Time Slicing Assignment

Hans Vangheluwe

Fall Term 2001
The Tool saving in the form of a Python program is MyTool. Note
how this is similar to the way the block diagram modelling
Implement (in Python) a modelling and simulation (experimen- environment passes information to the experimentation en-
tation) environment composed of: vironment.
Simulation can only start once a model has been loaded, pa-
e A causal block-diagram graphical model editor. Re-use a rameters and initial conditions have been set, and simulator

prototype block diagram editor. This editor exports Python
code containing class definitions which, when imported in
your simulation environment, will provide all model infor-
mation. The most likely change you might like to make
(if at all) to the modelling environment is in the saving of
model information (possibly generate a single class defini-
tion). Other possible (but not necessary) changes: add in-
put and output blocks to allow for hierarchical modelling.
Your experimentation environment implementation should
be independent of the model editor. In particular, the file
simclasses.py should not be shared between modelling
and experimentation environment.

An experimentation environment with as its core, a Time
Slicing simulator (pseudo code given in class) which takes
a model description exported by the graphical model editor
as well as “experiment” information such as

e model initial conditions and parameters,

e solver parameters such as step-size and communica-
tion interval,

e where output should go (file or plot).

Structure the simulator so it is easily embedded in different
experimentation scripts (such as optimization).

Tiwo prototypes of the experimentation environment must be
built:

1. With a purely textual interface. Obviously, only file
output of simulation results will be possible (not plot-

ting).
2. With a Graphical User Interface which provides a user

friendly way of accessing the methods of the text-only
prototype.

Both prototypes must allow querying of model informa-
tion once a model is loaded. In particular, it must be
possible to ask which are the model’s variables (corre-
sponding to names of integrator blocks) and other named
blocks. This information is subsequently used to set whether
these must be plotted, sent to file, both, or (by default)
none of the two. Data output is generated for times
communication interval apart.

At any point in time, it must be possible to save the exper-
imentation environment’s state. A small example of state

parameters (such as step-size) have been given. The values
used by the time-slicing simulator are determined by a se-
quence of settings (later overrides former):

o Default values (e.g., variables to 0, integrator step size
to 0.1, ...). It should be possible to set (and save) these
global defaults in the experimentation environment.

e Values loaded from the model (e.g., initial conditions).

e Values given interactively in the experimenation envi-
ronment.

Before starting the actual simulation, a check must be made
for “algebraic loops” and blocks must be sorted. This will
involve building a dependency graph. Algorithms can be
found in the class transparencies.

o A plotting environment to display generated trajectories. It
must be possible to produce both time- and phase- plots.
Time-plots trace variables in function of time, phase-plots
trace variables in function of one another (often % in func-
tion of x). The plotting environment must be capable of dis-
playing more than one data item (trajectory). It must be pos-
sible to mix data items generated by the simulator and data
items loaded from file. You will re-use the plotting envi-
ronment in future assignments, so make it re-usable and as
generally applicable as possible. In particular, the plotting
invironment should be as independent from the experimen-
tation environment as possible (and separately tested). The
plotting environment will re-use the code from Chapter 11
of Grayson’s “Python and Tkinter” book. As with the simu-
lator, it must be possible to save the plotting environment’s
state.

The design and implementation of your tool must be documented.
This is an important part of the deliverable. Use UML notation
for your design.

Your tool must be thoroughly fested. Though you may include a
test suite of your own making, you are strongly advised to use
the PyUnit unit testing framework for Python. A short overview
of PyUnit is found in the Python Library Reference.



Mass m [kg]

| RestLength [m]

Mass }n kgl

position x [m]

Figure 1: Mass-spring system

The “Circle Test”

. L . 2
Test your time-slicing simulator by means of the equation % =
—x. When x and % are plotted in function of one another (a phase

plot), a circle should result.

1. Re-write the equation in the form of a set of first order equa-
tions.

2. Draw the corresponding block-diagram in the graphical ed-
itor.

3. Run the simulation and plot the data in time and phase plots.

4. Do the above for a “good” (sufficiently small) integrator
step-size as well as for a “bad” (large) step-size (which
should not result in a circle plot). Explain. The “good” step-
size will give you an idea of what step-size to use for the rest
of the assignment. Explain why it should be smaller than the
value you used for the circle test.

Mass-spring: simulation and calibration

The above mechanical system consists of a mass m which glides
without friction over a surface. The mass is connected to a rigid
wall by means of an “ideal” spring. In the absence of external
forces, the system is in “rest” state and the distance of the centre
of gravity of the mass object to the wall is RestLength. At any
instant in time, the position (distance from the wall) of the mass
is X.

An experiment has been carried out whereby the mass m was
measured as well as the RestLength of the spring. m = 0.23kg,
RestLength = 0.2m. To determine the spring constant K[kg/s?]
of the ideal spring, the spring is extended to bring the mass at
initial position x(r = 0) with initial velocity v(r = 0). x(r = 0) =
0.3m, v(t = 0) = Om/s. (note: in many cases, in a simulation, one
may have to set x(t=0) and/or v(t=0) to a small, non-zero value

pesition x [m]
0.4

measured position x

0.35
0.3
0.25
0.2
0.15

0.1

1.5 F 4 2:+5 3 2.5 4
time t [s]

Figure 2: Measured displacement (noisy)

to avoid the simulator providing a trivial (zero) solution to the
system equations).

This experiment whereby the mass is released and observed dur-
ing the time interval [0,4] yields the following measurement data
Xmeasured 10 function of time.

Note: this plot was produced in gnuplot from the Xeqsureq data
file (after removal of the first line) with the following commands:

set xlabel "time t [s]"
set ylabel "position x [m]"
plot "data" title ’'measured position x’

When you want a smooth curve rather than points, append
with lines to the plot command. To plot column B of the data
file in function of column A, append using A:B to the plot com-
mand.

With this “noisy” data, we need to “estimate” spring constant
value K which, when used in a simulation of the dynamics of the
system x(r) optimally “fits” the measured data. Notice how we
start with parameter estimation directly and we skip the “struc-
ture characterization phase” in which the most appropriate math-
ematical model for this system is determined. This, as we have
the a-priori knowledge that this is a frictionless system and the
spring is “ideal”.

Assignment:

1. Describe the mathematical equations for the dynamics of
this system (given the above a-priori knowledge).

2. Asthis will yield a higher order differential equation, rewrite
this as a set of first order differential equations.

3. Represent this set of differential equations as a causal block
diagram in your block diagram modelling environment.

4. Use this in your time-slicing simulator.

5. Run multiple simulations, varying (with a small enough
step-size) K value in [1,10].



simple frictionless mass - spring system

=-x

® x_measured

position [m]

Figure 3: Calibrated model output

6. Check which of the K values gives the “best fit”. Fit is de-
fined in the “sum of squared errors” sense. Hereby, for each
measured point in time, the difference between the measured
value and the simulated value is taken and squared. The sum
of all squared errors is a measure for the fit.

Note: to give accurate results, the simulator may need a
small step-size. To compare with measured data which is
quite far apart, you simulator will have to implement a
“communication interval” which allows the user to specify
how often simulated values have to be output.

Whether you use a very naive exhaustive search as described
above or an advanced optimization algorithm (feel free to
apply some of your optimization knowledge), an optimal K
will result. Simulation with the “true” K value will yield a
graph as below.

What'’s required

The full analysis, design (using UML notation), implementation
(in Python) and simulation results should be documented and put
on the web. Explicit links to code and data must be present.

You can work in groups of upto 3 people. Individual work must
be indicated. All must understand and be able to explain the
whole assignment (discuss your design together before imple-
menting and do a peer review of your code).

The due date is September 26 (before midnight).



