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ABSTRACT 

A broad overview of the simulation modeling language GPSS is 
given. The class of problems to which GPSS applies especially well 
is described, and commentary on the semantics and syntax of the 
language is offered. Various GPSS implementations are indicated, 
and vendor information is given. The GPSS learning-oriented 
literature is reviewed, and sources comparing GPSS and other 
simulation languages are cited. Professional GPSS courses are 
listed. A GPSS model and its output are presented and discussed in 
an appendix. 

The GPSS tutorial at the 1988 Winter Simulation Conference 
will show how one goes about building GPSS models. Paper copies 
of the tutorial transparencies will be given out at the tutorial. 

1. GPSS IN BRIEF 

GPSS (General Purpose Simulation System) is a popular 
(Christy and Watson, 1983) simulation modeling language whose 
use greatly eases the task of building computer models for certain 
types of discrete-event simulations. (A discrete-event simulation is 
one in which the state of the system being simulated changes at only 
a discrete, but possibly random, set of time points, called event 
times.) GPSS lends itself especially well to modeling systems in 
which discrete units of traffic compete for scarce resources (e.g., 
queuing systems), and is useful in determining how well such sys- 
tems will respond to the demands placed on them. GPSS has been 
applied, for example, to the modeling of manufacturing systems, 
communication systems, computing systems, transportation systems, 
inventory systems, and health-care systems, and has been used in 
chemical engineering, mining engineering, and cancer research. 

2. THE SEMANTICS AND SYNTAX OF GPSS 

GPSS offers a rich set of semantics, and yet is sparse in its syn- 
tax. For example, only seven statements (plus several run-control 
statements) are required to model a one-line, one-server queuing 
system in GPSS. These statements take such simple forms as 
“GENERATE l&6” and “QUEUE LINE”. No read, write, format, 
or test statements appear in the model. And yet, when a simulation is 
performed with the model, fixed-form, fixed-content output is pro- 
duced, providing statistics for the server (e.g., number of times cap- 
tured; average holding time per capture; fraction of time in use) and 
the waiting line (e.g., average content; maximum content; average 
time in line), etc. This limited example is roughly suggestive of the 
character of GPSS. A GPSS model for the one-line, one-server 
system is given here in an appendix. 

The sparse syntax of GPSS, coupled with its block-diagram 
orientation, makes it possible for the beginner to learn quickly a 

usable subset of the language. Because GPSS is rich and versatile, 
however, considerable study is required to master the language. 

The GPSS world view (stylized way of looking at a problem) 
involves visualizing units of traffic (“transactions”) which move 
along paths in a model as a simulation proceeds. This world view is 
so natural to the modeling of queuing systems that many other 
simulation languages have adopted it. The effect of this cross- 
fertilization can be found in such languages as SIMAN (Pegden 
1982), SIMSCRIPT (Russell 1983), SIMULA (Birtwistle 1979), 
and SLAM (Pritsker 1986). 

3. VARIOUS GPSS IMPLEMENTATIONS 

GPSS is a multi-vendor language. (75s is in contrast with such 
languages as SIMAN, SIMULA, SLAM, and SIMSCRIPT.) First 
released by International Business Machines (IBM) in 1961, GPSS 
evolved through a series of IBM releases (GPSS II; GPSS III; 
C~‘sS/360; and, in 1970, GPSS V (IBM 1970)), each an enhance- 
ment of its predecessor. Paralleling the IBM releases, a number of 
GPSS implementations were done for IBM and non-IBM hardware 
by non-IBM vendors. (See GPSS VENDOR INFORMATION 
below.) 

Wolverine Software’s GPSSIH, which is an upwardly 
compatible superset of IBM’s GPSS V, is the state-of-the-art GPSS 
for IBM mainframes and compatible computers (e.g., the Amdahl 
470 series, the Amdahl 5860, and National Advanced Systems’ 
NAS-9000) (Henriksen et al. 1988). Written in assembly language, 
mainframe GPSS/H (Release 1, 1977; Release 2, 1988) also runs on 
the IBM PClATl370. 

GPSS/H can be used on VAX computers as well, including the 
MicroVAX I, MicroVAX II, and MicroVAX 2000 (“desktop VAX”); 
and the 11/7xx and 8xxx machines. It also runs on Apollo; on Inte- 
grated Solutions’ Optimum 500 and Optimum V; on the NCR 
Tower32; on Silicon Graphics’ IRIS and IRIS Turbo; and on Sun 
Microsystems’ Sun-3. These non-mainframe implementations are 
written in “C”. An MS/DOS “C” implementation of GPSS/H which 
will run models of moderate size is also available. GPSS/H models 
can be transported across all GPSSH implementations (subject to 
possible size constraints if downloading to MS/IX% GPSSRI). 

MINUTEMAN Software vends GPSS/PC, which is a popular 
implementation of GPSS for the IBM PC. GPSS/PC was released in 
Version 1 in 1984 and in Version 2 in 1986 (Cox 1986, 1987). 
Version 3 is expected in 1989. 

Another GPSS implementation for the IBM PC is Simulation 
Software Ltd.‘s GPSSR/PC (Richards 1981, 1983). Simulation 
Software Ltd. also offers two other GPSS implementations: 
GPSSNX, for VAXNMS systems and MicroVAX systems (Martin 
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1981); and GPSS/C, for such 32-bit architecture colmputer systems 
as VAX UNIX, ELXSI UNIX, SUN-3 UNIX, PYRAMID UNIX:, 
NCR Tower UNIX, Data General MV/ECLIPSE, and the HP9000 
Series 500 (Richards 1984). 

Comments on the GPSS-FORTRAN (Schmidt 1987) offered try 
a German company, Dr. Staedtler Gmbh, are given below under 
LANGLJAGES WITH GPSS EMBEDDED. 

No one keeps a comprehensive list of current GPSS imple- 
mentations. In general, people not in a position to use IBM’s GPSS 
V, MINUTEMAN’s GPSS/PC, a Simulation Software Ltd. GPSS 
implementation, Staedtler’s GPSS-FORTRAN, or Wolverine’s 
GPSS/H, must do their own spadework to determine if a supported 
GPSS implementation is available for their computer system. 

4. GPSS, GRAPHICS, AND ANIMATION 

MINUTEMAN Software’s GPSS/PC, Version 2, provides 
built-in graphic and simulation animation features, including showing 
transaction movement in block diagrams; animation of movement of 
objects in two-dimensional representations of the system being mtxl- 
eled; and dynamic display of statistical aspects of a model, e.g., his- 
tograms portraying the ongoing realization of a random variable’s 
relative frequency function; and plots of the time series of values 
being taken on by variables of interest (Cox, 1987). 

Simulation Software Ltd.‘s GPSSR/pC also provides graphics 
and animation features, including many which are functionally 
,equivalent to those described in the preceding paragmph. 

Wolverine Software’s GPSS/H supports TESS (The Extended 
Simulation System; Standridge 1985), which provides a relational 
database manager, a graphics generator, a forms processor, a 
graphical network builder, and a library of FORTRAN subroutines 
for manipulating individual data items or data summaries. 

AutoSimulations, Inc., offers AUTOGRAM (AutoSimulations, 
Inc., 1986), which works with output from Wolverine Software’s 
GPSS/H to provide three-dimensional color animation of the system 
being modeled. AutoSimulations, Inc., also offers AUTOMOD 
(AUTOmatic MODel generator), a preprocessor for the GPSS/H 
compiler. AUTOMOD (AutoSimulations, Inc., 1986) converts high 
level system descriptions into GPSS/H statements, and then passes 
them on to the GPSS/H compiler. 

5. LANGUAGES WITH GPSS EMBEDDED 

The functions performed by the GPSS blocks have been 
embedded in other languages in several cases. Embedding takes the 
form of implementing the functions of the GPSS blocks and run- 
control statements in a host language as subroutines which augment 
the power of the host language. Calling these subroutines has the 
effect of simulating the GPSS blocks and run-control statements. 
For a paper on embedding, see Rubin (1981). 

An instance of such embedding is GPSS-FORTRAN (Schmidt 
1987), which sees use especially in Germany and Europe. GPSS- 
FORTRAN, Version 3, which supports continuous modeling and 
combined discrete-continuous modeling, as well as discrete-event 
modeling, can be used in batch mode and interactively, and in real 
time. It can be run on computer systems which have a FORTRAN 
compiler. 

Other examples of embedding are APL-GPSS (IBM 197’7) and 
PWl-GPSS (IBM 1981). (These implementations may no longer be 
supported by IBM.) 

6. GPSS VENDOR INFORMATION 

Vendor addresses and phone numbers are given below. (Please 
report omissions to Thomas J. Schriber.) 

1. 

2. 

3. 

4. 

5. 

International Business Machines, Inc. 
(GPSS V) 
Contact your local LEIM representative. 

MINUTEMAN Software Inc. 
(GPSS/PC, Version 2) 
P.O. Box 17 1 
Stow MA 01775 

Phone: 6 17-897-5662 

Simulation Software Ltd. 
(GPSSK; GPSSR/PC; GPSS/VX) 
760 Headley Drive 
London, Ontario, Canada N6H 3V8 

Phone: 5 19-657-8229 

Dr. Staedtler Gmbh 
(GPSS-FORTRAN) 
Muenchener Strasse 342 
8500 Nuemherg 50 West Germany 

Phone: 49/91 l/86-80-81 
(49 is West Germany; 9 11 is Nuemberg) 

Wolverine Software Corporation 
(GPSWH) 
7630 LittIe River Turnpike 
Annandale VA 22003-2653 

Phone: 703-750-3910 

Contact vendors for current leasing and/or purchase prices and 
academic and quantity discount policies. 

7. FIVE MYTHS ABOUT GPSS 

GPSS was fist released (by IBM) in 1961. Those familiar with 
early versions of the language (including IBM’s GPSS V, released in 
1970, and now no longer up to date), but who haven’t kept up with 
state-of-the-art GPSS, may suffer from one or more major 
misconceptions (“myths”) about GPSS (Henriksen 1983): 

1. Misconception: “GPSS is inherently slow.” 

Observation: Many early interpretive versions of GPSS 
are slow. In contrast, some state-of-the-art implementations 
produce compiled code and provide performance far superior to 
old versions. (For example, Wolverine Software’s GPSS/H 
executes 5 to 6 times faster on average than IBM’s GPSS V.) 
Some other state-of-the-art versions, although not producing 
compiled code, generate an intermediate level of code, making it 
unnecessary to reinterpret each statement each time it is acted 
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2. 

upon (e.g., MINUTEMAN Software’s GPSWPC). (For a 
published comparison of compilation and execution rates of 
Wolverine Software’s GPSS/H vs. SIMSCRIPT and SLAM, 
see GPSS AND OTHER SIMULATION LANGUAGES, 
below.) 

Misconception: “To do anything sophisticated in GPSS, 
HELP blocks must be used to combine GPSS models with 
FORTRAN routines.” 

(Note: “HELP blocks” can be used in GPSS modeling to 
interface an executing GPSS model with one or more external 
routines written in such other languages as FORTRAN, C, 
PL/l. or assembly language.) 

Observation: The power of state-of-the-art implementa- 
tions of GPSS is such that FORTRAN (or other) routines are 
rarely required. Some current implementations (e.g., Wolverine 
Software’s GPSS/H) include general purpose I/O statements, 
for example, which make it unnecessary to use HELP Blocks 
for I/O. And, when the use of FORTRAN routines is 
convenient for such things as obtaining t or z statistics, these 
routines can be directly invoked, without resorting to the use of 
HELP Blocks. 

Misconception: “GPSS is trivial to learn.” 

Observation: GPSS is trivial to learn only to a superficial 
depth. While rudiments of GPSS can be learned in a day, real 
mastery of GPSS requires considerable study (study at least 
equivalent to taking a three-credit course, or a five day intensive 
course) and practice. 

Misconception: “Modeling difficulties arise more frequently 
due to language shortcomings than due to Iack of modeler 
expertise.” 

Observation: Misconceptions about the lack of power of 
GPSS come from people with an insufficient grasp of the lau- 
guage. According to Geoffrey Gordon (1978), who originally 
conceived GPSS, misconceptions about lack of power, where 
the real problem is a lack of user expertise, have been 
commonplace since the earliest versions of GPSS. 

Misconception: “GPSS is batch oriented.” 

Observation: It is of course true that early versions of 
GPSS (from circa 1961 to 1977) were batch oriented. In 
cdntrast, current versions are designed both for interactive and 
batch use (e.g., GPSS/H; GPSS/PC, GPSS/VX, GPSS/C; 
GPSSR/PC; GPSS-FORTRAN). State-of-the-art versions 
offer powerful interactive monitoring capabilities which greatly 
speed up the process of building GPSS models, debugging 
them, and verifying them. 

8. THE GPSS LEARNING-ORIENTED LITERATURE 

There are several GPSS books (Bobillier, Kahan, and Probst 
1976; Cummings 1986; Donovan 1976; Gordon 1975; Greenberg 
1972; Schmidt 1987; Schriber 1974; Sulzer and Bouteille 1970; 
Weber, Trzebiner, and Tempelmeier 1983). Overviews of GPSS can 
also be found in general simulation texts, e.g. Banks and Carson 
(1984); Bratley, Fox, and Schrage (1987); Fishman (1978); Law 
and Kelton (1982); and Solomon (1983). 

The GPSS user’s manuals may also contain good learning-ori- 
ented material. For example, an instructive set of HELP block exam- 
ples and of built-in I/O use is given in Hem&en et al. (1988). 

GPSS is flexible enough to support taking a number of ap- 
proaches to modeling a system. Tradeoffs involved are discussed in 
Henriksen (1981; 1986), and in Heuriksen and Schriber (1986). 

The Proceedings of the 1988 (or 1987, 1986, etc.) Winter 
Simulation Conference are good sources of papers on simulation 
applications, including applications of GPSS. Until sold out, copies 
of these proceedings can be purchased from The Society for 
Computer Simulation (P.O. Box 17900, San Diego, California 
92117; phone 619-277-3888). 

9. GPSS AND OTHER SIMULATION LANGUAGES 

Introductory descriptions of Wolverine Software’s GPSS/H, 
and of SIMAN, SIMSCRIPT II.5 and SLAM II, are given in Banks 
and Carson (1985). The world view of each language is described, 
and one and the same problem is modeled in each language. 

Qualitative and quantitative comparisons of GPSS/H, SLAM, 
and SIMSCRIPT are given in Abed, Barta, and McRoberts (1985a, 
1985b). The quantitative comparison is based on a manufacturing 
job shop problem. “Both model size and model run length were 
varied to obtain data on compilation time, execution time, CPU time, 
memory time and the rate of change of these variables due to changes 
in the simulation period” (quoted from the 1985b article, p. 45). 
GPSS/H compiled 50 times faster than SIMSCRIPT and 10 times 
faster than SLAM. GPSS/H executed 3.8 times faster than 
SIMSCRIPT and 3.5 times faster than SLAM. 

GuideIines for evaluating simulation software, and a good 
comparison and contrast of various simulation languages (including 
Wolverine Software’s GPSS/H and MINUTEMAN Software’s 
GPSS/PC) and packages in terms of these guidelines, can be found 
in Haider and Banks (1986). 

10. PROFESSIONAL GPSS TRAINING COURSES 

GPSS training courses are available from these five sources: 

1. A four-day course featuring use of MINUTEMAN’s GPSS/PC 
is offered every several months in Corvallis, Oregon. Contact: 

Mr. Gerald Airth 
West Coast GPSS Training 
1463 SW “A” Street 
Corvallis, Oregon 97333 

Phone: 503-754-7919 

2. A five-day GPSS course is offered in November and March at 
the Georgia Institute of Technology. Contact: 

Professor Jerry Banks 
School of ISYE 
Georgia Institute of Technology 
Atlanta GA 30332 

Phone: 404-894-2312 
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3. Five-day GPSS courses are given each May at The Ryersoll 
Pokytechnical Institute in Toronto, Ontario, Canada. Contact: 

Professor R. Greer Lavery 
Ryerson Polytechnical Institute 
Math, Physics, and Computer Science 
350 Victoria 
Toronto, Ontario, Canada M5B 2K3 

Phone: 416-979-5000 XT 6972 

4. Professor Thomas J. Schriber teaches intensive five-day GPSS 
courses five times each year. For information about the July 
offering, held in Ann Arbor, Michigan, phone The University of 
Michigan’s Engineering Summer Conferences at 3 13-764-8490, 
or contact: 

Professor Thomas I. Schriber 
Computer and Information Systems - GSBA 
The University of Michigan 
Ann Arbor MI 48109-1234 

Phone: 313-764-1398 

For information about the November, February, and May 
offerings, held in such places as Washington, D.C. (November 
and May) and San Diego (February), contact either Professor 
Schriber or: 

Ms. Elizabeth Tucker 
Wolverine Software 
7630 Little River Turnpike 
Ammdale VA 22003-2653 

Phone: 703-750-3910 

Professor Schriber’s five-day course is also taught each June in 
Leuven (Louvain), Belgium (just outside Brussels). Taught in 
English, the course is hosted by Professor Dr. Maurice Verhelst 
and the University of Leuven’s Dept. of Applied Economics. 
Contact Professor Schriber or Professor Dr. Verhelst: 

Professor Dr. Maurice Verhelst 
University of Leuven 
D.T.E.W. 
Dekenstraat 2 
B3000 Leuven Belgium 

Phone: 32/l 6/22-75 17 
(32 is Belgium; 16 is Leuven) 

5. GPSS courses emphasizing applications in mining engineering 
are taught periodically in Australia and Las Vegas, Nevada. 
Contact: 

Professor John R. Sturgul 
School of Mining and Metallurgy 
South Australian Institute of Technology 
P.O. Box 1 
Ingle Farm 5098 South Australia 

Phone: 08/343/3248 
(08 is Australia) 

11. THE GPSS TUTORIAL 

In the GPSS tutorial at the Winter Simulation Conference, the 
fundamentals of queuing system logic and the modeling elements of- 
fered by GPS!S to implement this logic will be introduced and illus- 
trated. The tutorial will make use of transparencies, paper copies of 
which will be distributed to those in attendance. Others can obtain 
these materials from Professor Thomas J. Schriber (Graduate School 
of Business, The University of Michigan, Ann Arbor MI 48109- 
1234; 313-764-1398). 

APPENDIX A: A GPSS MODEL FOli A ONE-LINE, 
ONE-SERVER QUEUING SYSTEM 

This appendix shows a GPS!; model for a one-line, one-server 
queuing system. The appendix consists of these sections: 

A.1 Statement of the Problem 

A.2 The Approach Taken in Building the Model 

A.3 The GPSS Block Diagram for the Model 

A.4 The GPSS Model File 

A.5 Discussion of Selected Simulation Output 

A.6 Replications in GPSS 

A.1 Statement of the Problem 

In a manufacturing system, castings are sent to a drilling 
machine, where each casting is to have a hole drilled in it. The 
interarrival time of castings at the machine is uniformly distributed 
over the interval 15.0 + 4.5 minutes. The time required to drill a hole 
in a casting is 13.5 + 3.0 minutes, uniformly distributed. Castings 
are processed in f-irst-come, first-served order. Model this system in 
GPSS, making provision to collect queuing statistics for castings 
waiting their turn to be drilled. When the simulation starts, no 
castings are to be waiting to use the drill, and the drill is to be idle. 
Perform a single simulation with the model, simulating until holes 
have been drilled in 100 castings. Discuss the output produced at the 
end of the simulation. Finally, perform eight independent 
simulations with the model under the conditions described. Use the 
resulting output to compute 90% confidence intervals for the 
expected values of these three dependent random variables: (a) the 
time required to drill holes in 100 castings; and, during the time 
needed to drill holes in 100 castings: (b) the average number of 
castings in lime; (1~) the average time castings spend waiting in line. 

A.2 The Approach Taken in Building the Model 

Consider the time-ordered series of events associated with a 
casting as it moves through the one-line, one-server system: 

1. The casting arrives at the system. 

2. The casting requests the machine. 

3. The casting waits, if necessary, to capture the machine. (If the 
machine is idle when the casting arrives, waiting time will be 
zero. ) 

4. When its turn comes, the casting captures the machine. 
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5. The casting holds the machine in a state of capture while the ma- 
chine drills a hole in the casting. 

6. The casting gives up control of the machine. 

7. The casting leaves the system. 

Castings can be thought of as units of traffic which move 
through the castings-and-machine system. The units of traffic in this 
system are conveniently simulated in GPSS by language elements 
known as “transactions”. Transactions are units of traffic which are 
created and introduced into a model from time to time, move along a 
path in tbe model as the simulation proceeds, and then eventually are 
destroyed (leave the model). The experiences of transactions as they 
go through their life cycle in the castings-and-machine model are 
analogous to the experiences of castings as they go through the 
castings-and-machine system. Positioned on the path along which 
transactions move are blocks. Each block represents a subroutine. 
Movement of a transaction into a block causes the subroutine 
represented by the block to be executed. By choosing appropriate 
types of blocks, the GPSS modeler can easily build an appropriate 
path (sequence of blocks) for casting-transactions to move along to 
mimic the sequence of events outlined above. 

The sequence of blocks begins with the type of block used to 
create transactions from time to time during a simulation and 
introduce them into a model, the GENERATE block. The time that 
elapses between introduction of consecutive transactions into a model 
by a GENERATE block is “interarrival time.” In this model, the 
interarrival time random variable is uniformly distributed over the 
interval 15.0 + 4.5 minutes. (15.0 + 4.5 describes the interval 
ranging from 10.5 to 19.5.) The values 15.0 and 4.5 are provided in 
the model as GENERATE block operands. In programming 
language terms, a block’s operands correspond to the arguments 
whose values are passed to a subroutine at the time of subroutine 
execution. (In general, arbitrarily complicated interarrival time 
distributions can be modeled at GENERATE blocks. This is done by 
defining functions which describe the applicable distribution, then 
using these functions as GENERATE-block operands.) 

The sequence of blocks ends with a TERMINATE block. When 
a transaction moves into a TERMINATE block, the block subroutine 
destroys the transaction. A counter can be used with a TERMINATE 
block so that, after a specified destroy count has been reached (a 
count of 100 in this problem), a simulation will stop. (More 
generally, arbitrarily complicated stopping conditions can be 
specified in GPSS models.) 

A SEIZE block is included in the sequence. A transaction 
requests control of a single server by trying to move into a SEIZE 
block. A SEIZE block operand is used to identify the single server. 
If the server is idle when a transaction requests it, the requesting 
transaction moves into the SEIZE block without delay and takes 
control of the server. But if the server is currently under the control 
of one transaction when another requests it, the requesting 
transaction cannot move into the SEIZE block. Instead, it remains in 
its current block and waits its turn to capture the server. In the 
simplest case, turns come in the order of first-come, fit-served. (In 
general, arbitrarily complicated rules can be specified in GPSS to 
control the sequence in which servers are captured by requestors.) 

A RELEASE block is also included in the sequence. A 
transaction which is in control of a single server gives up control by 
moving into a RELEASE block. A RELEASE block operand is used 
to identify the server involved. 

GPSS automatically collects (and then, when a simulation stops, 
prints out) statistical information about single servers modeled with 
use of SEIZE and RELEASE blocks. (See section A.5 for an 
example of these statistics.) 

An ADVANCE block is used to delay transaction movement 
along its path for a specified simulated time. In this model, an 
ADVANCE block can be used to simulate the time required for the 
machine to drill a hole in a casting (“service time”). The service time 
random variable in this model is uniformly distributed over the 
interval 13.5 + 3.0 simulated minutes. The values 13.5 and 3.0 are 
provided in the model as ADVANCE block operands. (Arbitrarily 
complicated service time distributions can be modeled at ADVANCE 
blocks, of course. This is done by defining functions which describe 
the applicable distribution.) By placing an ADVANCE block on the 
path between SEIZE and RELEASE blocks, simulated time delays 
between server capture and release can be modeled. 

By moving into a QUEUE block, a transaction initiates 
membership for itself in a queue, or waiting line, This membership 
continues until the transaction brings its queue membership to an end 
by eventually moving into a DEPART block. An operand is used at 
the QUEUE and DEPART blocks to indicate the particular queue 
involved. By placing a SEIZE block between QUEUE and DEPART 
blocks, transactions will be members of a queue while waiting their 
turn to capture a server. GPSS automatically collects (and then, 
when a simulation stops, prints out) statistical information about such 
queues. (See section A.5 for an example of these statistics.) 

Limited space does not permit a more complete explanation here 
of the GPSS approach to modeling a one-line, one-server system. 
For a detailed explanation, see chapter 2 in Schriber (1974). 

Note that seven types of GPSS blocks have been commented on 
in this section (GENERATE; TERMINATE, SEIZE, RELEASE; 
ADVANCE; QUEUE, DEPART). In total, there are more thanji$y 
types of blocks in GPSS. By appropriate use of these block types, 
GPSS models of extremely complex systems can be built with 
considerable ease. 

A.3 The GPSS Block Diagram for the Model 

The model described above is shown in the form of a block dia- 
gram in Figure A. 1 (see the next page). The block diagram consists 
of a sequence of seven Blocks. (Each block type in Figure A.1 has 
its own unique, arbitrary geometry.) A simulation performed with 
the model will start with an empty queue and an idle server, as 
requested. (See Schriber (1974), chapter 2, for particulars.) 

The Figure A. 1 block diagram assumes implementation of the 
model in Wolverine Software’s GPSS/H, Release 2 (1988), which 
uses a floating point simulated clock and therefore permits 
specification of floating-point interarrival times at GENERATE 
blocks and holding times at ADVANCE blocks. (In versions of 
GPSS which use an integer clock, only integer-valued interarrival 
times and holding times can be realized. In integer-clock versions of 
this model, units registered by the simulated clock could then have 
the implicit dimension of tenths of minutes (instead of minutes), and 
the GENERATE and ADVANCE block operands could be stated as 
“150,45” and “130,35,” respectively.) 

The text appearing adjacent to the blocks in Figure A.1 (e.g., 
“castings arrive”; “check into the drill queue”) is not part of the 
model, but is simply commentary which has been (optionally) 
provided as documentation. 
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A.4 The GPSS Model File 

Figure A. 1 shows lhe block diagram for a GPSS one:-line, one- 
server model. To perform a simulation with tlhis model, the 
sfafemenf version of the Figure A. 1 block diagram must h prepared, 
and then supplemented with additional types of statements used to 
control compilation and execution of GPSS models. The resulting 
collection of statements must then be arranged in a model file. The 
model file is simply a computer file which can be used as the basis 
for performing one (or more) simulations. 

Figure A.2 shows the model file corresponding to the Figure 
A.1 block diagram. The statements making up the model file are 
shown against a “background” consisting of column identifiers (e.g., 
LABEL; OPERATION; and OPERANDS) and horizontal and 
vertical lines. The background is provided here only as a guide for 
the eye. The model file statements themselves have such simple 
forms as “SIMULATE”; “GENERATE 15.0,4.5”; etc. 

A column of statement numbers (“STMT NO.“) has been ap- 
pended at the far left in the Figure A.2 model file to support 
discussion here. Statements 7 through 13 correspond to the blocks 
in Figure A.l. These statements (optionally) include documentation 
text identical to that appearing in Figure A. 1. For example, the text 
“castings arrive” has been appended to statement 7, but is not an 
operational part of the statement, and could be deleted. 

Statements 1, 19, and 21 in Figure A.2 are examples of 
statements used to control the compilation and execution of GPSS 
models. They have been specified in Figure A.2 in such a way that 
when the model file is submitted for execution, only one simulation 
will take place. The simulation will stop when the 100th casting has 
been drilled. 

(Limited space doesn’t permit detailed discussion of GPSS run- 
conaol statements here. In general, however, flexible run control is 
easily achieved in GPSS. As will he shown in section A.6, for 
example, only a few changes need be made in the Figure A.2 model 
file to specify that a series of independent simulations (replications) is 
to be performed when the file is submitted for execution. Results 
from these independent simulations can then be statistically analyzed. 
See Kelton (1986) and Law and Kelton (1983)). 

Any model-file statement beginning with an asterisk (*) is a 
comments statement. Comments statements can (optionally) be 
included in a model file to make it easier (for a person) to read the 
model file. In Figure A.2, statements 2 through 6, 14 through 18, 
and 20 are examples of such statements. 

A.5 Discussion of Selected Simulation Output. 

Selected output automatically produced at the end of the 
simulation when the Figure A.2 model file was submitted for 
execution is displayed in Figure A.3 (please turn the page for Figure 
A.3). The displayed output consists of: (a) clock values; (b) block 
counts; (c) server statistics; (d) queue statistics; and (e) random 
number statistics, and will be discussed in that order. 

(a) Clock Values 

As indicated in Figure A.3(a), GPSS maintains two simulated 
clocks: a RELATIVE CLOCK, and an ABSOLUTE CLOCK. The 
ABSOLUTE CLOCK measures the simulated time that has elapsed 
since the simulation began (that is, since simulated time 0.0). The 
value of the ABSOLUTE CLOCK at the end of the simulation was 

I 

GEG2TE 

$.G, 

castings 
arrive 

check into 
the drill queue 

request/capture 
the drill 

check out of 
the drill queue 

ADVANCE r-l 13.5,J.O 

drilling time 
elapses 

give up 
the drill 

TERMINATE drilled castings 
leave 

Figure A.1: GPSS Block Diagram for a 
One-Line, One-Server Queuing System 

14%X.9+. In other words, it took 1488.9+ simulated minutes to drill 
holes in 100 castings in this replication. 

The RELATIVE CLOCK has no special meaning unless one or 
more RESET run-control statements are used in the model file. 
RESET statements have not been used here, and so the RELATIVE 
CLOCK has no special meaning in Figure A.3(a). 

(When a RESET statement is included in a model file and is 
executed, srutisrical aspects of the model are reinitialized, but units of 
traffic (transactions) are left intact wherever they are in the mode1 at 
the time of RESET statement execution. RESET statements are a 
useful tool for eliminating biased statistical observations in cases 
when a simulation proceeds through transient conditions and into a 
steady state of operation. The RElLATIVE CLOCK tells how much 
simulated time has elapsed since a RESET statement was most 
recently executed. When there are no RESET statements in a mode1 
file, the RELATIVE and ABSOLUTE CLOCKS have identical 
values, as in Figure A.3(a). For more particulars, see chapter 2 in 
Schriber (1974)). 
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STh4T 
NO. - 

l+ 

2+ 

SIMULATE 1s set a l-CPU-Second time trap 

I*I Model Segment 1 (Movement of Castings Through the System) * I 

IL * ************************+****************************************** 

GENERATE 15.0,4.5 castings arrive 

QUEUE DRILLQUE check into the drill queue 

94 I I II SEIZE I I DRILL request/capture the drill 

DEPART DRILLQUE check out of the drill queue 
I I I I 

ADVANCE 1353.0 drilling time elapses 

RELEASE DRILL give up the drill 

TERMINATE 1 drilled castings leave 

*Ir*+*****************ht************,** 

* Run-Control Statements * 

*~***************************************************************** 

IS-+ * 

19 3 

20 j * 

21 4 

START 100 start the simulation 

END I I end of model-file execution 

Figure A.2: A GPSS Model File 
for the Figure 1 Block Diagram 

(b) Block Counts 

Blocks in a model are assigned location numbers as part of 
model compilation. These numbers are assigned serially, from 1 
forward, in the top-down order in which blocks (block statements) 
appear in the model file. In Figure A.3(b), the leftmost column (the 
column labeled BLOCK) contains the numbers 1 through 7, 
corresponding to the 7 blocks in the Figure A.2 model tile. The 
GENERATE Block is in location 1, the QUEUE bIock is in location 
2, . . . , the TERMINATE block is in location 7. 

In Figure A.3(b), the second column (the column labeled CUR- 
RENT) shows the counts of the number of transactions currently in 
the corresponding blocks at the time the output was produced. When 
the CURRENT count is zero, printing of the zero is suppressed. The 
only block with a nonzero CURRENT count in Figure A.3(b) is the 
block in location 2, the QUEUE block. (When the Figure A.3 

printout was produced, there was 1 transaction in the QUEUE block, 
simulating a casting waiting its turn to use the drilling machine.) 

The third column in Figure A.3(b) (the column labeled TOTAL) 
shows the counts of the number of transactions which moved into the 
corresponding blocks during the simulation. For example, the 
TOTAL count at the location 1 GENERATE block is 101, indicating 
that 101 casting-transactions came into the model through that block. 
The TOTAL count at the location 2 QUEUE block is also 101, 
indicating that all 101 of these casting-transactions initiated 
membership for themselves in the queue of castings waiting their turn 
to use the machine. The TOTAL count at the location 3 SEIZE block 
is 100, indicating that 100 of these casting-transactions captured the 
machine during the simulation. (Of the 101 casting-transactions 
which moved into the Iocation 2 QUEUE block, 100 eventually 
moved into the location 3 SEIZE block, and one is still in the 
QUEUE block.) 

77 



In general, CURRENT and TOTAL block counts indicate the 
current state and total extent of traffic movement along .the various 
paths in a model. This information can be of considerable use in 
analyzing model behavior. Furthermore, CURRENT and TOTAL 
block counts can be accessed by transactions during the course of a 
simulation (as values of GPSS standard numerical an’ributes, CR 
reserved words). Such block-count information can be used to 
support “real time” decision making on the part of transactions as a 
simulation proceeds, so that transaction movement and path selection 
can depend on the state of the model at the time the movement and 
path selection are taking place. 

(4) 

(c) Server Statistics 

Figure A.~(c) shows server (drill) statistics accumulated during 
the simulation. The columns in the figure have been numbered (not 
by the GPSS software, but after the fact) to make it easy here to refer 
to the information they contain. The meaning of the information in 
each of these columns will now be indicated by column number: 

(1) 

(2) 

(3) 

The FACILITY column lists the identifier used in the model 
for the single server (the DRILL, in this case) for which 
statistics are being reported. 

(In GPSS, the facility entity used to model single servers. A 
single server is referred to as a “facility.” The postsimulation 
statistical report contains one row of information for each 
single server, or facility, contained in a model.) 

For an unavailable (not in working order, or off duty) server 
to be in a state of capture (and therefore doing useful work) 
seems logically impossible. But there are some systems in 
which this situation can occur. For example, even though a 
worker has officially gone off duty because the end of a 
workshift has come, the worker might continue to work on 
hisiher own time for a while to complete an unfinished task. 
(This might not happen when unions are involved, but it might 
happen in a worker-owned company.) As another example, 
the time for scheduled machine maintenance might come (with 
a period of official machine unavailability starting as a result), 
but before maintenance actually begins, the machine might 
continlce to be used until an ongoing piece of work it is doing 
has been finished. 

The --AVG-UTIL-DURING-- TOTAL TIME column shows Because the drilling machine was never out of working order 
theft-action of total simulated time that the server was in a state in this model, its utilization during unavailable time was zero, 
of capture. In this case, the DRILL was in use 91.7% of the and so the --AVG-UTIL-DURING-- UNAVL TIME has 
time. been left blank in Figure A.~(c) by the GPSS software. 

(Note that the expected value of the utilization random variable 
in this model is 0.90. This expected value is computed by 
dividing the expected service time, 13.5, by the expected 
interarrival time, 15.0.) 

(5) The ENTRIES column indicates the number of times the 
server was put into a state of capture during the simulation. 
This statistic is a capture count. In Figure A.~(c), the capture 
count is 100. (After the 100th casting-transaction to take 
control of the drill gave up control and terminated, the 
simulation immediately stopped.) 

The --AVG-UTIL-DURING-- AVAIL TIME column shows 
the fraction of available simulated time that the server was in a 
state of capture. A server’s “available simulated time” is the 
amount of simulated time during which the server was “in 
working order” (or “on duty”) during a simulation. 

(6) 

In general, a server in a system is usually not in working order 
or on duty all the time, and cannot be expected to provide 
service when not in working order or not on duty. For 
example, if a machine breaks down, it cannot be expected to 
provide service until after it has been put back into working 
order. As another example, even though a machine has not 
broken down, its services might be withdrawn temporarily so 
that preventiie maintenance can be performed on it. While the 
preventive maintenance is taking place, the machine cannot be 
expected to provide service. In GPSS, a server which is in 
working order (on duty) is said to be available, and a server 
not in working order (not on duty) is said to be unavailable. 
(Note that the concept of “available/unavailable” is not the 
same as the concept of “idle/captured.“) GPSS provides a rich 
capability for moving servers back and forth between states of 
“availability” and “unavailability,” in the sense just described, 
and produces server statistics accordingly. This 
“available/unavailable” capability has not been used in the 
simple castings-and-machine model here. As a result, the 

(7) 

(8) 

(9) 

The AVERAGE TIME/XACT column shows the average 
holding time per capture of the server. (XACT is an 
abbreviation for transaction.) The AVERAGE TIME/XACT in 
Figure A.~(c) is 13.6+. (Note that the expected value of the 
holding time random variable is 13.5. This value has been 
supplied as the fist of the ADVANCE block’s operands.) 

The CURRENT STATUS column indicates the server’s “in 
working order” (“on duty”) vs. “not in working order” (“off 
duty”) status at the time the statistical report was produced. 
AVAIL means “in working order,” whereas UNAVAIL means 
“not in working order.” Figure A.~(c) shows that the DRILL 
was AVAIL at the end of the simulation. (In this model, it 
was AVAIL during the entire simulation.) 

The PERCENT AVAIL column shows the fraction of total 
simulated time that the server was “in working order” (“on 
duty”). Figure A.~(c) shows that the DRILL was “available” 
100% of the time during the simulation. 

The SEIZING XACT column shows the number of the 
transaction (if any) holding the server in a state of capture 
when the statistical report was produced. If a server is not 
captured, the SEIZING XACT column is blank, as in Figure 
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simulated drilling machine was in working order during the 
entire simulation. 

Because available simulated time matches rotal simulated time 
in this model, the entries in columns 2 and 3 in Figure A.~(c) 
are logically identical. ,4s a result, the --AVG-UTIL- 
DURING-- AVAIL TIME ,column has been left blank by the 
GPSS software. 

The --AVG-UTIL-DURING-- UNAVL TIME column shows 
the faction of unavailable simulated time that the server was in 
a state of capture. A server’s “unavailable simulated time” is 
the total time the server was “not in working order”. 



RELATIVE CLOCK: 1488.9629 ABSOLUTE CLOCK: 1488.9629 

(a) Clock Values 

BLOCK CURRENT TOTAL 

; 1 101 101 
3 100 

; 100 100 
6 100 
7 100 

(b) Block Counts 

(2) (3) (4) 
(1) --AVG-UTIL-DURING-- (5) (45) (7) (8) (9) (10) 

FACILITY TOTAL AVAIL UNAVL ENTRIES AVERAGE PERCENT SEIZING PREEMPTING 
TIME TIME TIME TIME/XACT AVAIL XACT XACT 

DRILL ,917 

(c) Drilling-Machine Statistics 

100 13.655 AVAIL 100.0 

(1) (2) (3) 
AVERAGE 

(4) (5) (6) 
ZERO PERCENT 

(7) (8) 
MAXIMUM 

(9) 
QUEUE TOTAL AVERAGE SAVERAGE 

CONTENTS CONTENTS 
QTABLE 

ENTRIES ENTRIES ZEROS TIME/UNIT TIME/UNIT NUMBER 

DRILLQUE 2 .215 101 42 41.6 3.172 5.430 

(d) Queue Statistics 

R A%OM 
(2) (3) (4) 

SA$iLE 
(6) 

ANTITHETIC INITIAL CURRENT 
STREAM VARIATES POSITION POSITION 

1 OFF 100000 100202 

(e) Random-Number Generator Statistics 

CHI-SQUARE 
COUNT UNIFORMITY 

202 0.70 

Figure A.3: Selected Simulation Output 

A.~(c). (The simulation stopped immediately when the 100th 
casting to be drilled gave up control of the drill and terminated. 
This explains why the drill was not in a captured state when 
the simulation stopped, even though a casting-transaction was 
waiting at that time to capture the drill. Had the simulation 
continued at clock time 1488.9+, the waiting casting- 
transaction would have captured and started to use the drill at 
that clock time, etc. For particulars on the chronological order 
in which individual steps are carried out when a GPSS model 
is updated at a given simulated time, see chapter 2 in Schriber 
(1974).) 

As suggested above, transactions have unique numbers. They 
can also have many other individual properties, or attributes, 
just as the individual units of traffic moving through a real 
system often have individual properties. In a manufacturing 
system, for example, units of work-in-process might have 
properties such as a priority level, a job-type designation, an 
order number, a customer number, a routing sequence, and a 

(10) 

due date. Information of this sort can be attached to 
transactions in GPSS to support modeling systems in which 
units of traffic have individual characteristics. For details, see 
standard nurnen~cal attributes in general, and priority levels and 
transaction parameters in particular, in chapter 4 et seq. in 
Schriber (1974). 

The PREEMPTING XACT column shows the number of the 
transaction (if any) holding the server in a state of preemption 
at the time the statistical report was produced. A server is put 
into a state of preemption if a transaction takes the server away 
from another transaction. If a server is not in a state of 
preemption, the PREEMPTING XACT column is blank, as in 
Figure A.~(c). (The potential for preemptive use of the drill 
has not been modeled here.) 

(In many systems, preemptive use of some servers is 
permitted. For example, suppose a doctor working in a 
hospital emergency room is attending a patient who has 
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sprained his ankle. Suddenly another patient is brought in, 
needing immediate attention as the result of an automobile 
a.ccident. If the doctor interrupts his or her work on the 
sprained-ankle patient and begins working immediately on the 
automobile-accident patient, preemptive use of the, server (the 
doctor in this ‘case) is being made. GPSS provides an 
extended capability for modeling preemptive use of servers. 
Fyor particulars, see chapter 7 in Schriber (1974).) 

(d) Queue Statistics 

Figure A.3(d) shows queue (waiting-line) statistics accumulated 
during the simulation. The columns in the figure have been 
numbered (not by the GPSS software, but after the fact) to support 
discussion. The meaning of the information in each of these columns 
will now be indicated by column number: 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

The QUEUE column lists the identifier used in the model for 
the queue (the DRILLQUE, in this case) for which statistics 
are being reported. 

(In GPSS, the queue entity is used to gather waiting-line 
statistics. The postsimulation statistical report contains one 
row of information for each queue in a model.) 

The MAXIMUM CONTENTS column indicates the maximum 
length of the waiting line (this statistic has the value 2 in the 
case of the DRILLQUE). 

The AVERAGE CONTENTS column shows the average 
length of the waiting line (0.215 in the case of the 
DRlLLQUE). 

The TOTAL ENTRIES column shows the count of the number 
of times transactions joined the waiting line (101 in the case of 
the DRILLQUE). 

The ZERO ENTRIES column shows the count of the number 
of transactions which passed through the waiting line in zero 
simulated time (42 in the case of the DRILLQUE). (A 
transaction passes through a waiting line in zero simulated time 
by initiating and then ending waiting-line membership at one 
and the same simulated time. In the Figure A.1 model, note 
that each casting-transaction passes through the waiting line, 
whether or not it has to wait to take control of the drill.) 

The PERCENT ZEROS column shows the percentage of 
transactions which passed through the waiting line in zero 
simulated time (41.6 in the case of the DRILLQUE). In other 
words, PERCENT ZEROS is the percentage of castings which 
did not have to wait to take control of the drill. 

The AVERAGE TIME/UNIT column shows how much time 
transactions spent resident in the waiting line on average 
(3.172 in the case of the DRILLQUE). (Here, the term 
“UNIT” in the AVERAGE TIME/UNIT label means 
“transaction.“) 

The $AVERAGE TIME/UNIT column shows how much time 
transactions spent in the waiting line on average, excluding 
any transactions which passed through the waiting line in zero 
simulated time. To put this in other words, the $AVERAGE 
TIME/UNIT (5.43 in the case of the DRILLQVE) is the 
average time in line for transactions which did have to wait to 
take control of the drill. 

(9) If a qtczble is used in connection with a queue, the QTABLE 
NUMBER column gives the number (or symbolic name) of 
the qtable. 

(The column (7) AVERAGE ‘TIMEKJNIT statistic only 
provides an estimate of the expected value of the “queue 
residence time” random variable. A qtable is a tabular 
histogram for the “queue residence time” random variable. 
Information contained in a citable includes not just the average 
in a sample of queue residence times, but also includes the 
sample standard deviation, and the relative frequencies with 
which the sampled queue residence times fell into various 
frequency classes prescribed by the model builder. A qtable 
could have been requested in this model by including one 
additional statement in the model file. (See chapter 4 in 
Schriber (1974).) 

(10) The CURRENT CONTENTS column shows the number of 
transactions which were rnembers of the waiting line at the 
time the Figure A.3(d) report was produced This column has 
been croppedfrom Figure /1.3(d) because of space limitations 
here. DRILLQUE had a CURRENT CONTENTS of I in 
Figure A.3(d). 

(e) Random Number Statistics 

Figure A.3(e) shows statistical information for the random 
numbers used to drive the simulation. The columns in the figure 
have been numbered ( after the fact) to support discussion. 

Before discussing Figure A.3(e), some things should be said 
about the use of random numbers in a simulation. It’s often nec- 
essary in the Figure A.1 model to sample from the distribution of 
casting interarrival times, and of drilling times. This sampling 
involves two steps: (1) A value is drawn from the population 
uniformly distributed on the O-l interval; (2) This value is then 
converted into a value from the population of interest, e.g., 
interarrival times uniformly distributed on the 15.0 + 4.5 interval. 

To support step (1) above, GPSS provides built-in O-l uniform 
random number generators. (Many older versions of GPSS have 8 
such generators; MINUTEMAN Software’s GPSS/PC and 
Wolverine Software’s GPSS/H have a virtually unlimited number of 
such generators. The motivation for having more than one such 
generator is explained and demonstrated in chapter 3 of Schriber 
(1974).) These generators are numbered 1, 2, 3, 4, etc. In the 
Figure A.1 model, uniform random number generator 1 is used to 
sample from both the intertival-time and the service-time 
distributions. (For particulars, see chapter 3 in Schriber (1974).) 

’ The O-l uniform random number generators often built into 
simulation software typically use a deterministic algorithm to produce 
what are calledpseti-random numbers. These numbers aren’t truly 
random, because they are computed by a reproducible deterministic 
procedure. This raises a question about how “good” a sample of 
such pseudo-random numbers is, statistically speaking. This matter 
of statistical goodness can be tested in one or more ways by 
simulation software for the pseudo-random numbers actually used 
during the course of a simulation. Results of such a test (or tests) 
can then be reported as part of the simulation results. 

Suppose the pseudo-random numbers contained in the samples 
coming from the O-l generators used in a simulation (replication) 
don’t test well for O-l uniformity. The modeler might then decide to 
throw away the results from that particular simulation (replication). 
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The “suspect” (or low probability) results can be replaced by using 
other pseudo-random numbers to carry out another replication. 
(“Other” pseuderandom numbers would be obtained by specifying a 
different starting point for the random number generator or 
generators. For particulars, see chapter 3 in Schriber (1974).) 

As part of its postsimulation output, GPSS/H (Release 2, but 
not Release 1) includes a statistical report on the 0- 1 uniform random 
numbers used in the simulation just completed. Referring to Figure 
A.3(e) by column number, the following information is contained in 
this report: 

(1) The RANDOM STREAM column gives the number of the O-l 
generator to which the report applies (generator 1 in Figure 
A.3(e)). 

(2) The A-TIC VARIATES column indicates whether the 
random numbers themselves or their anrithetic equivalents 
coming from the indicated generator were used. Column 
entries of OFF and ON are used to indicate whether the 
random numbers themselves (OFF) or their antithetic 
equivalents (ON) were used. For the case at hand, the random 
numbers themselves were used. 

(For a O-l uniform distribution, an “antithetic random number” 
is 1.0 minus the random number. For example, 0.15 is 
antithetic to 0.85. In some circumstances, antithetic random 
numbers can be used to reduce the variance of one-population 
estimators. For particulars, see Law and Kelton (1983).) 

(3) INITIAL POSITION indicates the ordinal position (in the time 
series of random numbers produced by the generator) from 
which thefirst random number came (position 100,000 for the 
case at hand). 

(4) CURRENT POSXTION indicates the ordinal position from 
which the nexr random number wiI1 come for the generator 
(position 100202 for the case at hand) if the simulation is re- 
sumed. 

(5) SAMPLE COUNT indicates how many random numbers were 
sampled from the generator (202 in this case). 

(6) CHI-SQUARE UNIFORMITY gives the achieved significance 
level of a Chi-square goodness-of-fit test for the uniformity of 
the random numbers sampled from the generator. An achieved 
significance level is a probability. The purpose of the chi- 
square goodness-of-fit test is to examine the hypothesis that 
the sampled random numbers come from a source of random 
numbers uniformly distributed on the O-1 interval. If the “Chi- 
square uniformity” number is 0.05 or less, then the probability 
is 0.05 or less of drawing a sample with this sample’s Chi- 
square statistic from a source of true O-l uniform random 
numbers. In such a low probability case, the modeler might 
want to throw away the results of the simulation, substituting 
the results of another replication instead. (The CHI-SQUARE 
UNIFORMITY statistic in the Figure A.3(e) replication is 
0.7.) 

A.6 Replications in GPSS 

This section briefly reviews the concepts of point and interval 
estimates of the expected value of a random variable (or, more 
generally, of an unknown population parameter), provides numeric 
examples for these concepts in the setting of the section A. 1 one-line, 

one-server model, and introduces the use of the GPSS CLEAR 
statement as a means for carrying out a series of independent 
simulations (replications) whose results can be used to form interval 
estimates. 

Figure A.3 provides point estimates of the expected values of 
such dependent random variables as the time required to drill holes in 
100 castings (ABSOLUTE CLOCK); the average length of the line 
of castings waiting for the drill (AVERAGE CONTENTS); and the 
average time castings spend waiting for the drill (AVERAGE 
TIME/UNIT). Recall (from a first course in statistics) that a point 
estimate is a single number used as an estimate of the value of an 
unknown population parameter (e.g., an expected value). The point 
estimates in Figure A.3 result from one simulation, or replication. In 
general, if a series of independent simulations is performed, the value 
of a point estimate will vary from simulation to simulation. One 
point estimate provides no information about the variability of the 
point estimator, and so it can be misleading to use a single point 
estimate to estimate the expected value of a random variable. 

By way of example, consider Table A.1, which shows the 
values of eight point estimates of: (a) the time required to drill holes 
in 100 castings; (b) the average length of the line of castings waiting 
for the drill; and (c) the average time castings spend waiting for the 
drill. The Table A.1 values result from a series of eight independent 
replications performed by using a slightly modified version of the 
Figure A.2 model file. (The modifications made in the Figure A.2 
model file to produce the Table A.1 results are discussed below.) 
The variability in the point estimates from replication to replication is 
evident in Table A.l. For example, the time to drill 100 castings 
ranges from about 1488 minutes (replication 3) to about 1561 
minutes (replication 7), with a sample mean (for the sample of eight 
replications) of 1518.1 minutes and a sample standard deviation of 
25.97 minutes. Here, the sample standard deviation is relatively 
small (just under 2% of the sample mean). 

Similarly, for the eight replications in Table A.l, the average 
number of castings waiting for the drill ranges from 0.049 
{replication 7) to 0.215 (replication 1). with a sample mean of 0.139 
and a sample standard deviation of 0.062. Here, the sample standard 
deviation is quite large (just greater than 40% of the sample mean). 

Table A.l: Summary Statistics for Eight Independent 
Replications with the One-Line, One-Server Model 

Castings Waiting for the Drill 

Replication Time to Drill Average No, Average Time 
Number LOO Castings Waiting Spent Waiting 

1 1489.0 0.215 3.172 
2 1544.7 0.130 1.995 
: 1488.6 0.193 2.851 

1522.8 
2 

0.064 0.970 
1507.8 0.199 3.001 
1527.5 1.667 

5 
0.110 

1561.2 0.049 0.770 
1503.0 0.152 2.259 

Mean: 1518.1 0.139 2.09 

Standard 
Deviation’ 25.97 0.062 0.910 
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Finally, the average time castings spent waiting for the drill 
ranges from 0.770 minutes (replication 7) to 3.172 minutes 
(replication 1) in Table A.l, with a sample mean of :2.09 and a 
sample standard deviation of 0.910. Here, the sample standard 
deviation is again quite large (about 45% of the samp:le mean). 

The variability evident in the Table A.1 point estimates can be 
taken into account quantitatively by using the sample standard 
deviations to form interval estimates for the expected values of the 
corresponding random variables. Recall (from a first course in 
statistics) that an interval estimate of a population parameter is apair 
of numbers determining an interval within which the value of the 
parameter may lie. The interval which the pair of numbers 
determines is called a confidence interval. A contidence coefficient, 
such as 90% or 95%, is attached to this interval to indicate the 
confidence level, or degree of confidence we have that the population 
parameter does lie within the confidence interval. 

Table A.2 shows the 90% confidence intervals computed from 
the set of eight replications given in Table A.1. For example, the 
Table A.2 90% confidence interval for the time required to drill 100 
castings is [1499.5, 1536.71. In other words, we are 90% confident 
that the expected value of the “time to drill 100 castings” random 
variable falls somewhere in the interval between 1499.5 and 1536.7. 

Table A.2: 90% Confidence Intervals 
Resulting from the Table A.1 Replications 

Castings Waiting for the Drill 

Time to Drill Average No. 
100 Castings Waiting 

Average Time 
Spent Waiting 

[1499.5, 1536.71 10.094, 0.1841 r1.434, 2.7371 

(Recall that a given confidence interval either does or does not 
contain the expected value of the population parameter being 
estimated. Each number in the pair determining a confidence interval 
is a random variable. This means that if we produced another 8 
independent replications, then computed the resulting 90% confi- 
dence intervals as in Table A.2, they would, in general, differ from 
the Table A.2 confidence intervals. Suppose we repeatedly formed 
90% confidence intervals for the problem at hand, each based on 
another set of eight replications. Then, among all such confidence 
intervals, 90% of them will contain the value being estimated. This 
is what it means to say we are “90% confident” that any one such 
confidence interval does contain the value being estimated) 

(The steps followed in computing confidence intervals can be 
found in any introductory textbook on statistics, and in any general 
simulation textbook. It is recommended that interested persons 
consult a general simulation textbook, which will not only summarize 
how to compute confidence intervals but, perhaps more importantly, 
will also discuss the issues involved in producing statistically valid 
results via simulation. A simtdation text will also discuss the 
distinction between “terminating” and “steady state” simulations, will 
explain various alternative statistical methodologies for analysis of 
simulation output (e.g., the method of replications; the method of 
batch means; time series methods), and so on.) 

Now consider the operational aspects of producing replications 
in GPSS simulations. The replications whose results are 
summarized in Table A.1 were produced with use of a GPSS 
CLEAR statement. The CLEAR statement is a run-control statement. 
When a GPSS model is “cleared” (that is, when a CLEAR statement 
is executed), the following two actions occur: 

1. All transactions in the model (if any) are destroyed. 

2. Statistical aspects of the model are reinitialized (e.g., facility 
capture counts are set back to :zero; facility total time captured is 
set back to zero; queue entry counts are set back to zero; total 
queue residence time is set back to zero; the RELATIVE and 
ABSOLUTE CLOCKS are set back to zero; etc.). 

CLEARing a model has the effect, then, of returning the model 
to its original starting point, with one important exception. Executing 
a CLEAR statement does not cause the setting of the random number 
generator(s) being used in a mode.1 to be reinitialized. Instead, the 
random number generators are left “as is.” The result of CLEARing 
a model, then, is to set the stage for carrying out another simulation 
with the model, a simulation which will be independent of the one or 
more immediately preceding simulations because the O-l uniform 
random numbers used to drive the simulation will (or should) be 
independent of those used to drive the preceding simulation(s). 

For example, suppose the START statement (STMT NO. 19) in 
Figure A.2 were followed by a CLEAR statement, and then by 
another START statement, and then by an END statement. This 
sequence of four statements would take the form shown in Figure 
A.4. If the Figure A.2 model file were modified accordingly, and 
were submitted for execution, rwo replications would be performed 
with the one-line, one-server model. By including another six 
“CLEAR/START” statement pairs in the model file, then submitting 
the resulting model file for execution, the eight replications whose 
results are summarized in Table A.1 would be carried out. 

START 100 start the 1st replication 
* 

CLEAR clear the model 
* 

START 100 start the 2nd replication 
+ 

END end of model-file execution 

Figure A.4: A Modified STARTI...IEND 
Sequence for the Figure A.2 Model File 

If the technique described in the preceding paragraph is 
followed, then there will be seven consecutive “CLEAR/START” 
pairs preceding the END statement at the bottom of the model file. In 
Wolverine Software’s GPSS/H, a single “CLEAR/START” 
statement pair can be made the subject of a DO/ENDDO loop, with 
control then traversing the loop any number of times (such as 7 
times) specified by the modeler. This is but one example in a large 
set of capabilities included in GPSS/H to facilitate the execution of 
run-control statements in GPSS modeling. 

Another way to produce confidence intervals in GPSS modeling 
is to design the model file in such a way that confidence intervals 
themselves (rather than just the individual results from a series of 
replications) are reported out at the end of a simulation. This can be 
done in GPSS/H. for example, with the use of LET statements 
(which are computational statements), PUTPIC statements (which 
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are general purpose output statements), and external ampervariables 
(which make it possible to invoke an external routine to obtain dy- 
namically the t statistic(s) needed to compute confidence intervals). 
This can also be done in MINUTEMAN Software’s GPSS/PC, for 
example, by combined use of the RESULT command (to put 
simulation results into a specified tile) and of the ANOVA command 
(for postsimulation analysis of variance). 
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