

Winter Term 2000

CS 308-435 **Basics of Computer Networks**

Hans Vangheluwe

McGill, 17 January, 2001

hv@cs.mcgill.ca

CS 308-435B Basics of Computer Networks

The Electromagnetic Frequency Spectrum

Types of Transmission Media

Guided Transmission Media

Twisted-pair Cable

Noise on Parallel Lines

Noise on Twisted-pair Lines

McGill, 17 January, 2001

hv@cs.mcgill.ca

CS 308-435B Basics of Computer Networks

7/34

Twisted-pair Cable

Shielded Twisted-Pair (STP)

Coaxial Cable

Critical Angle

McGill, 17 January, 2001

hv@cs.mcgill.ca

CS 308-435B Basics of Computer Networks

Propagation Modes

Multimode Step-index Fiber

Multimode Graded-index Fiber

McGill, 17 January, 2001

hv@cs.mcgill.ca

CS 308-435B Basics of Computer Networks

Fiber Construction

McGill, 17 January, 2001

hv@cs.mcgill.ca

CS 308-435B Basics of Computer Networks

19/34

Radio Communication Band

VLF	Very low frequency	VHF	Very high frequency
LF	Low frequency	UHF	Ultra high frequency
MF	Middle frequency	SHF	Super high frequency
HF	High frequency	EHF	Extremely high frequency

VLF, LF, MF, HF

Repeaters for Terrestrial Microwave

Parabolic Dish Antenna

McGill, 17 January, 2001 hv@cs.mcgill.ca CS 308-435B Basics of Computer Networks

Cellular Communication (transmit, receive, handoff)

Cellular Bands

- FM communication between mobile phone and cell office
- 824 MHz 849 MHz: calls from mobile phone
- 869 MHz 894 MHz: calls from fixed phone
- Carrier frequencies 30 KHz apart ightarrow 833 channels per band
- Full duplex communication \rightarrow 416 channels per band
- Control channels, alternating frequencies, $\ldots \rightarrow$ 40 channels per cell

Transmission Impairment

• Attenuation

$$dB = 10\log_{10}(P_2/P_1)$$
$$P_2 = P_1/2 \rightarrow 10\log_{10}(P_2/P_1) = 10\log_{10}(0.5) = -3dB$$
$$P_2 = 10P_1 \rightarrow 10\log_{10}(10) = 10dB$$

Additive:

$$dB = dB_1 + dB_2 + \dots$$

- Distortion: multiple frequencies, different propagation speeds
- Noise (transmission medium acts as antenna)

McGill, 17 January, 2001

hv@cs.mcgill.ca

CS 308-435B Basics of Computer Networks

31/34

Performance

- Throughput: how fast data can pass through a medium ?
- Propagation speed (c): $3 \times 10^8 m/s$
- Propagation time p = d/c

$$p = 1000 \ m/(3 \times 10^8 m/s) = 3.33 \ \mu s/km$$

Wavelength

• The distance a simple signal travels in one period in a medium

$$\lambda = c \times period$$

 $\lambda = c/f$

McGill, 17 January, 2001

hv@cs.mcgill.ca

CS 308-435B Basics of Computer Networks

33/34

Shannon Capacity

• Highest data rate for a channel

$$C = B \log_2(1 + S/N)$$

• Noisy channel:

$$S/N = 0 \rightarrow C = B \log_2(1) = 0$$

• Phone line:

$$S/N = 3162, B = 3300Hz - 300Hz \rightarrow$$

 $C = 3000 \log_2(1 + 3162) = 34,860 bps$