Real-Time Systems Specification. Dorset House Pub-
lishing Co., New York, New York, 1988.

[15] Karl Henrik Johansson, John Lygeros, Shankar
Sastry, and Jun Zhang. Hybrid automata: A formal
paradigm for heterogeneous modeling. In IEEE Intl.

Symp. on CACSD, Anchorage, Alaska, Sep. 2000.

[16] D.C. Karnopp, D.L. Margolis, and R.C. Rosen-
berg. Systems Dynamics: A Unified Approach. John
Wiley and Sons, New York, 2 edition, 1990.

[17] Edward A. Lee. Embedded software – an agenda
for research. Technical Report M99/63, Dept. of EECS,
University of California, Berkeley, CA 94720, 1999.

[18] Jie Liu and Edward A. Lee. Component-based
hierarchical modeling of systems with continuous and
discrete dynamics. In IEEE Intl. Symp. on CACSD,
Anchorage, Alaska, Sep. 2000.

[19] Dieter Moormann, Pieter J. Mosterman, and
Gert-Jan Looye. Object-oriented computational model
building of aircraft flight dynamics and systems.
Aerospace Science and Technology, (3):115–126, 1999.

[20] Pieter J. Mosterman, Martin Otter, and Hild-
ing Elmqvist. Modeling Petri Nets as Local Contraint
Equations for Hybrid Systems Using Modelica. In
SCSC’98, pp. 314–319, Reno, Nevada, July 1998.

[21] Tadao Murata. Petri nets: Properties, analysis
and applications. Proceedings of the IEEE, 77(4):541–
580, Apr. 1989.

[22] Simin Nadjm-Tehrani. Formal methods for anal-
ysis of heterogeneous models of embedded systems. In
IEEE Intl. Symp. on CACSD, Anchorage, Alaska, Sep.
2000.

[23] Gregory G. Nordstrom. Metamodeling – Rapid

Design and Evoluion of Domain-Specific Modeling En-

vironments. PhD dissertation, Vanderbilt University,
Electrical Engineering, May 1999.

[24] Taeshin Park. Verification of large-scale hybrid
systems using implicit model representation. In IEEE

Intl. Symp. on CACSD, Anchorage, Alaska, Sep. 2000.

[25] J. Sztipanovits et al. MULTIGRAPH: An
architecture for model-integrated computing. In
ICECCS’95, pp. 361–368, Ft. Lauderdale, Florida,
Nov. 1995.

[26] Hans Vangheluwe. DEVS as a common denomi-
nator for multi-formalism hybrid system modeling. In
IEEE Intl. Symp. on CACSD, Anchorage, Alaska, Sep.
2000.


