Structural and Behavioral Equivalence
of Simulation Models

ENVER YUCESAN

European Institute of Business Administration
and

LEE SCHRUBEN

Cornell University

It 1s sometimes desirable to know when two different discrete-event simulation models are, in
some sense, interchangeable; that is, whether or not the two models always have the same
output when run under identical experimental conditions. This notion of behavioral equivalence,
while conceptually simple, is difficult to define in a manner that is both useful and testable. It is
difficult or impossible to assert that two simulations are behaviorally equivalent for all possible
experiments. In this paper. we present an explicit and sensible defimition of behavioral equiva-
lence. Unfortunately, like other definitions in the literature, our definition is not testable in
practice.

However, using a general graph-theoretic specification of simulation models, which we call
Simulation Graphs, we define a testable property related to behavioral equivalence which we
refer to as structural equivalence. We then establish that structural equivalence (a testable
property) implies behavioral equivalence (2 meaningful property). This permits us to assess
when it is safe to substitute one model for another. It then becomes possible to develop
algorithms for addressing important problems in simulation model development and verification.

Categories and Subject Descriptors: D.1.7 [Programming Techniques]: Visual Programming:
1.6.1 [Simulation and Modeling]: Simulation Theory—rmodel classification: 1.6.5 [Simulation
and Modeling]: Model Development—modeling methodologies

General Terms:

Additional Key Words and Phrases: Concurrent programming, discrete-event simulation, event
graphs, network structures

INTRODUCTION

The ability to identify equivalent simulation models is desirable from various
points of view. For instance, logistical considerations such as ease of imple-
mentation on a computer, data requirements, or suitability for the intended

This work was done while Lee Schruben held a National Research Council-Naval Postgraduate
School Research Associateship.

Authors’ addresses: L. Schruben, School of Operations Research and Industrial Engineering,
Cornell University, Ithaca, NY 14853; E. Yiicesan, European Institute of Business Administra-
tion, INSEAD, Boulevard de Constance, 77305 Fontainebleau Cedex, France.

Permission to copy without fee all or part of this material is granted provided that the copies are
not made or distributed for direct commerecial advantage, the ACM copyright notice and the title
of the publication and its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish, requires a fee and /or
specific permission.

© 1992 ACM 1049-3301 /92 /0100-0082 $01.50

ACM Transactions on Modeling and Computer Simulation, Vol. 2, No. 1, January 1992, Pages 82-103.

Structural and Behavioral Equivalence of Simulation Models . 83

application may point out that it is more advantageous to use one model over
another once their equivalence is established. Another possible scenario is
when an existing model is embellished, and it needs to be verified whether or
not the underlying structure of parts of both models are the same.

Even though the idea of equivalent simulations is conceptually simple, it is
difficult to formalize in an acceptable fashion since any practically useful
definition must be testable also. That is, it should be possible to identify when
two simulation models can be used interchangeably without actually having
to run both simulations under all possible experimental conditions and
compare their output behavior.

Various definitions of equivalence have appeared in the literature.
Overstreet [11] offers three such definitions. Structural equivalence is con-
cerned with the objects in a model and their impact on model attributes. For
two models to be structurally equivalent, they must have the same objects,
and the impact of these objects on model attributes should be the same in
both models. External equivalence is concerned with the input /output behav-
ior of models. Two models are externally equivalent if they exhibit the same
output behavior whenever provided with the same initial conditions. Deriv-
ability is similar to external equivalence. In this case the outputs need not be
similar. However, the output behavior of one model must be derivable from
that of the other model for them to be qualified as equivalent.

Schruben [16] offers a definition of “equivalence” based on the behavior of
conditioning state variables over time. Sargent’s [14] Type I and Type II
“equivalences” are based also on the behavior of model variables during
execution. We will collectively refer to such definitions as behavioral.

Although behavioral-equivalence definitions are intuitively appealing, in
general they are not testable. That is, it is highly unlikely that an algorithm
can be constructed to determine whether any two simulation models are
behaviorally equivalent. In this paper, we introduce a definition of equiva-
lence that uses mathematical properties of a simulation model’s structure. In
so doing, we shift the emphasis from model behavior to model structure and
produce a testable definition. We also show that structural equivalence
(defined explicitly and differently from Overstreet) is a sufficient, but not a
necessary, condition for behavioral equivalence.

Our development is based on the concept of a Simulation Graph Model and
graph isomorphism. This is a mathematically explicit formalization of “event
graphs” introduced by Schruben [16] to represent the event-scheduling
approach in discrete-event simulation. Simulation graphs are introduced
next. The rest of the paper is organized as follows: Section 2 defines simula-
tion model equivalence. Sections 3 and 4 illustrate applications. Concluding
comments are included in Section 5.

1. SIMULATION GRAPH MODELS

The elements of a discrete-event simulation are state variables that describe
the state of the system, events that alter the values of state variables, and
the logical and temporal relationships between events. An event graph [16] is
a structure of these elements in a discrete-event system that facilitates the

ACM Transactions on Modeling and Computer Simulation, Vol. 2, No. 1, January 1992.

84 . E. Ylcesan and L. Schruben

development of a correct simulation model. Events are represented on
the graph as vertices (nodes). Each vertex is associated with a set of changes
to state variables. These variables are used to describe system entities.
Hence, the emphasis is directly on system events; system entities are repre-
sented implicitly.

Relationships between events are represented in an event graph as di-
rected edges (arcs) between pairs of vertices. Each edge is associated with
sets of logical and temporal expressions. Two types of edges are distin-
guished. Scheduling edges appear as solid arcs on the graph while canceling
edges are depicted as dashed arcs. Basically, the edges define under what
conditions and after how long of a time delay an event will schedule or cancel
another event. There can be multiple edges between any pair of vertices; the
edges can point in either direction or may simply point from a vertex to itself.

In an event graph, it is possible also to parameterize the event vertices.
Event parameterization is an important modeling convenience but does not
increase the generality of these graphs. Parameters keep the graphs from
becoming cluttered or possibly infinite [24]. This is achieved through vertex
parameters and edge attributes. A vertex parameter list is a vector of state
variables associated with a particular vertex. An edge attribute list, on the
other hand, is a set of expressions associated with a particular edge. These
lists are used in scheduling or canceling specific instances of events. For
example, in a simulation model depicting the operation of a group of machines,
a single start_processing event vertex together with parameters might be
used to model the start of processing on any of the machines in the group; the
value of the vertex parameter designates the particular machine involved.
This practice is analogous to passing values to a subroutine using a list of
arguments in a high-level programming language. In this paper, we focus
solely on parameters that assume a finite or countable number of values.

In summary, the construct

t ®

is interpreted as follows: whenever event A occurs, if condition (i) holds, event
B is scheduled to occur in t time units with the parameter vector, j, assuming
the current values of the expressions in k.

The major advantage of this modeling framework is that the network
provides a complete and consistent environment for model development [19].
No new icons or constructs need to be defined as the modeling requirements
change. In addition, this framework offers practical guidance not only for
model specification, but also for model implementation. For instance, the
customary notion of an event routine (see, for example, Simscript [2]) in a
simulation program may correspond to a subgraph, typically a set of vertices
connected by edges with no delays. A simple example is presented next.

Example: Single-server queueing model. An event graph for a single-
server queueing system will be developed with the objective of estimating the

ACM Transactions on Modehng and Computer Simulation, Vol. 2, No. 1, January 1992,

Structural and Behavioral Equivalence of Simulation Modeis . 85

time customers spend in the system [17]. Suppose (1) that customers arrive
every t, time units and (2) it takes ¢, time units to attend to each customer.
The state variables used in this model are defined as follows:

—@ represents the number of customers waiting for service
—8 denotes the status of the server with 0 = busy and 1 = idle
—id denotes the customer identification number

—in represents the identification number of the customer currently in
service

—nx is the identification number of the customer who is next in line
—WIi] is the total time customer i spends in the system
—CLK represents the current simulation clock.

The edge gonditions for the model are:

(1) (The server is idle): S ==
(2) (Customers are waiting to be served): @ > 0.

The event descriptions are presented in Table I while the event graph is
depicted in Figure 1.

Several variations of event graphs have appeared in the literature. Pegden
[12], Hoover and Perry [7], Law and Kelton [8], and Schruben [17] use these
networks to construct discrete-event simulations.

Extensions of event graph analysis have been introduced also. Sargent [14]
presents some rules for detection of simultaneously scheduled events and for
event reduction. Also, he models a flexible manufacturing system with event
graphs. In a more recent paper, Som and Sargent [22] define rules for
identifying simultaneously scheduled events and assigning execution priori-
ties. They also introduce a conceptual algorithm for event reduction.

Simulation graphs are a mathematically explicit definition of event
graphs. The development is not limited to the event-scheduling world view
but targets discrete-event dynamic systems in general. For example, a
transformation procedure, the geometric dual, is shown to yield equivalent
representations of queueing models under both event-scheduling and activity-
scanning world views [21].

Our definition of simulation graphs uses ideas from graph theory. A
directed graph, G, is characterized as an ordered triple (V(G), E(G), ¥;)
consisting of a nonempty set of vertices, V(G), a set E(G), disjoint from V(G),
of edges, and an incidence function, ¥, that associates with each edge of G
an ordered pair of (not necessarily) distinct vertices of G [1]. A network is
defined then as a graph in which additional data are stored in the vertices
and edges [9]. A simulation graph is defined as an ordered quadruple

G = (V(G),E(G),E(G),¥)
where V(G) is the set of event vertices, E (G) is the set of scheduling edges,

E (G) is the set of canceling edges, and W is the incidence function. The data
defined on this graph are the following indexed sets:

F = {f, : STATES — STATES|v € V(G@)}, the set of state transition functions

ACM Transactions on Modeling and Computer Simulation, Vol. 2, No. 1, January 1992.

86 . E. Yicesan and L. Schruben

Table I. Event Descriptions

Event Type Event Description State Changes
INIT Initialization Q<0
S<1
nx < 1
ARV Customer Arrival Q<@ +1
ideid + 1
WIid] <« CLK
BGN Beginning of Service S <0
R<—Q@-1
nx « nx + 1
END End of Service S« 1

Wlin] « CLK — W[in]

Fig. 1. Single-server queueing model.

associated with vertex v,

& = {C, :STATES — {0, 1}le € E(G) U E (G}, the set of edge conditions,
T ={t,:STATES — %Z"|e € E,(G)}, the set of edge delay times,
I' = {y, : STATES — % "le € E(G)}, the set of event execution priorities,

where STATES is defined as in Zeigler [25, p. 62]; #* denotes the set of
nonnegative real numbers. Note that we define event execution priorities as
mappings from the model state to the nonnegative real numbers that depend
on the edge that schedules an event vertex. This generalization of the usual
notion of a priority ranking for tie breaking in simultaneous events can be

very useful as illustrated by the example in [18].

A simulation graph model (SGM) is defined as:

= (5,%,79,T,Q).

ACM Transactions on Modeling and Computer Simulation, Vol. 2, No. 1, January 1992,

Structural and Behavioral Equivalence of Simulation Models . 87

The first four sets in the above five-tuple define the entities in a model. The
role played by the simulation graph, G, in the definition of a simula-
tion graph model, ., is analogous to the role of the incidence function, ¥, in
the definition of a directed graph; it organizes these sets of entities into a
meaningful simulation model specification. That is, G specifies the relation-
ships between the elements in the sets &, #,.7, and I'.

Example (continued). The entities in the network depicting a single-
server queueing system are defined as follows (G is presented in Figure 1):

F = {fmar farvs Fees fenp) =@ <0, S« 1, nx« 1; @ « @+ 1,id «id
+1, Wlid] « CLK; S« 0, @ « @ — 1, nx <« nx + 1; S « 1, W[in] «
CLK — W{in]}.

& = {CARV,BGN; CEND,BGN} ={S=1@ >0}
T = {tsrv.arv; teon, enp) = (a3t}
I'= {'yINIT,ARV; YARV, ARV YARV,BGN> YBGN,END> YEND,BGN} ={2;2;1;2;1}.

2. EQUIVALENCE OF SIMULATION MODELS

2.1 Preliminary Definitions

In an SGM, an edge condition will be called simple if it consists of two
arithmetic expressions connected by a relational operator. In other words, a
simple edge condition is a relation. The arithmetic expressions may simply be
a constant or a variable, whereas the relational operators are “less than,”
“less than or equal to,” “equal to,” “not equal to,” “greater than,” and “greater
than or equal to.” On the other hand, the edge condition will be called
compound if it consists of two or more relations joined by Boolean operators
AND or OR. For example, (QSIZE > 0) is a simple condition while (QSIZE >
0) AND (S = 1) is a compound edge condition.

Similarly, a vertex will be called simple if there is at most one state
variable change associated with it. In other words, vertex v is a simple event
vertex if its execution alters the value of at most one state variable. Other-
wise, the vertex will be called a compound vertex. A vertex with no state
variable changes will be referred to as the identity vertex.

A simulation graph model, %%, will be called an Elementary Simulation
Graph Model (ESGM) and denoted &F if it contains only simple event
vertices and if all edge conditions are simple. Given a simulation graph
model, ., an associated ESGM, .#%, can always be constructed by expansion.
This is the process of replacing a single event vertex with m (m > 1) state
variable changes by m vertices in series, each with a single state variable
change. It is also the process of replacing an edge with a compound condition
by a group of identity vertices, each connected by edges with simple condi-
tions. During this process, the logical structure of the original model is
always preserved. The procedures for graph expansion are defined in the
Appendix. It should also be noted that the application of expansion rules does
not generate a unique elementary simulation graph. However, all of the
elementary graphs generated in this fashion are isomorphic to one another;
hence, they form an equivalence class [1].

ACM Transactions on Modeling and Computer Smmulation, Vol. 2, No. 1, January 1992.

88 . E. Ylcesan and L. Schruben

Two simulation graph models % = (7, %, 7, [, G;) and %, =
(F, €3,55. Ty, Gy) are called isomorphic and denoted . ~.7,, if there exist
one-to-one and onto mappings (bijections) of the form:

0:V(G,) » V(G,)
O E(Gy) —» E(Gy)
O 1 E(Gy) — E(G,)
Ao = F

Q:8, > 6,

X171 =Ty

AT, > T,

The mappings (0, P, D, A, Q, x,A) form an isomorphism [1]. Note that the
first three mappings basically establish a correspondence between the under-
lying structure of the two models. Simply stated, the mappings (0, ®_,)
indicate that names given to entities in a simulation graph are not important
since isomorphic graphs form an equivalence class.

The determination of graph isomorphism has drawn considerable attention
and has important implications in various fields. For instance, the problem of
determining whether two chemical compounds are identical can be reduced to
the isomorphism problem where the compounds are depicted as graphs with
vertices representing an atom or a group of atoms and edges representing
chemical bonds. The isomorphism problem is intractable for general graphs
[3]. However, efficient algorithms exist for determining isomorphism of
planar graphs [4, 5]. (Efficient planarity testing is also possible [6].) The
remaining four mappings are examined in more detail next.

A:F — 5,. This mapping establishes a correspondence between the state
changes associated with different event vertices on the two simulation graphs.
For two state transition functions to be declared equivalent, their application
to the same state variables must yield identical outcomes. For example, the
state transition functions {Y < 2*X} and {Y « X + X} are equivalent. Also, it
is required that the state variables have the same range. In cases where
these functions have stochastic components, the associated random variables
should follow the same probability distribution.

1 :%, — %,. This mapping establishes a correspondence between the edge
conditions of the two models. The form of these conditions may not necessar-
ily be identical. It is required, however, that they assume the same Boolean
value when evaluated with a given state of the model. For instance (QSIZE
> 0) and (@ = 1) are equivalent edge conditions if @ is always equal to
QSIZE + 1. If the conditions have any stochastic components, the associated
random variables should follow the same probability distribution.

X &y = 5. This mapping establishes a correspondence between the edge
delay times of the two models. If the times are deterministic, they are
required to have the same value. If they are stochastic, they are required to
follow the same probability distribution.

ACM Transactions on Modeling and Computer Simulation, Vol. 2, No. 1, January 1992.

Structural and Behavioral Equivalence of Simulation Models . 89

A:T; - I,. This mapping establishes a correspondence between the event
execution priorities in the two models. Recall that priorities are nonnegative
real numbers. It is required that the same relative order of values be
assigned to the respective events for a given state of the model.

It is also possible to define isomorphisms with respect to a subgraph and a
subset of the state variables. This provision allows the modeler to focus only
on those components of the model that are relevant within the scope of the
current simulation study. The following definition of structural equivalence
should be understood to hold with respect to a particular subset of state
variables and a particular subgraph.

2.2 Structurally Equivalent Simulation Models

The concepts of graph isomorphisms and SGMs are used now to define
structural equivalence of simulation models.

Definition. Simulation graph models, .%, and .%;, are structurally equiva-
lent if they have any elementary simulation graph models, . and v,
respectively, which are isomorphic.

To determine whether two simulation models are equivalent, the graphs
are expanded into ESGMs, and an isomorphism between any pair of the
elementary graphs is sought. If such an isomorphism is found, then the two
simulation models are declared structurally equivalent. Efficient algorithms
exist for establishing graph isomorphism for planar graphs. (The surprising
fact that simulation graphs have planar representations is established in
[23].) Hence, this structural definition of equivalence is indeed a testable
definitions as opposed to definitions based on model behavior since, in the
absence of vertex parameters, the number of isomorphic ESGs that can be
generated by expanding an SGM is finite [23]. We should note, however, that
establishing the mappings A, Q, y, and A can be a difficult—but, neverthe-
less, possible—task for large models.

Next, we show that structural equivalence defined by graph isomorphism is
a sufficient but not a necessary condition for behavioral equivalence. Several
preliminary definitions are presented first. An experimental frame “specifies
a limited set of circumstances under which a system (real system or model) is
to be observed or subjected to experimentation” [25]. This is understood to
describe the initial conditions of the model implementation including the
initial values of the state variables as well as seeds for random number
generators and the termination conditions of the model implementation
including the stopping time or condition as well as the state variables (and
performance measures) to be monitored. The execution of an event vertex
entails the following: the update of vertex parameters, if any; the update of
the values of the associated state variables; the evaluation of all edge
conditions; the evaluation of all attributes on those exiting edges where edge
conditions are satisfied; the scheduling and /or cancelation of further events.
The occurrence of an event represents the execution of the corresponding
event vertex.

ACM Transactions on Modeling and Computer Simulation, Vol. 2, No. 1, January 1992.

a0 . E Yilcesan and L Schruben

Behavioral equivalence is defined next. In a discrete-event simulation,
events occur at discrete points in (simulated) time. Let

T(&,%) ={¢t,,ty,...,t,)

be the partially ordered set of points in (simulated) time of event occurrences,
for an execution of model . with experimental frame, &#. Analogously, let

S(&,%) =1{8,8,,...,8,}

be the ordered set of states indexed by event occurrences for an execution of
the model, 7, with experimental frame, &. The sample path observed during
a run can be represented then by the ordered pairs (t,,S,) for &=
0,1,2,...,n.

Definition. Two simulation models . and <% are behaviorally equivalent
with respect to a subset of state variables if, within all experimental frames,
&

>

(1) T(&,%) = T(£,%) and (2) S(&,5) =~ S(&,B).

The following theorem asserts that structural equivalence implies behav-
ioral equivalence.

THEOREM. If two SGMs are structurally equivalent then they must be
behaviorally equivalent.

PROOF. (By contraposition). Suppose two SGMs .%, and .%, are not behav-
iorally equivalent. That is, there exists an experimental frame where condi-
tion (1) and /or condition (2) of the definition fail to hold. Suppose condition
(2) fails, and it is possible to construct all of the mappings, 0, ®_, D, 0, x, A,
except for A. That is, while the two ESGs are isomorphic and the edge
conditions, event times, and event execution priorities are identical in the two
models, the set of states observed under the two models are different. This is
possible only if the occurrence of a particular event, say event vertex u, takes
the two models into two different states. In turn, this outcome is a direct
consequence of the difference between the two state transition functions
associated with vertex u, f,, in the two models. Therefore, when condition (2)
fails to hold, it is not possible to construct the mapping A, and thus, an
isomorphism cannot be established between the two ESGMs.

Alternatively, suppose condition (1) fails to hold and suppose it is possible
to construct all the mappings, O, ® ,®,, A, (), A, except for y. This implies
that while the two ESGs are isomorphic and the state transitions, edge
conditions, and execution priorities are identical in the two models, the event
epochs are different. This discrepancy is attributable directly to the edge
delay times in the two models. Recall that the edge delay times are defined as
a mapping from the current state to the nonnegative real numbers (¢, :
STATES - %"). Thus, there exist two cases in which the event epochs can be
different in the two models making it impossible to establish the mapping y.

ACM Transactions on Modehng and Computer Simulation, Vol. 2, No. 1, January 1992.

Structural and Behavioral Equivalence of Simulation Models . 91

Case 1. The edge delay times (the mapping, ¢,) are defined differently in
the two models. In this case y clearly fails to hold.

Case 2. The mappings ¢, are defined similarly in both models; however,
they operate on different states. This is only possible if the occurrence of a
particular event takes the two models into two different states. This, in turn,
is directly due to the differences between the state transition functions,
resulting in the failure of the mapping A. Since this outcome contradicts our
initial assumption that A holds, we conclude that this case is not possible.
Therefore, when condition (1) fails to hold, it is not possible to construct the
mapping y, and thus, an isomorphism cannot be established between the two
ESGMs.

In each of the above cases, it is not possible to establish the desired
isomorphism. Since the ESGMs . and .%f are not isomorphic with respect
to a particular subset of state variables, then SGMs .¥; and .%, are not
structurally equivalent with respect to that subset of state variables. O

Although it is a testable definition, structural equivalence is only a suffi-
cient condition for behavioral equivalence. A simple example where two
models are behaviorally but not structurally equivalent is given by models
having the following subgraphs, where vertex I is an identity vertex included
in G, possibly to make the structure of the model more “transparent.”
Another example is when the two models have a different number of state
variables. In this case, however, there are two possible ways of establishing
model equivalence. One possibility is to define it with respect to a subset of
state variables (perhaps, with respect to those variables that are relevant
within the scope of the study).

o DDt @
Gz: A f (B
® ®

Alternatively, we may try first to eliminate unnecessary state variables
through the application of Schruben’s rule of thumb [16] and subsequently
seek an isomorphism between the two models.

Various applications of structural equivalence are illustrated in the follow-
ing sections. In particular, Section 3 establishes the equivalence between the
models of the same single-server queueing system implemented in different
world views. Schruben’s [16] event reduction rules are revised in Section 4.

3. MODELS IN DIFFERENT WORLD VIEWS

In discrete-event simulation, world views provide alternative approaches to
organizing a specification of model behavior. These modeling perspectives are
commonly referred to as event scheduling, process interaction, and activity

ACM Transactions on Modeling and Computer Simulation, Vol. 2, No. 1, January 1992.

92 . E. Ylcesan and L. Schruben

scanning. Even though each of these world views are supported by one or
more simulation programming languages, no universally accepted definitions
exist for any of the approaches. This is partly due to the fact that this
classification scheme is neither mutually exclusive nor collectively exhaus-
tive. Moreover, the dividing line between these perspectives are fading as
simulation programming languages traditionally known to follow a particular
world view are adopting constructs of other world views. (Nance [10] clarifies
the differences between these perspectives.) Therefore, it is desirable to be
able to identify equivalent simulation models constructed under “different”
world views. The concept of structural equivalence is useful for such an
identification. As an illustration, the equivalence between two single-server
queueing models is established. Suppose that the first model is constructed
under the process orientation in GPSS [15] while the second model is
constructed under the event-scheduling approach [13].

The system operates as follows: customers arrive to the facility every ¢,
time units to receive service which, in turn, takes ¢, time units to complete. A
GPSS implementation from [7] is depicted in Table II. Letters in boldface are
GPSS keywords.

The process orientation can be described as follows:

“simulation models include sequences of elements which occur in defined pat-
terns. The logic associated with such a sequence of events can be generalized and
defined by a single statement. (. .) A process-oriented language employs such
statements to model the flow of entities through a system. These statements
define a sequence of events which are automatically executed by the simulation
language as the entities move through the process” [13, p. 57].

Figure 2 is a simulation graph depicting the implementation of the GPSS
model in Table II. The state variables used in this simulation graph model
are defined as follows:

—LINE denotes the number of customers in the queue waiting for service
—SERVER denotes the status of the server with 0 = busy and 1 = idle.

The edge conditions are:

—(Server is idle) SERVER ==
—(Queue is not empty) LINE > 0.

The event descriptions are presented in Table TIL.

The event-scheduling representation of the queueing system, on the other
hand, requires that the epochs at which the system undergoes state changes
be identified and the state changes associated with those epochs be repre-
sented as a separate subroutine [13]. The simulation graph model under the
event orientation is presented in Figure 3. This SGM is a simplified version of
the model presented in the example of Section 1, and it is already expanded
into an ESGM. The state variables used in this model are defined as follows:

—@ represents the number of customers waiting for service
—&8 denotes the status of the server with 0 = busy and 1 = idle.

ACM Transactions on Modeling and Computer Simulation, Vol. 2, No. 1, January 1992,

Structural and Behavioral Equivalence of Simulation Models . 93

Table II. Single-Server Queueing Model in GPSS

Simulate

Generate t, Customers arrive

Queue Line Customers queue for service
Seize Server Capture server

Depart Line Leave queue

Advance t, Conduct service

Release Server Free server

Terminate 1 Customer leaves

Start 100 No. of customers to process
End

0 . >

[&H])

SEENNS

Y
DPT
N

ACM Transactions on Modeling and Computer Simulation, Vol. 2, No 1, January 1992.

Fig. 2. GPSS model for two customers.

(1)

73

94 . E. Yiicesan and L. Schruben

Table III. Event Descriptions for the GPSS Model

Event Type Event Description State Changes
GRT Generate a new customer

JQ Join the queue LINE « LINE + 1
SZ Capture server SERVER <« 0
DPT Leave the queue LINE « LINE - 1
RLS Free the server SERVER « 1
TMT Customer departs

Fig. 3. Elementary simulation graph event-scheduling approach.

The edge conditions for the model are:

—(Server is idle) S ==

—(Customers are waiting to be served) @ > 0.

The event descriptions are presented in Table IV.

There are differences in implementation between the two world views.
Figure 2 depicts an implementation for two customers, where the subgraph
containing vertices GRT, JQ, SZ, DPT, RLS, and TMT along with the edges
incident to them represent a “customer path.” While this approach automati-

ACM Transactions on Modeling and Computer Simulation, Vol. 2, No. 1, January 1992,

Structural and Behavioral Equivalence of Simulation Models . 95

Table IV. Event Descriptions for the Elementary Simulation Graph Model

Event Type Event Description State Changes
IN1 Initialization Q<0

IN2 Initialization S«1

ARV Customer arrival R—Q+1
BGN Begin service S« 0

vQ Leave the queue RQ-Q -1
END End of service S«1

cally keeps track of the identity of individual customers, it requires a consid-
erable amount of memory to do so [20]. During the execution of such models,
these paths may be thought of as being created and destroyed dynamically as
transient entities enter and leave the model. Figure 2 should be viewed as a
snapshot of this dynamic environment.

Within the event-scheduling approach, if each transient entity is to be
monitored individually, an ID number for each customer is represented
explicitly through vertex parameters and edge attributes as depicted in
Figure 1. In fact, a simulation graph is actually an array of graphs, one copy
for each customer in the system.

Due to these differences in implementation between the two modeling
world views, these models are equivalent only with respect to resident enti-
ties: the server and the queue. An isomorphism with respect to the resident
entities is sought between the two models. This is given by:

0:V(G,) - V(Gy).

0(JQ) = ARV.
0(SZ) = BGN.
o(DPT) = LVQ.
O(RLS) = END.

d,: E(G,) = E(G,). See Figures 2 and 3.
®,.: E(G,) » E(G,). No canceling edges are used in the models.
A g - .

A(fyq) = fagy (LINE « LINE + 1},

A(fsz) = feen (SERVER <« 0}.

Alfppr) = fivg {LINE « LINE — 1}.
A(frrg) = fenp (SERVER « 1}

0 & - F,.
Q@) =i
Q@) = .

X:T > Ty x(t) =t,. x(t,) =t,.

A:Ty - I'y. Although it is not possible to assign event execution priorities
in SLAM, it is possible to do so with some other simulation languages (e.g.,

ACM Transactions on Modeling and Computer Simulation, Vol. 2, No. 1, January 1992.

96 . E. Ylcesan and L. Schruben

Simsecript [2]) in a straightforward fashion. In GPSS, entities created by the
GENERATE block can also be assigned transaction priorities.

Since (0, ®,, @, A, Q, y, A) is the desired isomorphism, we conclude that
the two models are equivalent with respect to resident entities (SERVER and
LINE) even though they are constructed under different world views. There-
fore, either of the implementations can be used to simulate the single-server
system monitoring the utilization of the server and the length of the waiting
line; that is, the models are interchangeable.

4. RULES FOR EVENT REDUCTION

While illustrating the applications of event graphs to model analysis,
Schruben [16] offers several rules of thumb to assist the modeler in various
tasks. They are called rules of thumb since they are conceptual rules that
work “when applied with care.” As Som and Sargent [22] point out, “these
rules of thumb are not based on a formal framework and thus their validity
cannot be determined.” Within the context of structural equivalence it is now
possible to determine the validity of these “event reduction rules.” In particu-
lar, these rules are revised and proved as theorems; the impact of event
execution priorities and canceling edges is discussed also. Following
Schruben’s [16] numbering, we define the following rule.

Rule 4(a). Equivalent SGMs are possible with and without event vertex
£, if vertex k£ has no conditional exiting edges and if all edges entering vertex
% have zero delay times. If Rule 4(a) applies, then vertex k may be combined
with the originating vertices of the entering edges.

State variable changes in vertex & are added to changes for these entering
event vertices. Delay times on each of the edges exiting vertex £ are added to
each of the edges entering vertex k.

PrROOF. Suppose the following is a subgraph in the simulation graph

model, .7:
O NN EEEN G

Vertex k satisfies the conditions of Rule 4(a). Define I(k) to be the set of
vertices in V(G) with an outgoing edge that is incident to vertex . In other
words, this is the set of predecessors of vertex k. In the above subgraph,
I(k) = {A}). For simplicity, assume that there is exactly one state variable
change associated with every event vertex and that all edge conditions are
simple. That is, .%; is assumed to be an ESGM. Applying Rule 4(a), vertex %
is merged with the vertices in I(%). This yields the SGM, .#,, with the

following subgraph:
t
® -®

where f,. = f, U f,; that is, the state changes associated with vertex & are

ACM Transactions on Modeling and Computer Simulation, Vol 2., No. 1, January 1992

Structural and Behavioral Equivalence of Simulation Models . 97

simply appended to the state changes associated with vertex A. Note that .7,
is not an ESGM. Therefore, we construct .%; before we seek an isomorphism
between the two subgraphs. Application of expansion rules yields the follow-
ing subgraph:

An isomorphism between the two models, .#; and .#¥, is sought next.

®: O(A) =A1, B(k) = A2, and O(B) = B.

O OA k) = (A1, A2), and ®,(%k, B)) = (A2, B).

®_: The mapping is vacuous since there are no canceling edges in
the subgraph.

A ALY = fa1s AXS}) = fag, and A(fp) = f3.

Q: QG) =1i.

x: x(@®) ==t

A: Schruben’s rules do not consider event execution priorities. With this
added dimension, vertex %k can be merged with the vertices in I(%) only if
vertex k& has a higher execution priority than all of its predecessors. Under
this convention a mapping A can always be established.

(0,d,®,,A,Q, x,A) is the required isomorphism. Thus, we conclude that
with the added convention for event execution priorities, application of Rule
4(a) yields equivalent simulation models. O

Rule 4(c) is “symmetric” to Rule 4(a). We therefore restate it here without
proof.

Rule 4(c). Equivalent simulation graph models are possible with and
without event vertex k, if vertex % has no conditional exiting edges and if all
edges exiting vertex k& have zero delay times. If Rule 4(c) applies, then vertex
k may be combined with the termination event vertices of exiting edges.
State variable changes in vertex k are added to changes of these succeeding
vertices.

We need to address also the issue of event execution priorities. Under Rule
4(c), vertex k can be allowed to merge with its successor vertices only if it has
a lower execution priority than all of them.

Rule 4(b) states that “equivalent event graphs are possible with and
without event vertex k, if vertex % has no conditional exiting edges and f,
contains no edge conditioning state-variables.” Recall that Schruben’s defini-
tion of equivalence is based on the behavior of edge-conditioning state vari-
ables. It turns out that this is a fairly restrictive definition. For instance,
suppose that vertex k is associated with a performance-monitoring state
variable, which is updated periodically during the execution of the simula-
tion. Then, even though the conditions for Rule 4(b) hold, eliminating vertex
k and appending the associated state change (update of performance

ACM Transactions on Modeling and Computer Simulation, Vol. 2, No. 1, January 1992.

98 . E. Y{icesan and L Schruben

measure) to either the preceding or succeeding vertices may result in the
update of the performance-monitoring state variable at the wrong instant in
simulated time. Therefore, Rule 4(b) is applicable only when there are no
state variable changes associated with vertex k%, that is, f, = J. Vertex % is
then the identity vertex, which is used solely to make the underlying struc-
ture of the model “transparent.” Rule 4(b) is revised as follows: equivalent
simulation graph models are possible with and without event vertex k, if
vertex %k has no conditional exiting edges and if there are no state variable
changes associated with it. If Rule 4(b) applies, the delay times for each edge
exiting vertex % is added to the delay time for each entering edge before
vertex k is removed.

Note that since the application of Rule 4(b) results in deletion of a vertex
and, at least, one edge, it is not possible to establish mappings ® and &..
Hence, this rule cannot be proved using the definition of structural
equivalence.

In the light of the above assertion, Rule 5 should also be restated as
follows: If f, = & for all interior vertices £ of an unconditional event tree,
then only the leaf vertices on the tree need be included in a simulation graph
model. Tt is important to recognize that the original Rule 4(b) is not a
theorem; however, the modification presented here can be applied often with
a valid reduction of event vertices.

In the above rules, the discussion of canceling edges is omitted. In other
words, the question of whether or not it is possible to remove a vertex with an
incoming and/or outgoing canceling edge is not addressed. This is because
canceling edges have been shown to be a modeling convenience rather than a
necessary modeling tool [23]. Nevertheless, if the user chooses to include
them in a model, then the following modifications should be made to the
reduction rules:

(1) Rule 4(a) does not apply if vertex % has an incoming canceling edge.
(2) Rule 4(c) does not apply if vertex % has an outgoing canceling edge.

To see why the reduction rules do not directly carry over to cases where
canceling edges are used, consider the following subgraph, where vertex £
satisfies the conditions of Rule 4(a):

~
Ta ot
™ @
The application of the rule yields the following subgraph (drawn so as to
demonstrate the implementation of “merged” vertices as a single-event rou-
tine). Notice that the (compound) event vertex (consisting of vertices Z and £
connected by a canceling edge) is meaningless.

ACM Transactions on Modeling and Computer Simulation, Vol. 2, No. 1, January 1992

Structural and Behavioral Equivalence of Simulation Models . 99

An analogous argument shows that modification (2) to Rule 4(c) is neces-
sary in the presence of canceling edges. The revised “reduction rules” are
summarized in Table V.

5. CONCLUDING COMMENTS

In this paper, a testable definition for discrete-event simulation model equi-
valence is introduced by shifting the emphasis from model behavior to model
structure. The new definition (structural equivalence), which is based on
establishing isomorphisms between sets of entities making up a discrete-event
model, is shown to be a sufficient, but not a necessary, condition for behav-
ioral equivalence. The application of this definition is illustrated then by
establishing equivalences between discrete-event systems modeled under
different world views. Finally, theorems for event reduction are presented. A
logical next step would be to automate this procedure by implementing it on a
computer.

APPENDIX: EXPANSION RULES

Given a simulation graph model (SGM), ., an elementary simulation graph
model (ESGM), %%, is generated through the application of expansion rules.
Expansion is the process of replacing a single vertex with m state variable
changes by m vertices in series, each with a single state variable change. It is
also the process of replacing an edge with a compound condition by a series of
identity vertices each connected with simple edges. This process preserves
the logical structure of the original model.

The expansion rules are presented in this appendix. Proofs of their validity
can be found in [23].

EXPANDING COMPOUND EDGE CONDITIONS
Rule 1: AND (n)

SE:

O
1
D)
4;

©

ACM Transactions on Modeling and Computer Simulation, Vol. 2, No. 1, January 1992.

100 .

E. Ylcesan and L. Schruben

Table V. Event Reduction Rules

Rule 4(a):

Rule 4(b):

Rule 4(c):

Rule 5:

Equivalent simulation graph models are possible with and without vertex & if
all of the following conditions hold:
(i) vertex % has no conditional exiting edges
(1i) all edges entering vertex % have zero delay time
(iii) vertex % has no incoming canceling edges
(iv) vertex k has a higher execution priority than all of its
predecessors.

Equivalent simulation graph models are possible with and without vertex % if
all of the following conditions hold:

(i) vertex % has no conditional exiting edges

(ii) there are no state variable changes associated with vertex %

Equivalent simulation graph models are possible with and without vertex % 1f
all of the following conditions hold:
(1) vertex % has no conditional exiting edges
(i1) all edges exiting vertex & have zero delay times
(i11) vertex £ has no exiting canceling edges
(iv) vertex % has a lower execution priority than all of its
SUCCeSSOrs.

If £, = © for all interior vertices of an unconditional event tree, then only leaf
vertices of the tree need be included in the simulation graph model.

Vertex I is the identity vertex. With this rule, it is assigned an execution
priority which is one higher than that of the origination vertex to ensure the
correct execution of the model. Notice that the expansion of a compound edge
condition is not unique. However, all possible expansions are isomorphic to

one another.

Rule 2: OR (V)

S:

SE:

ACM Transactions on Modeling and Computer Simulation, Vol 2, No. 1, January 1992.

Structural and Behavioral Equivalence of Simulation Models . 101

Vertices 11, 12, and I3 are all identity vertices. Their execution priorities
should be one higher than that of vertex A. P means that “condition P does
NOT hold.” This rule can be generalized by carefully considering all possible
combinations of the involved relations, perhaps with the help of a truth table.
Once again, notice that rule 2 produces nonunique but isomorphic graphs.

Hybrid cases, where both types of operators are used (e.g., (P U Q) N R]),
can be expanded by applying the above rules sequentially. The order of
application does not affect the end result.

EXPANDING COMPOUND EVENT VERTICES

Rule 3:
t P
C B (, -®
[X=x; Y=y]
t P
[X=x] fY=y]

The terms in square brackets denote the state transition functions, £,
associated with a particular vertex, v. The execution priority of the added
vertex should be one higher than that of its predecessor. Once again, note
that the expansion of a compound event vertex is not unique. However, all
expansions are isomorphic. In order to ensure correct execution of the event
vertex, care should be exercised in expanding compound vertices. To this end,
we can interpret the state transition function as a vector of state variable
assignments. In computer implementations, this corresponds to a block of
code where the flow of execution is sequential. Adhering to the original
sequence of state variable assignments while expanding the vertex practi-
cally ensures that the logical structure of the original model is preserved.
This rule generalizes to the case of an event vertex with m (> 2) state
variable assignments in a straightforward fashion.

EXPANDING PARAMETERIZED VERTICES

Rule 4:

S: A[j) [i]

ACM Transactions on Modeling and Computer Simulation, Vol. 2, No. 1, January 1992.

102 . E. Ylcesan and L. Schruben

where j €{1,2,..., m}and k €{1,2,..., n}. Then,

SE:

(i==m)

This is the general case illustrating the expansion procedure for parameter-
ized vertices: a subgraph consisting of two parameterized vertices A[j] and
Bl k] is replaced by a complete bipartite subgraph K,, ,. The edge attributes
in % become edge conditions in 5%

To close this appendix, two results concerning the validity of these rules
are reported without proof (see [23] for the proofs).

(1) The simple convention for execution priority assignments used in the
expansion process generates an ESGM that preserves the execution order
of the original model.

(2) The application of expansion rules yields equivalent ESGMs irrespective
of the sequence in which they are applied to expand a given SGM.

Note that the second result is a direct consequence of the fact that
isomorphic objects form an equivalence class.

ACKNOWLEDGMENTS

The authors would like to thank the associate editor and two anonymous
referees for their valuable suggestions, which led to considerable improve-
ments of an earlier version of the paper.

REFERENCES

1. Bonpy, J. A, AND Murty, U. 8. R. Graph Theory with Applications. North-Holland, New
York, 1976.

2. Consolidated Analysis Centers, Inc. Simscript IL5 Reference Handbook. Los Angeles, Calif.,
1976.

3. GareY, M. R., aND JOHNSON, D. S. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman and Co., New York, 1979.

4. HOPCROFT, J. E., AND TARJIAN, R. E. A V2 algorithm for determining isomorphism of planar
graphs. Inf. Process. Lett. (1971), 32-34.

5. HopGrorT, d. E.. aAND TARJAN, R. E. Isomorphism of Planar Graphs. Working paper. 1971.

6. HopcrorT, J. E., aND TarJaN, R. E. Efficient planarity testing. J. ACM 21, 4 (1974),
549-568.

ACM Transactions on Modehng and Computer Simulation, Vol. 2, No. 1, January 1992.

10.

11.

12.
13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Structural and Behavioral Equivalence of Simulation Models . 103

. HoovEr, S. V., AND PERRY, R. F. Simulation: A Problem Solving Approach. Addison-Wesley,

Reading, Mass., 1989.

. Law, A. M., anp Kevton, W. D. Stmulation Modeling and Analysis. 2nd ed. McGraw-Hill,

New York, 1991.

. LAWLER, E. Combinatorial Optimization: Networks and Matrowds. Holt, Rinehart, and

Winston, New York, 1976.

NaNCE, R. E. The time and state relationships in simulation modeling. Commun. ACM 24,
4 (Apr. 1991), 173-179.

OversTREET, C. M. Model specification and analysis for discrete event simulations. Ph.D.
dissertation. Virginia Tech., Blacksburg, Virginia, 1982.

PecpEN, C. D. Introduction to SIMAN. Systems Modeling Corp., State College, Penn, 1985.
PRITSKER, A. A. B. Introduction to Sumulation and SLAM II. 3rd ed. John Wiley & Sons,
New York, 1987.

SARGENT, R. G. Event graph modeling for simulation with an application to flexible manu-
facturing systems. Manage. Sci. 34, 10 (1988), 1231-1251.

ScHRIBER, T. J. An Iniroduction to Simulation Using GPSS / H. John Wiley, New York,
1990.

SCHRUBEN, L. Simulation modeling with event graphs. Commun. ACM 26, 11 (Nov. 1983),
957-963.

SCHRUBEN, L. Sigma: A Graphical Simulation System. The Scientific Press, San Francisco,
Calif., 1991.

SCHRUBEN, L. Sigma tutorial. In Proceedings of the 1991 Winter Simulation Conference.
1991.

SCHRUBEN, L., AND YUCESAN, E. On the generality of simulation graphs. Tech. Rep. #773.
Cornell University, Ithaca, N.Y., 1987.

SCHRUBEN, L., aND YUCESAN, E. Transaction tagging in highly congested simulations.
Queueing Syst. 3, (1988), 257-264.

SCHRUBEN, L., AND YUCESAN, E. Simulation graph duality: A world view transformation for
simple queueing models. In Proceedings of the Winter Simulation Conference. 1989, pp.
738-745.

SoMm, T. K., AND SarGENT, R. G. A formal development of event graphs as an aid to
structured and efficient simulation programs. ORSA J. Comput. 1, 2 (1989), 107-125.
YUcEsAN, E. Simulation graphs for the design and analysis of discrete event simulation
models. Ph.D. dissertation. Cornell University. Ithaca, N.Y., 1989.

YUcesan, E. Analysis of Markov chains using simulation graph models. In Proceedings of
the Winter Simulation Conference. 1990, pp. 468—471.

ZEIGLER, B. P. Theory of Modelling and Simulation. Reprint Edition. Robert E. Krieger
Publishing Company, Inc., Malabar, Fla., 1985.

Received December 1991; accepted June 1992

ACM Transactions on Modeling and Computer Simulation, Vol. 2, No. 1, January 1992.

