
Proceedings of the 1988 Winter Simulation Conference
M. Abrams, P. Haigh, and J. Comfort (eds.)

Perspectives on simulation using GPSS

Thomas I. Schriber
Graduate School of Business Administration

The University of Michigan
AM Arbor Ml 48109-1234 USA

ABSTRACT

A broad overview of the simulation modeling language GPSS is
given. The class of problems to which GPSS applies especially well
is described, and commentary on the semantics and syntax of the
language is offered. Various GPSS implementations are indicated,
and vendor information is given. The GPSS learning-oriented
literature is reviewed, and sources comparing GPSS and other
simulation languages are cited. Professional GPSS courses are
listed. A GPSS model and its output are presented and discussed in
an appendix.

The GPSS tutorial at the 1988 Winter Simulation Conference
will show how one goes about building GPSS models. Paper copies
of the tutorial transparencies will be given out at the tutorial.

1. GPSS IN BRIEF

GPSS (General Purpose Simulation System) is a popular
(Christy and Watson, 1983) simulation modeling language whose
use greatly eases the task of building computer models for certain
types of discrete-event simulations. (A discrete-event simulation is
one in which the state of the system being simulated changes at only
a discrete, but possibly random, set of time points, called event
times.) GPSS lends itself especially well to modeling systems in
which discrete units of traffic compete for scarce resources (e.g.,
queuing systems), and is useful in determining how well such sys-
tems will respond to the demands placed on them. GPSS has been
applied, for example, to the modeling of manufacturing systems,
communication systems, computing systems, transportation systems,
inventory systems, and health-care systems, and has been used in
chemical engineering, mining engineering, and cancer research.

2. THE SEMANTICS AND SYNTAX OF GPSS

GPSS offers a rich set of semantics, and yet is sparse in its syn-
tax. For example, only seven statements (plus several run-control
statements) are required to model a one-line, one-server queuing
system in GPSS. These statements take such simple forms as
“GENERATE l&6” and “QUEUE LINE”. No read, write, format,
or test statements appear in the model. And yet, when a simulation is
performed with the model, fixed-form, fixed-content output is pro-
duced, providing statistics for the server (e.g., number of times cap-
tured; average holding time per capture; fraction of time in use) and
the waiting line (e.g., average content; maximum content; average
time in line), etc. This limited example is roughly suggestive of the
character of GPSS. A GPSS model for the one-line, one-server
system is given here in an appendix.

The sparse syntax of GPSS, coupled with its block-diagram
orientation, makes it possible for the beginner to learn quickly a

usable subset of the language. Because GPSS is rich and versatile,
however, considerable study is required to master the language.

The GPSS world view (stylized way of looking at a problem)
involves visualizing units of traffic (“transactions”) which move
along paths in a model as a simulation proceeds. This world view is
so natural to the modeling of queuing systems that many other
simulation languages have adopted it. The effect of this cross-
fertilization can be found in such languages as SIMAN (Pegden
1982), SIMSCRIPT (Russell 1983), SIMULA (Birtwistle 1979),
and SLAM (Pritsker 1986).

3. VARIOUS GPSS IMPLEMENTATIONS

GPSS is a multi-vendor language. (75s is in contrast with such
languages as SIMAN, SIMULA, SLAM, and SIMSCRIPT.) First
released by International Business Machines (IBM) in 1961, GPSS
evolved through a series of IBM releases (GPSS II; GPSS III;
C~‘sS/360; and, in 1970, GPSS V (IBM 1970)), each an enhance-
ment of its predecessor. Paralleling the IBM releases, a number of
GPSS implementations were done for IBM and non-IBM hardware
by non-IBM vendors. (See GPSS VENDOR INFORMATION
below.)

Wolverine Software’s GPSSIH, which is an upwardly
compatible superset of IBM’s GPSS V, is the state-of-the-art GPSS
for IBM mainframes and compatible computers (e.g., the Amdahl
470 series, the Amdahl 5860, and National Advanced Systems’
NAS-9000) (Henriksen et al. 1988). Written in assembly language,
mainframe GPSS/H (Release 1, 1977; Release 2, 1988) also runs on
the IBM PClATl370.

GPSS/H can be used on VAX computers as well, including the
MicroVAX I, MicroVAX II, and MicroVAX 2000 (“desktop VAX”);
and the 11/7xx and 8xxx machines. It also runs on Apollo; on Inte-
grated Solutions’ Optimum 500 and Optimum V; on the NCR
Tower32; on Silicon Graphics’ IRIS and IRIS Turbo; and on Sun
Microsystems’ Sun-3. These non-mainframe implementations are
written in “C”. An MS/DOS “C” implementation of GPSS/H which
will run models of moderate size is also available. GPSS/H models
can be transported across all GPSSH implementations (subject to
possible size constraints if downloading to MS/IX% GPSSRI).

MINUTEMAN Software vends GPSS/PC, which is a popular
implementation of GPSS for the IBM PC. GPSS/PC was released in
Version 1 in 1984 and in Version 2 in 1986 (Cox 1986, 1987).
Version 3 is expected in 1989.

Another GPSS implementation for the IBM PC is Simulation
Software Ltd.‘s GPSSR/PC (Richards 1981, 1983). Simulation
Software Ltd. also offers two other GPSS implementations:
GPSSNX, for VAXNMS systems and MicroVAX systems (Martin

71

1981); and GPSS/C, for such 32-bit architecture colmputer systems
as VAX UNIX, ELXSI UNIX, SUN-3 UNIX, PYRAMID UNIX:,
NCR Tower UNIX, Data General MV/ECLIPSE, and the HP9000
Series 500 (Richards 1984).

Comments on the GPSS-FORTRAN (Schmidt 1987) offered try
a German company, Dr. Staedtler Gmbh, are given below under
LANGLJAGES WITH GPSS EMBEDDED.

No one keeps a comprehensive list of current GPSS imple-
mentations. In general, people not in a position to use IBM’s GPSS
V, MINUTEMAN’s GPSS/PC, a Simulation Software Ltd. GPSS
implementation, Staedtler’s GPSS-FORTRAN, or Wolverine’s
GPSS/H, must do their own spadework to determine if a supported
GPSS implementation is available for their computer system.

4. GPSS, GRAPHICS, AND ANIMATION

MINUTEMAN Software’s GPSS/PC, Version 2, provides
built-in graphic and simulation animation features, including showing
transaction movement in block diagrams; animation of movement of
objects in two-dimensional representations of the system being mtxl-
eled; and dynamic display of statistical aspects of a model, e.g., his-
tograms portraying the ongoing realization of a random variable’s
relative frequency function; and plots of the time series of values
being taken on by variables of interest (Cox, 1987).

Simulation Software Ltd.‘s GPSSR/pC also provides graphics
and animation features, including many which are functionally
,equivalent to those described in the preceding paragmph.

Wolverine Software’s GPSS/H supports TESS (The Extended
Simulation System; Standridge 1985), which provides a relational
database manager, a graphics generator, a forms processor, a
graphical network builder, and a library of FORTRAN subroutines
for manipulating individual data items or data summaries.

AutoSimulations, Inc., offers AUTOGRAM (AutoSimulations,
Inc., 1986), which works with output from Wolverine Software’s
GPSS/H to provide three-dimensional color animation of the system
being modeled. AutoSimulations, Inc., also offers AUTOMOD
(AUTOmatic MODel generator), a preprocessor for the GPSS/H
compiler. AUTOMOD (AutoSimulations, Inc., 1986) converts high
level system descriptions into GPSS/H statements, and then passes
them on to the GPSS/H compiler.

5. LANGUAGES WITH GPSS EMBEDDED

The functions performed by the GPSS blocks have been
embedded in other languages in several cases. Embedding takes the
form of implementing the functions of the GPSS blocks and run-
control statements in a host language as subroutines which augment
the power of the host language. Calling these subroutines has the
effect of simulating the GPSS blocks and run-control statements.
For a paper on embedding, see Rubin (1981).

An instance of such embedding is GPSS-FORTRAN (Schmidt
1987), which sees use especially in Germany and Europe. GPSS-
FORTRAN, Version 3, which supports continuous modeling and
combined discrete-continuous modeling, as well as discrete-event
modeling, can be used in batch mode and interactively, and in real
time. It can be run on computer systems which have a FORTRAN
compiler.

Other examples of embedding are APL-GPSS (IBM 197’7) and
PWl-GPSS (IBM 1981). (These implementations may no longer be
supported by IBM.)

6. GPSS VENDOR INFORMATION

Vendor addresses and phone numbers are given below. (Please
report omissions to Thomas J. Schriber.)

1.

2.

3.

4.

5.

International Business Machines, Inc.
(GPSS V)
Contact your local LEIM representative.

MINUTEMAN Software Inc.
(GPSS/PC, Version 2)
P.O. Box 17 1
Stow MA 01775

Phone: 6 17-897-5662

Simulation Software Ltd.
(GPSSK; GPSSR/PC; GPSS/VX)
760 Headley Drive
London, Ontario, Canada N6H 3V8

Phone: 5 19-657-8229

Dr. Staedtler Gmbh
(GPSS-FORTRAN)
Muenchener Strasse 342
8500 Nuemherg 50 West Germany

Phone: 49/91 l/86-80-81
(49 is West Germany; 9 11 is Nuemberg)

Wolverine Software Corporation
(GPSWH)
7630 LittIe River Turnpike
Annandale VA 22003-2653

Phone: 703-750-3910

Contact vendors for current leasing and/or purchase prices and
academic and quantity discount policies.

7. FIVE MYTHS ABOUT GPSS

GPSS was fist released (by IBM) in 1961. Those familiar with
early versions of the language (including IBM’s GPSS V, released in
1970, and now no longer up to date), but who haven’t kept up with
state-of-the-art GPSS, may suffer from one or more major
misconceptions (“myths”) about GPSS (Henriksen 1983):

1. Misconception: “GPSS is inherently slow.”

Observation: Many early interpretive versions of GPSS
are slow. In contrast, some state-of-the-art implementations
produce compiled code and provide performance far superior to
old versions. (For example, Wolverine Software’s GPSS/H
executes 5 to 6 times faster on average than IBM’s GPSS V.)
Some other state-of-the-art versions, although not producing
compiled code, generate an intermediate level of code, making it
unnecessary to reinterpret each statement each time it is acted

72

2.

upon (e.g., MINUTEMAN Software’s GPSWPC). (For a
published comparison of compilation and execution rates of
Wolverine Software’s GPSS/H vs. SIMSCRIPT and SLAM,
see GPSS AND OTHER SIMULATION LANGUAGES,
below.)

Misconception: “To do anything sophisticated in GPSS,
HELP blocks must be used to combine GPSS models with
FORTRAN routines.”

(Note: “HELP blocks” can be used in GPSS modeling to
interface an executing GPSS model with one or more external
routines written in such other languages as FORTRAN, C,
PL/l. or assembly language.)

Observation: The power of state-of-the-art implementa-
tions of GPSS is such that FORTRAN (or other) routines are
rarely required. Some current implementations (e.g., Wolverine
Software’s GPSS/H) include general purpose I/O statements,
for example, which make it unnecessary to use HELP Blocks
for I/O. And, when the use of FORTRAN routines is
convenient for such things as obtaining t or z statistics, these
routines can be directly invoked, without resorting to the use of
HELP Blocks.

Misconception: “GPSS is trivial to learn.”

Observation: GPSS is trivial to learn only to a superficial
depth. While rudiments of GPSS can be learned in a day, real
mastery of GPSS requires considerable study (study at least
equivalent to taking a three-credit course, or a five day intensive
course) and practice.

Misconception: “Modeling difficulties arise more frequently
due to language shortcomings than due to Iack of modeler
expertise.”

Observation: Misconceptions about the lack of power of
GPSS come from people with an insufficient grasp of the lau-
guage. According to Geoffrey Gordon (1978), who originally
conceived GPSS, misconceptions about lack of power, where
the real problem is a lack of user expertise, have been
commonplace since the earliest versions of GPSS.

Misconception: “GPSS is batch oriented.”

Observation: It is of course true that early versions of
GPSS (from circa 1961 to 1977) were batch oriented. In
cdntrast, current versions are designed both for interactive and
batch use (e.g., GPSS/H; GPSS/PC, GPSS/VX, GPSS/C;
GPSSR/PC; GPSS-FORTRAN). State-of-the-art versions
offer powerful interactive monitoring capabilities which greatly
speed up the process of building GPSS models, debugging
them, and verifying them.

8. THE GPSS LEARNING-ORIENTED LITERATURE

There are several GPSS books (Bobillier, Kahan, and Probst
1976; Cummings 1986; Donovan 1976; Gordon 1975; Greenberg
1972; Schmidt 1987; Schriber 1974; Sulzer and Bouteille 1970;
Weber, Trzebiner, and Tempelmeier 1983). Overviews of GPSS can
also be found in general simulation texts, e.g. Banks and Carson
(1984); Bratley, Fox, and Schrage (1987); Fishman (1978); Law
and Kelton (1982); and Solomon (1983).

The GPSS user’s manuals may also contain good learning-ori-
ented material. For example, an instructive set of HELP block exam-
ples and of built-in I/O use is given in Hem&en et al. (1988).

GPSS is flexible enough to support taking a number of ap-
proaches to modeling a system. Tradeoffs involved are discussed in
Henriksen (1981; 1986), and in Heuriksen and Schriber (1986).

The Proceedings of the 1988 (or 1987, 1986, etc.) Winter
Simulation Conference are good sources of papers on simulation
applications, including applications of GPSS. Until sold out, copies
of these proceedings can be purchased from The Society for
Computer Simulation (P.O. Box 17900, San Diego, California
92117; phone 619-277-3888).

9. GPSS AND OTHER SIMULATION LANGUAGES

Introductory descriptions of Wolverine Software’s GPSS/H,
and of SIMAN, SIMSCRIPT II.5 and SLAM II, are given in Banks
and Carson (1985). The world view of each language is described,
and one and the same problem is modeled in each language.

Qualitative and quantitative comparisons of GPSS/H, SLAM,
and SIMSCRIPT are given in Abed, Barta, and McRoberts (1985a,
1985b). The quantitative comparison is based on a manufacturing
job shop problem. “Both model size and model run length were
varied to obtain data on compilation time, execution time, CPU time,
memory time and the rate of change of these variables due to changes
in the simulation period” (quoted from the 1985b article, p. 45).
GPSS/H compiled 50 times faster than SIMSCRIPT and 10 times
faster than SLAM. GPSS/H executed 3.8 times faster than
SIMSCRIPT and 3.5 times faster than SLAM.

GuideIines for evaluating simulation software, and a good
comparison and contrast of various simulation languages (including
Wolverine Software’s GPSS/H and MINUTEMAN Software’s
GPSS/PC) and packages in terms of these guidelines, can be found
in Haider and Banks (1986).

10. PROFESSIONAL GPSS TRAINING COURSES

GPSS training courses are available from these five sources:

1. A four-day course featuring use of MINUTEMAN’s GPSS/PC
is offered every several months in Corvallis, Oregon. Contact:

Mr. Gerald Airth
West Coast GPSS Training
1463 SW “A” Street
Corvallis, Oregon 97333

Phone: 503-754-7919

2. A five-day GPSS course is offered in November and March at
the Georgia Institute of Technology. Contact:

Professor Jerry Banks
School of ISYE
Georgia Institute of Technology
Atlanta GA 30332

Phone: 404-894-2312

73

3. Five-day GPSS courses are given each May at The Ryersoll
Pokytechnical Institute in Toronto, Ontario, Canada. Contact:

Professor R. Greer Lavery
Ryerson Polytechnical Institute
Math, Physics, and Computer Science
350 Victoria
Toronto, Ontario, Canada M5B 2K3

Phone: 416-979-5000 XT 6972

4. Professor Thomas J. Schriber teaches intensive five-day GPSS
courses five times each year. For information about the July
offering, held in Ann Arbor, Michigan, phone The University of
Michigan’s Engineering Summer Conferences at 3 13-764-8490,
or contact:

Professor Thomas I. Schriber
Computer and Information Systems - GSBA
The University of Michigan
Ann Arbor MI 48109-1234

Phone: 313-764-1398

For information about the November, February, and May
offerings, held in such places as Washington, D.C. (November
and May) and San Diego (February), contact either Professor
Schriber or:

Ms. Elizabeth Tucker
Wolverine Software
7630 Little River Turnpike
Ammdale VA 22003-2653

Phone: 703-750-3910

Professor Schriber’s five-day course is also taught each June in
Leuven (Louvain), Belgium (just outside Brussels). Taught in
English, the course is hosted by Professor Dr. Maurice Verhelst
and the University of Leuven’s Dept. of Applied Economics.
Contact Professor Schriber or Professor Dr. Verhelst:

Professor Dr. Maurice Verhelst
University of Leuven
D.T.E.W.
Dekenstraat 2
B3000 Leuven Belgium

Phone: 32/l 6/22-75 17
(32 is Belgium; 16 is Leuven)

5. GPSS courses emphasizing applications in mining engineering
are taught periodically in Australia and Las Vegas, Nevada.
Contact:

Professor John R. Sturgul
School of Mining and Metallurgy
South Australian Institute of Technology
P.O. Box 1
Ingle Farm 5098 South Australia

Phone: 08/343/3248
(08 is Australia)

11. THE GPSS TUTORIAL

In the GPSS tutorial at the Winter Simulation Conference, the
fundamentals of queuing system logic and the modeling elements of-
fered by GPS!S to implement this logic will be introduced and illus-
trated. The tutorial will make use of transparencies, paper copies of
which will be distributed to those in attendance. Others can obtain
these materials from Professor Thomas J. Schriber (Graduate School
of Business, The University of Michigan, Ann Arbor MI 48109-
1234; 313-764-1398).

APPENDIX A: A GPSS MODEL FOli A ONE-LINE,
ONE-SERVER QUEUING SYSTEM

This appendix shows a GPS!; model for a one-line, one-server
queuing system. The appendix consists of these sections:

A.1 Statement of the Problem

A.2 The Approach Taken in Building the Model

A.3 The GPSS Block Diagram for the Model

A.4 The GPSS Model File

A.5 Discussion of Selected Simulation Output

A.6 Replications in GPSS

A.1 Statement of the Problem

In a manufacturing system, castings are sent to a drilling
machine, where each casting is to have a hole drilled in it. The
interarrival time of castings at the machine is uniformly distributed
over the interval 15.0 + 4.5 minutes. The time required to drill a hole
in a casting is 13.5 + 3.0 minutes, uniformly distributed. Castings
are processed in f-irst-come, first-served order. Model this system in
GPSS, making provision to collect queuing statistics for castings
waiting their turn to be drilled. When the simulation starts, no
castings are to be waiting to use the drill, and the drill is to be idle.
Perform a single simulation with the model, simulating until holes
have been drilled in 100 castings. Discuss the output produced at the
end of the simulation. Finally, perform eight independent
simulations with the model under the conditions described. Use the
resulting output to compute 90% confidence intervals for the
expected values of these three dependent random variables: (a) the
time required to drill holes in 100 castings; and, during the time
needed to drill holes in 100 castings: (b) the average number of
castings in lime; (1~) the average time castings spend waiting in line.

A.2 The Approach Taken in Building the Model

Consider the time-ordered series of events associated with a
casting as it moves through the one-line, one-server system:

1. The casting arrives at the system.

2. The casting requests the machine.

3. The casting waits, if necessary, to capture the machine. (If the
machine is idle when the casting arrives, waiting time will be
zero.)

4. When its turn comes, the casting captures the machine.

74

5. The casting holds the machine in a state of capture while the ma-
chine drills a hole in the casting.

6. The casting gives up control of the machine.

7. The casting leaves the system.

Castings can be thought of as units of traffic which move
through the castings-and-machine system. The units of traffic in this
system are conveniently simulated in GPSS by language elements
known as “transactions”. Transactions are units of traffic which are
created and introduced into a model from time to time, move along a
path in tbe model as the simulation proceeds, and then eventually are
destroyed (leave the model). The experiences of transactions as they
go through their life cycle in the castings-and-machine model are
analogous to the experiences of castings as they go through the
castings-and-machine system. Positioned on the path along which
transactions move are blocks. Each block represents a subroutine.
Movement of a transaction into a block causes the subroutine
represented by the block to be executed. By choosing appropriate
types of blocks, the GPSS modeler can easily build an appropriate
path (sequence of blocks) for casting-transactions to move along to
mimic the sequence of events outlined above.

The sequence of blocks begins with the type of block used to
create transactions from time to time during a simulation and
introduce them into a model, the GENERATE block. The time that
elapses between introduction of consecutive transactions into a model
by a GENERATE block is “interarrival time.” In this model, the
interarrival time random variable is uniformly distributed over the
interval 15.0 + 4.5 minutes. (15.0 + 4.5 describes the interval
ranging from 10.5 to 19.5.) The values 15.0 and 4.5 are provided in
the model as GENERATE block operands. In programming
language terms, a block’s operands correspond to the arguments
whose values are passed to a subroutine at the time of subroutine
execution. (In general, arbitrarily complicated interarrival time
distributions can be modeled at GENERATE blocks. This is done by
defining functions which describe the applicable distribution, then
using these functions as GENERATE-block operands.)

The sequence of blocks ends with a TERMINATE block. When
a transaction moves into a TERMINATE block, the block subroutine
destroys the transaction. A counter can be used with a TERMINATE
block so that, after a specified destroy count has been reached (a
count of 100 in this problem), a simulation will stop. (More
generally, arbitrarily complicated stopping conditions can be
specified in GPSS models.)

A SEIZE block is included in the sequence. A transaction
requests control of a single server by trying to move into a SEIZE
block. A SEIZE block operand is used to identify the single server.
If the server is idle when a transaction requests it, the requesting
transaction moves into the SEIZE block without delay and takes
control of the server. But if the server is currently under the control
of one transaction when another requests it, the requesting
transaction cannot move into the SEIZE block. Instead, it remains in
its current block and waits its turn to capture the server. In the
simplest case, turns come in the order of first-come, fit-served. (In
general, arbitrarily complicated rules can be specified in GPSS to
control the sequence in which servers are captured by requestors.)

A RELEASE block is also included in the sequence. A
transaction which is in control of a single server gives up control by
moving into a RELEASE block. A RELEASE block operand is used
to identify the server involved.

GPSS automatically collects (and then, when a simulation stops,
prints out) statistical information about single servers modeled with
use of SEIZE and RELEASE blocks. (See section A.5 for an
example of these statistics.)

An ADVANCE block is used to delay transaction movement
along its path for a specified simulated time. In this model, an
ADVANCE block can be used to simulate the time required for the
machine to drill a hole in a casting (“service time”). The service time
random variable in this model is uniformly distributed over the
interval 13.5 + 3.0 simulated minutes. The values 13.5 and 3.0 are
provided in the model as ADVANCE block operands. (Arbitrarily
complicated service time distributions can be modeled at ADVANCE
blocks, of course. This is done by defining functions which describe
the applicable distribution.) By placing an ADVANCE block on the
path between SEIZE and RELEASE blocks, simulated time delays
between server capture and release can be modeled.

By moving into a QUEUE block, a transaction initiates
membership for itself in a queue, or waiting line, This membership
continues until the transaction brings its queue membership to an end
by eventually moving into a DEPART block. An operand is used at
the QUEUE and DEPART blocks to indicate the particular queue
involved. By placing a SEIZE block between QUEUE and DEPART
blocks, transactions will be members of a queue while waiting their
turn to capture a server. GPSS automatically collects (and then,
when a simulation stops, prints out) statistical information about such
queues. (See section A.5 for an example of these statistics.)

Limited space does not permit a more complete explanation here
of the GPSS approach to modeling a one-line, one-server system.
For a detailed explanation, see chapter 2 in Schriber (1974).

Note that seven types of GPSS blocks have been commented on
in this section (GENERATE; TERMINATE, SEIZE, RELEASE;
ADVANCE; QUEUE, DEPART). In total, there are more thanji$y
types of blocks in GPSS. By appropriate use of these block types,
GPSS models of extremely complex systems can be built with
considerable ease.

A.3 The GPSS Block Diagram for the Model

The model described above is shown in the form of a block dia-
gram in Figure A. 1 (see the next page). The block diagram consists
of a sequence of seven Blocks. (Each block type in Figure A.1 has
its own unique, arbitrary geometry.) A simulation performed with
the model will start with an empty queue and an idle server, as
requested. (See Schriber (1974), chapter 2, for particulars.)

The Figure A. 1 block diagram assumes implementation of the
model in Wolverine Software’s GPSS/H, Release 2 (1988), which
uses a floating point simulated clock and therefore permits
specification of floating-point interarrival times at GENERATE
blocks and holding times at ADVANCE blocks. (In versions of
GPSS which use an integer clock, only integer-valued interarrival
times and holding times can be realized. In integer-clock versions of
this model, units registered by the simulated clock could then have
the implicit dimension of tenths of minutes (instead of minutes), and
the GENERATE and ADVANCE block operands could be stated as
“150,45” and “130,35,” respectively.)

The text appearing adjacent to the blocks in Figure A.1 (e.g.,
“castings arrive”; “check into the drill queue”) is not part of the
model, but is simply commentary which has been (optionally)
provided as documentation.

7s

A.4 The GPSS Model File

Figure A. 1 shows lhe block diagram for a GPSS one:-line, one-
server model. To perform a simulation with tlhis model, the
sfafemenf version of the Figure A. 1 block diagram must h prepared,
and then supplemented with additional types of statements used to
control compilation and execution of GPSS models. The resulting
collection of statements must then be arranged in a model file. The
model file is simply a computer file which can be used as the basis
for performing one (or more) simulations.

Figure A.2 shows the model file corresponding to the Figure
A.1 block diagram. The statements making up the model file are
shown against a “background” consisting of column identifiers (e.g.,
LABEL; OPERATION; and OPERANDS) and horizontal and
vertical lines. The background is provided here only as a guide for
the eye. The model file statements themselves have such simple
forms as “SIMULATE”; “GENERATE 15.0,4.5”; etc.

A column of statement numbers (“STMT NO.“) has been ap-
pended at the far left in the Figure A.2 model file to support
discussion here. Statements 7 through 13 correspond to the blocks
in Figure A.l. These statements (optionally) include documentation
text identical to that appearing in Figure A. 1. For example, the text
“castings arrive” has been appended to statement 7, but is not an
operational part of the statement, and could be deleted.

Statements 1, 19, and 21 in Figure A.2 are examples of
statements used to control the compilation and execution of GPSS
models. They have been specified in Figure A.2 in such a way that
when the model file is submitted for execution, only one simulation
will take place. The simulation will stop when the 100th casting has
been drilled.

(Limited space doesn’t permit detailed discussion of GPSS run-
conaol statements here. In general, however, flexible run control is
easily achieved in GPSS. As will he shown in section A.6, for
example, only a few changes need be made in the Figure A.2 model
file to specify that a series of independent simulations (replications) is
to be performed when the file is submitted for execution. Results
from these independent simulations can then be statistically analyzed.
See Kelton (1986) and Law and Kelton (1983)).

Any model-file statement beginning with an asterisk (*) is a
comments statement. Comments statements can (optionally) be
included in a model file to make it easier (for a person) to read the
model file. In Figure A.2, statements 2 through 6, 14 through 18,
and 20 are examples of such statements.

A.5 Discussion of Selected Simulation Output.

Selected output automatically produced at the end of the
simulation when the Figure A.2 model file was submitted for
execution is displayed in Figure A.3 (please turn the page for Figure
A.3). The displayed output consists of: (a) clock values; (b) block
counts; (c) server statistics; (d) queue statistics; and (e) random
number statistics, and will be discussed in that order.

(a) Clock Values

As indicated in Figure A.3(a), GPSS maintains two simulated
clocks: a RELATIVE CLOCK, and an ABSOLUTE CLOCK. The
ABSOLUTE CLOCK measures the simulated time that has elapsed
since the simulation began (that is, since simulated time 0.0). The
value of the ABSOLUTE CLOCK at the end of the simulation was

I

GEG2TE

$.G,

castings
arrive

check into
the drill queue

request/capture
the drill

check out of
the drill queue

ADVANCE r-l 13.5,J.O

drilling time
elapses

give up
the drill

TERMINATE drilled castings
leave

Figure A.1: GPSS Block Diagram for a
One-Line, One-Server Queuing System

14%X.9+. In other words, it took 1488.9+ simulated minutes to drill
holes in 100 castings in this replication.

The RELATIVE CLOCK has no special meaning unless one or
more RESET run-control statements are used in the model file.
RESET statements have not been used here, and so the RELATIVE
CLOCK has no special meaning in Figure A.3(a).

(When a RESET statement is included in a model file and is
executed, srutisrical aspects of the model are reinitialized, but units of
traffic (transactions) are left intact wherever they are in the mode1 at
the time of RESET statement execution. RESET statements are a
useful tool for eliminating biased statistical observations in cases
when a simulation proceeds through transient conditions and into a
steady state of operation. The RElLATIVE CLOCK tells how much
simulated time has elapsed since a RESET statement was most
recently executed. When there are no RESET statements in a mode1
file, the RELATIVE and ABSOLUTE CLOCKS have identical
values, as in Figure A.3(a). For more particulars, see chapter 2 in
Schriber (1974)).

76

STh4T
NO. -

l+

2+

SIMULATE 1s set a l-CPU-Second time trap

I*I Model Segment 1 (Movement of Castings Through the System) * I

IL * ************************+**

GENERATE 15.0,4.5 castings arrive

QUEUE DRILLQUE check into the drill queue

94 I I II SEIZE I I DRILL request/capture the drill

DEPART DRILLQUE check out of the drill queue
I I I I

ADVANCE 1353.0 drilling time elapses

RELEASE DRILL give up the drill

TERMINATE 1 drilled castings leave

Ir+*****************ht************,**

* Run-Control Statements *

*~***

IS-+ *

19 3

20 j *

21 4

START 100 start the simulation

END I I end of model-file execution

Figure A.2: A GPSS Model File
for the Figure 1 Block Diagram

(b) Block Counts

Blocks in a model are assigned location numbers as part of
model compilation. These numbers are assigned serially, from 1
forward, in the top-down order in which blocks (block statements)
appear in the model file. In Figure A.3(b), the leftmost column (the
column labeled BLOCK) contains the numbers 1 through 7,
corresponding to the 7 blocks in the Figure A.2 model tile. The
GENERATE Block is in location 1, the QUEUE bIock is in location
2, . . . , the TERMINATE block is in location 7.

In Figure A.3(b), the second column (the column labeled CUR-
RENT) shows the counts of the number of transactions currently in
the corresponding blocks at the time the output was produced. When
the CURRENT count is zero, printing of the zero is suppressed. The
only block with a nonzero CURRENT count in Figure A.3(b) is the
block in location 2, the QUEUE block. (When the Figure A.3

printout was produced, there was 1 transaction in the QUEUE block,
simulating a casting waiting its turn to use the drilling machine.)

The third column in Figure A.3(b) (the column labeled TOTAL)
shows the counts of the number of transactions which moved into the
corresponding blocks during the simulation. For example, the
TOTAL count at the location 1 GENERATE block is 101, indicating
that 101 casting-transactions came into the model through that block.
The TOTAL count at the location 2 QUEUE block is also 101,
indicating that all 101 of these casting-transactions initiated
membership for themselves in the queue of castings waiting their turn
to use the machine. The TOTAL count at the location 3 SEIZE block
is 100, indicating that 100 of these casting-transactions captured the
machine during the simulation. (Of the 101 casting-transactions
which moved into the Iocation 2 QUEUE block, 100 eventually
moved into the location 3 SEIZE block, and one is still in the
QUEUE block.)

77

In general, CURRENT and TOTAL block counts indicate the
current state and total extent of traffic movement along .the various
paths in a model. This information can be of considerable use in
analyzing model behavior. Furthermore, CURRENT and TOTAL
block counts can be accessed by transactions during the course of a
simulation (as values of GPSS standard numerical an’ributes, CR
reserved words). Such block-count information can be used to
support “real time” decision making on the part of transactions as a
simulation proceeds, so that transaction movement and path selection
can depend on the state of the model at the time the movement and
path selection are taking place.

(4)

(c) Server Statistics

Figure A.~(c) shows server (drill) statistics accumulated during
the simulation. The columns in the figure have been numbered (not
by the GPSS software, but after the fact) to make it easy here to refer
to the information they contain. The meaning of the information in
each of these columns will now be indicated by column number:

(1)

(2)

(3)

The FACILITY column lists the identifier used in the model
for the single server (the DRILL, in this case) for which
statistics are being reported.

(In GPSS, the facility entity used to model single servers. A
single server is referred to as a “facility.” The postsimulation
statistical report contains one row of information for each
single server, or facility, contained in a model.)

For an unavailable (not in working order, or off duty) server
to be in a state of capture (and therefore doing useful work)
seems logically impossible. But there are some systems in
which this situation can occur. For example, even though a
worker has officially gone off duty because the end of a
workshift has come, the worker might continue to work on
hisiher own time for a while to complete an unfinished task.
(This might not happen when unions are involved, but it might
happen in a worker-owned company.) As another example,
the time for scheduled machine maintenance might come (with
a period of official machine unavailability starting as a result),
but before maintenance actually begins, the machine might
continlce to be used until an ongoing piece of work it is doing
has been finished.

The --AVG-UTIL-DURING-- TOTAL TIME column shows Because the drilling machine was never out of working order
theft-action of total simulated time that the server was in a state in this model, its utilization during unavailable time was zero,
of capture. In this case, the DRILL was in use 91.7% of the and so the --AVG-UTIL-DURING-- UNAVL TIME has
time. been left blank in Figure A.~(c) by the GPSS software.

(Note that the expected value of the utilization random variable
in this model is 0.90. This expected value is computed by
dividing the expected service time, 13.5, by the expected
interarrival time, 15.0.)

(5) The ENTRIES column indicates the number of times the
server was put into a state of capture during the simulation.
This statistic is a capture count. In Figure A.~(c), the capture
count is 100. (After the 100th casting-transaction to take
control of the drill gave up control and terminated, the
simulation immediately stopped.)

The --AVG-UTIL-DURING-- AVAIL TIME column shows
the fraction of available simulated time that the server was in a
state of capture. A server’s “available simulated time” is the
amount of simulated time during which the server was “in
working order” (or “on duty”) during a simulation.

(6)

In general, a server in a system is usually not in working order
or on duty all the time, and cannot be expected to provide
service when not in working order or not on duty. For
example, if a machine breaks down, it cannot be expected to
provide service until after it has been put back into working
order. As another example, even though a machine has not
broken down, its services might be withdrawn temporarily so
that preventiie maintenance can be performed on it. While the
preventive maintenance is taking place, the machine cannot be
expected to provide service. In GPSS, a server which is in
working order (on duty) is said to be available, and a server
not in working order (not on duty) is said to be unavailable.
(Note that the concept of “available/unavailable” is not the
same as the concept of “idle/captured.“) GPSS provides a rich
capability for moving servers back and forth between states of
“availability” and “unavailability,” in the sense just described,
and produces server statistics accordingly. This
“available/unavailable” capability has not been used in the
simple castings-and-machine model here. As a result, the

(7)

(8)

(9)

The AVERAGE TIME/XACT column shows the average
holding time per capture of the server. (XACT is an
abbreviation for transaction.) The AVERAGE TIME/XACT in
Figure A.~(c) is 13.6+. (Note that the expected value of the
holding time random variable is 13.5. This value has been
supplied as the fist of the ADVANCE block’s operands.)

The CURRENT STATUS column indicates the server’s “in
working order” (“on duty”) vs. “not in working order” (“off
duty”) status at the time the statistical report was produced.
AVAIL means “in working order,” whereas UNAVAIL means
“not in working order.” Figure A.~(c) shows that the DRILL
was AVAIL at the end of the simulation. (In this model, it
was AVAIL during the entire simulation.)

The PERCENT AVAIL column shows the fraction of total
simulated time that the server was “in working order” (“on
duty”). Figure A.~(c) shows that the DRILL was “available”
100% of the time during the simulation.

The SEIZING XACT column shows the number of the
transaction (if any) holding the server in a state of capture
when the statistical report was produced. If a server is not
captured, the SEIZING XACT column is blank, as in Figure

78

simulated drilling machine was in working order during the
entire simulation.

Because available simulated time matches rotal simulated time
in this model, the entries in columns 2 and 3 in Figure A.~(c)
are logically identical. ,4s a result, the --AVG-UTIL-
DURING-- AVAIL TIME ,column has been left blank by the
GPSS software.

The --AVG-UTIL-DURING-- UNAVL TIME column shows
the faction of unavailable simulated time that the server was in
a state of capture. A server’s “unavailable simulated time” is
the total time the server was “not in working order”.

RELATIVE CLOCK: 1488.9629 ABSOLUTE CLOCK: 1488.9629

(a) Clock Values

BLOCK CURRENT TOTAL

; 1 101 101
3 100

; 100 100
6 100
7 100

(b) Block Counts

(2) (3) (4)
(1) --AVG-UTIL-DURING-- (5) (45) (7) (8) (9) (10)

FACILITY TOTAL AVAIL UNAVL ENTRIES AVERAGE PERCENT SEIZING PREEMPTING
TIME TIME TIME TIME/XACT AVAIL XACT XACT

DRILL ,917

(c) Drilling-Machine Statistics

100 13.655 AVAIL 100.0

(1) (2) (3)
AVERAGE

(4) (5) (6)
ZERO PERCENT

(7) (8)
MAXIMUM

(9)
QUEUE TOTAL AVERAGE SAVERAGE

CONTENTS CONTENTS
QTABLE

ENTRIES ENTRIES ZEROS TIME/UNIT TIME/UNIT NUMBER

DRILLQUE 2 .215 101 42 41.6 3.172 5.430

(d) Queue Statistics

R A%OM
(2) (3) (4)

SA$iLE
(6)

ANTITHETIC INITIAL CURRENT
STREAM VARIATES POSITION POSITION

1 OFF 100000 100202

(e) Random-Number Generator Statistics

CHI-SQUARE
COUNT UNIFORMITY

202 0.70

Figure A.3: Selected Simulation Output

A.~(c). (The simulation stopped immediately when the 100th
casting to be drilled gave up control of the drill and terminated.
This explains why the drill was not in a captured state when
the simulation stopped, even though a casting-transaction was
waiting at that time to capture the drill. Had the simulation
continued at clock time 1488.9+, the waiting casting-
transaction would have captured and started to use the drill at
that clock time, etc. For particulars on the chronological order
in which individual steps are carried out when a GPSS model
is updated at a given simulated time, see chapter 2 in Schriber
(1974).)

As suggested above, transactions have unique numbers. They
can also have many other individual properties, or attributes,
just as the individual units of traffic moving through a real
system often have individual properties. In a manufacturing
system, for example, units of work-in-process might have
properties such as a priority level, a job-type designation, an
order number, a customer number, a routing sequence, and a

(10)

due date. Information of this sort can be attached to
transactions in GPSS to support modeling systems in which
units of traffic have individual characteristics. For details, see
standard nurnen~cal attributes in general, and priority levels and
transaction parameters in particular, in chapter 4 et seq. in
Schriber (1974).

The PREEMPTING XACT column shows the number of the
transaction (if any) holding the server in a state of preemption
at the time the statistical report was produced. A server is put
into a state of preemption if a transaction takes the server away
from another transaction. If a server is not in a state of
preemption, the PREEMPTING XACT column is blank, as in
Figure A.~(c). (The potential for preemptive use of the drill
has not been modeled here.)

(In many systems, preemptive use of some servers is
permitted. For example, suppose a doctor working in a
hospital emergency room is attending a patient who has

79

sprained his ankle. Suddenly another patient is brought in,
needing immediate attention as the result of an automobile
a.ccident. If the doctor interrupts his or her work on the
sprained-ankle patient and begins working immediately on the
automobile-accident patient, preemptive use of the, server (the
doctor in this ‘case) is being made. GPSS provides an
extended capability for modeling preemptive use of servers.
Fyor particulars, see chapter 7 in Schriber (1974).)

(d) Queue Statistics

Figure A.3(d) shows queue (waiting-line) statistics accumulated
during the simulation. The columns in the figure have been
numbered (not by the GPSS software, but after the fact) to support
discussion. The meaning of the information in each of these columns
will now be indicated by column number:

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

The QUEUE column lists the identifier used in the model for
the queue (the DRILLQUE, in this case) for which statistics
are being reported.

(In GPSS, the queue entity is used to gather waiting-line
statistics. The postsimulation statistical report contains one
row of information for each queue in a model.)

The MAXIMUM CONTENTS column indicates the maximum
length of the waiting line (this statistic has the value 2 in the
case of the DRILLQUE).

The AVERAGE CONTENTS column shows the average
length of the waiting line (0.215 in the case of the
DRlLLQUE).

The TOTAL ENTRIES column shows the count of the number
of times transactions joined the waiting line (101 in the case of
the DRILLQUE).

The ZERO ENTRIES column shows the count of the number
of transactions which passed through the waiting line in zero
simulated time (42 in the case of the DRILLQUE). (A
transaction passes through a waiting line in zero simulated time
by initiating and then ending waiting-line membership at one
and the same simulated time. In the Figure A.1 model, note
that each casting-transaction passes through the waiting line,
whether or not it has to wait to take control of the drill.)

The PERCENT ZEROS column shows the percentage of
transactions which passed through the waiting line in zero
simulated time (41.6 in the case of the DRILLQUE). In other
words, PERCENT ZEROS is the percentage of castings which
did not have to wait to take control of the drill.

The AVERAGE TIME/UNIT column shows how much time
transactions spent resident in the waiting line on average
(3.172 in the case of the DRILLQUE). (Here, the term
“UNIT” in the AVERAGE TIME/UNIT label means
“transaction.“)

The $AVERAGE TIME/UNIT column shows how much time
transactions spent in the waiting line on average, excluding
any transactions which passed through the waiting line in zero
simulated time. To put this in other words, the $AVERAGE
TIME/UNIT (5.43 in the case of the DRILLQVE) is the
average time in line for transactions which did have to wait to
take control of the drill.

(9) If a qtczble is used in connection with a queue, the QTABLE
NUMBER column gives the number (or symbolic name) of
the qtable.

(The column (7) AVERAGE ‘TIMEKJNIT statistic only
provides an estimate of the expected value of the “queue
residence time” random variable. A qtable is a tabular
histogram for the “queue residence time” random variable.
Information contained in a citable includes not just the average
in a sample of queue residence times, but also includes the
sample standard deviation, and the relative frequencies with
which the sampled queue residence times fell into various
frequency classes prescribed by the model builder. A qtable
could have been requested in this model by including one
additional statement in the model file. (See chapter 4 in
Schriber (1974).)

(10) The CURRENT CONTENTS column shows the number of
transactions which were rnembers of the waiting line at the
time the Figure A.3(d) report was produced This column has
been croppedfrom Figure /1.3(d) because of space limitations
here. DRILLQUE had a CURRENT CONTENTS of I in
Figure A.3(d).

(e) Random Number Statistics

Figure A.3(e) shows statistical information for the random
numbers used to drive the simulation. The columns in the figure
have been numbered (after the fact) to support discussion.

Before discussing Figure A.3(e), some things should be said
about the use of random numbers in a simulation. It’s often nec-
essary in the Figure A.1 model to sample from the distribution of
casting interarrival times, and of drilling times. This sampling
involves two steps: (1) A value is drawn from the population
uniformly distributed on the O-l interval; (2) This value is then
converted into a value from the population of interest, e.g.,
interarrival times uniformly distributed on the 15.0 + 4.5 interval.

To support step (1) above, GPSS provides built-in O-l uniform
random number generators. (Many older versions of GPSS have 8
such generators; MINUTEMAN Software’s GPSS/PC and
Wolverine Software’s GPSS/H have a virtually unlimited number of
such generators. The motivation for having more than one such
generator is explained and demonstrated in chapter 3 of Schriber
(1974).) These generators are numbered 1, 2, 3, 4, etc. In the
Figure A.1 model, uniform random number generator 1 is used to
sample from both the intertival-time and the service-time
distributions. (For particulars, see chapter 3 in Schriber (1974).)

’ The O-l uniform random number generators often built into
simulation software typically use a deterministic algorithm to produce
what are calledpseti-random numbers. These numbers aren’t truly
random, because they are computed by a reproducible deterministic
procedure. This raises a question about how “good” a sample of
such pseudo-random numbers is, statistically speaking. This matter
of statistical goodness can be tested in one or more ways by
simulation software for the pseudo-random numbers actually used
during the course of a simulation. Results of such a test (or tests)
can then be reported as part of the simulation results.

Suppose the pseudo-random numbers contained in the samples
coming from the O-l generators used in a simulation (replication)
don’t test well for O-l uniformity. The modeler might then decide to
throw away the results from that particular simulation (replication).

80

The “suspect” (or low probability) results can be replaced by using
other pseudo-random numbers to carry out another replication.
(“Other” pseuderandom numbers would be obtained by specifying a
different starting point for the random number generator or
generators. For particulars, see chapter 3 in Schriber (1974).)

As part of its postsimulation output, GPSS/H (Release 2, but
not Release 1) includes a statistical report on the 0- 1 uniform random
numbers used in the simulation just completed. Referring to Figure
A.3(e) by column number, the following information is contained in
this report:

(1) The RANDOM STREAM column gives the number of the O-l
generator to which the report applies (generator 1 in Figure
A.3(e)).

(2) The A-TIC VARIATES column indicates whether the
random numbers themselves or their anrithetic equivalents
coming from the indicated generator were used. Column
entries of OFF and ON are used to indicate whether the
random numbers themselves (OFF) or their antithetic
equivalents (ON) were used. For the case at hand, the random
numbers themselves were used.

(For a O-l uniform distribution, an “antithetic random number”
is 1.0 minus the random number. For example, 0.15 is
antithetic to 0.85. In some circumstances, antithetic random
numbers can be used to reduce the variance of one-population
estimators. For particulars, see Law and Kelton (1983).)

(3) INITIAL POSITION indicates the ordinal position (in the time
series of random numbers produced by the generator) from
which thefirst random number came (position 100,000 for the
case at hand).

(4) CURRENT POSXTION indicates the ordinal position from
which the nexr random number wiI1 come for the generator
(position 100202 for the case at hand) if the simulation is re-
sumed.

(5) SAMPLE COUNT indicates how many random numbers were
sampled from the generator (202 in this case).

(6) CHI-SQUARE UNIFORMITY gives the achieved significance
level of a Chi-square goodness-of-fit test for the uniformity of
the random numbers sampled from the generator. An achieved
significance level is a probability. The purpose of the chi-
square goodness-of-fit test is to examine the hypothesis that
the sampled random numbers come from a source of random
numbers uniformly distributed on the O-1 interval. If the “Chi-
square uniformity” number is 0.05 or less, then the probability
is 0.05 or less of drawing a sample with this sample’s Chi-
square statistic from a source of true O-l uniform random
numbers. In such a low probability case, the modeler might
want to throw away the results of the simulation, substituting
the results of another replication instead. (The CHI-SQUARE
UNIFORMITY statistic in the Figure A.3(e) replication is
0.7.)

A.6 Replications in GPSS

This section briefly reviews the concepts of point and interval
estimates of the expected value of a random variable (or, more
generally, of an unknown population parameter), provides numeric
examples for these concepts in the setting of the section A. 1 one-line,

one-server model, and introduces the use of the GPSS CLEAR
statement as a means for carrying out a series of independent
simulations (replications) whose results can be used to form interval
estimates.

Figure A.3 provides point estimates of the expected values of
such dependent random variables as the time required to drill holes in
100 castings (ABSOLUTE CLOCK); the average length of the line
of castings waiting for the drill (AVERAGE CONTENTS); and the
average time castings spend waiting for the drill (AVERAGE
TIME/UNIT). Recall (from a first course in statistics) that a point
estimate is a single number used as an estimate of the value of an
unknown population parameter (e.g., an expected value). The point
estimates in Figure A.3 result from one simulation, or replication. In
general, if a series of independent simulations is performed, the value
of a point estimate will vary from simulation to simulation. One
point estimate provides no information about the variability of the
point estimator, and so it can be misleading to use a single point
estimate to estimate the expected value of a random variable.

By way of example, consider Table A.1, which shows the
values of eight point estimates of: (a) the time required to drill holes
in 100 castings; (b) the average length of the line of castings waiting
for the drill; and (c) the average time castings spend waiting for the
drill. The Table A.1 values result from a series of eight independent
replications performed by using a slightly modified version of the
Figure A.2 model file. (The modifications made in the Figure A.2
model file to produce the Table A.1 results are discussed below.)
The variability in the point estimates from replication to replication is
evident in Table A.l. For example, the time to drill 100 castings
ranges from about 1488 minutes (replication 3) to about 1561
minutes (replication 7), with a sample mean (for the sample of eight
replications) of 1518.1 minutes and a sample standard deviation of
25.97 minutes. Here, the sample standard deviation is relatively
small (just under 2% of the sample mean).

Similarly, for the eight replications in Table A.l, the average
number of castings waiting for the drill ranges from 0.049
{replication 7) to 0.215 (replication 1). with a sample mean of 0.139
and a sample standard deviation of 0.062. Here, the sample standard
deviation is quite large (just greater than 40% of the sample mean).

Table A.l: Summary Statistics for Eight Independent
Replications with the One-Line, One-Server Model

Castings Waiting for the Drill

Replication Time to Drill Average No, Average Time
Number LOO Castings Waiting Spent Waiting

1 1489.0 0.215 3.172
2 1544.7 0.130 1.995
: 1488.6 0.193 2.851

1522.8
2

0.064 0.970
1507.8 0.199 3.001
1527.5 1.667

5
0.110

1561.2 0.049 0.770
1503.0 0.152 2.259

Mean: 1518.1 0.139 2.09

Standard
Deviation’ 25.97 0.062 0.910

81

Finally, the average time castings spent waiting for the drill
ranges from 0.770 minutes (replication 7) to 3.172 minutes
(replication 1) in Table A.l, with a sample mean of :2.09 and a
sample standard deviation of 0.910. Here, the sample standard
deviation is again quite large (about 45% of the samp:le mean).

The variability evident in the Table A.1 point estimates can be
taken into account quantitatively by using the sample standard
deviations to form interval estimates for the expected values of the
corresponding random variables. Recall (from a first course in
statistics) that an interval estimate of a population parameter is apair
of numbers determining an interval within which the value of the
parameter may lie. The interval which the pair of numbers
determines is called a confidence interval. A contidence coefficient,
such as 90% or 95%, is attached to this interval to indicate the
confidence level, or degree of confidence we have that the population
parameter does lie within the confidence interval.

Table A.2 shows the 90% confidence intervals computed from
the set of eight replications given in Table A.1. For example, the
Table A.2 90% confidence interval for the time required to drill 100
castings is [1499.5, 1536.71. In other words, we are 90% confident
that the expected value of the “time to drill 100 castings” random
variable falls somewhere in the interval between 1499.5 and 1536.7.

Table A.2: 90% Confidence Intervals
Resulting from the Table A.1 Replications

Castings Waiting for the Drill

Time to Drill Average No.
100 Castings Waiting

Average Time
Spent Waiting

[1499.5, 1536.71 10.094, 0.1841 r1.434, 2.7371

(Recall that a given confidence interval either does or does not
contain the expected value of the population parameter being
estimated. Each number in the pair determining a confidence interval
is a random variable. This means that if we produced another 8
independent replications, then computed the resulting 90% confi-
dence intervals as in Table A.2, they would, in general, differ from
the Table A.2 confidence intervals. Suppose we repeatedly formed
90% confidence intervals for the problem at hand, each based on
another set of eight replications. Then, among all such confidence
intervals, 90% of them will contain the value being estimated. This
is what it means to say we are “90% confident” that any one such
confidence interval does contain the value being estimated)

(The steps followed in computing confidence intervals can be
found in any introductory textbook on statistics, and in any general
simulation textbook. It is recommended that interested persons
consult a general simulation textbook, which will not only summarize
how to compute confidence intervals but, perhaps more importantly,
will also discuss the issues involved in producing statistically valid
results via simulation. A simtdation text will also discuss the
distinction between “terminating” and “steady state” simulations, will
explain various alternative statistical methodologies for analysis of
simulation output (e.g., the method of replications; the method of
batch means; time series methods), and so on.)

Now consider the operational aspects of producing replications
in GPSS simulations. The replications whose results are
summarized in Table A.1 were produced with use of a GPSS
CLEAR statement. The CLEAR statement is a run-control statement.
When a GPSS model is “cleared” (that is, when a CLEAR statement
is executed), the following two actions occur:

1. All transactions in the model (if any) are destroyed.

2. Statistical aspects of the model are reinitialized (e.g., facility
capture counts are set back to :zero; facility total time captured is
set back to zero; queue entry counts are set back to zero; total
queue residence time is set back to zero; the RELATIVE and
ABSOLUTE CLOCKS are set back to zero; etc.).

CLEARing a model has the effect, then, of returning the model
to its original starting point, with one important exception. Executing
a CLEAR statement does not cause the setting of the random number
generator(s) being used in a mode.1 to be reinitialized. Instead, the
random number generators are left “as is.” The result of CLEARing
a model, then, is to set the stage for carrying out another simulation
with the model, a simulation which will be independent of the one or
more immediately preceding simulations because the O-l uniform
random numbers used to drive the simulation will (or should) be
independent of those used to drive the preceding simulation(s).

For example, suppose the START statement (STMT NO. 19) in
Figure A.2 were followed by a CLEAR statement, and then by
another START statement, and then by an END statement. This
sequence of four statements would take the form shown in Figure
A.4. If the Figure A.2 model file were modified accordingly, and
were submitted for execution, rwo replications would be performed
with the one-line, one-server model. By including another six
“CLEAR/START” statement pairs in the model file, then submitting
the resulting model file for execution, the eight replications whose
results are summarized in Table A.1 would be carried out.

START 100 start the 1st replication
*

CLEAR clear the model
*

START 100 start the 2nd replication
+

END end of model-file execution

Figure A.4: A Modified STARTI...IEND
Sequence for the Figure A.2 Model File

If the technique described in the preceding paragraph is
followed, then there will be seven consecutive “CLEAR/START”
pairs preceding the END statement at the bottom of the model file. In
Wolverine Software’s GPSS/H, a single “CLEAR/START”
statement pair can be made the subject of a DO/ENDDO loop, with
control then traversing the loop any number of times (such as 7
times) specified by the modeler. This is but one example in a large
set of capabilities included in GPSS/H to facilitate the execution of
run-control statements in GPSS modeling.

Another way to produce confidence intervals in GPSS modeling
is to design the model file in such a way that confidence intervals
themselves (rather than just the individual results from a series of
replications) are reported out at the end of a simulation. This can be
done in GPSS/H. for example, with the use of LET statements
(which are computational statements), PUTPIC statements (which

82

are general purpose output statements), and external ampervariables
(which make it possible to invoke an external routine to obtain dy-
namically the t statistic(s) needed to compute confidence intervals).
This can also be done in MINUTEMAN Software’s GPSS/PC, for
example, by combined use of the RESULT command (to put
simulation results into a specified tile) and of the ANOVA command
(for postsimulation analysis of variance).

REFERENCES

Abed, S. Y., Barta, T. A. and McRoberts, K. L. (1985a). A
qualitative comparison of three simulation languages: GPSSRI,
SLAM, SIMSCRIPT. Computers & Industrial Engineering 9,
35-43.

Abed, S. Y., Barta, T. A. and McRoberts, K. L. (1985b). A
quantitative comparison of three simulation languages:
GPSS/H, SLAM, SIMSCRIPT. Computers & Industrial
Engineering 9,45-66.

AutoSimulations, Inc. (1986). AVTOGRAM User’s Manual.
AutoSimulations, Inc., Bountiful, Utah.

AutoSimulations, Inc. (1986). AVTOMOD User’s Manual.
AutoSimulations, Inc., Bountiful, Utah.

Banks, J, and Carson, J. S. (1984). Discrete-Event System
Simulation. Prentice-Hall, Englewood Cliffs, New Jersey.

Banks, J. and Carson, J. S. (1985). Process-interaction simulation
languages. Simulation 44.

Bamette, D. T., and Sommerfeld, J. T. (1987). Discrete-event
simulation of a sequence of multicomponent batch distillation
columns. Compurers and Chemical Engineering 11.

Birtwistle, G. M. (1979). Discrete Event Modeling in Simula.
McMillan and Co., London.

Bobillier, P. A., Kahan, B. C. and Probst, A. R. (1976).
Simulation with GPSS and GPSSIV. Prentice-Hall, Englewood
Cliffs, New Jersey.

Bratley, P., Fox, B. L. and Schrage, L.E. (1987). A Guide to
Simulation, 2nd ed. Springer Verlag, Berlin and New York.

Christy, D. P. and Watson, H. J. (1983). The application of
simulation: a survey of industry practice. Inter&es 13,47-52.

Con, S. (1986). GPSSIPC User’s Manual, 2nd ed. MINUTEMAN
Software, Stow, Massachusetts.

Cox, S. (1987). Interactive graphics in GPSS/PC. Simulation 48,9

Crain, R. C., Brunner, D. T. and Henriksen, J. 0. Advanced use of
GPSSA-I. In: Proceedings of the I987 Winter Simulation Con-
ference (A. Thesen, H. Grant, and W. D. Kelton, eds.). The
Society for Computer Simulation, San Diego, California.

Cummings, G. F. GPSSIPC Simulation Tutorials. MINUTEMAN
Software, Stow, Massachusetts.

Donovan, T. M. (1976). GPSS Simulation Made Simple. Wiley-
Interscience, Chichester, England.

Fishman, G. S. (1978). Principles of Discrete Event Simulation.
Wiley-Interscience, New York.

Gordon, G. (1975). The Application of GPSS V to Discrete Sys-
tems Simulation. Prentice-Hall, Englewood Cliffs, New Jersey.

Gordon, G. (1978). The development of the General Purpose
Simulation System (GPSS). In: SIGPLAN Notices (History of
Programming Languages Conference) 13, No. 8. Association
for Computing Machinery, New York, 183- 198.

Greenberg, S. (1972). GPSS Primer. Wiley-Interscience, New
York.

Haider, S. W. and Banks, J. (1986). Simulation software products
for analyzing manufacturing systems. Industrial Engineering,
July, 98-103.

(Several figures in this article are typeset incorrectly. Corrected
versions of these figures are given in Industrial Engineering,
September 1986, pp. 86-87. However, the corrected figures do
net show that animation and a special-purpose database are
available in MINUTEMAN’s GPSS/PC, Version 2; and that
animation and a database are available to Wolverine’s GPSS/H
through TESS.)

Henriksen, J. 0. (1981). GPSS - finding the appropriate world
view. In: Proceedings of the 1981 Winter Simulation
Conference (T. I. Oren, C. M. Delfosse, and C. M. Shub,
eds.). The Society for Computer Simulation, San Diego,
California, 505-516.

Henriksen, J. 0. (1983). State-of-the-art GPSS. In: Proceedings
of the 1983 Summer Computer Simulation Conference. The
Society for Computer Simulation, San Diego, California, 9I8-
933.

Henrlksen, J. 0. (1986). You can’t beat the clock: studies in
problem solving. In: Proceedings of the 1986 Winter
Simulation Conference (J. R. Wilson, J. 0. Henriksen, and S.
D. Roberts, eds.). The Society for Computer Simulation, San
Diego, California, 7 13-726.

Henriksen, J. 0. et al. (1988). GPSSIH User’s Manual, 3rd ed.
Wolverine Software Corporation, Annandale, Virginia.

Hem&en, J. 0. and Schriber, T. J. (1986). Simplified approaches
to modeling accumulating and nonaccumulating conveyor
systems. In: Proceedings of the 1986 Winter Simulation
Conference (3. R. Wilson, J. 0. Henriksen, and S. D. Roberts,
eds.). The Society for Computer Simulation, San Diego,
California, 575-593.

International Business Machines (1970). GPSS V User’s Manual
(SH20-0851). IBM Inc., Armonk, New York.

International Business Machines (1977). APL GPSS (G320-5745).
IBM Inc., Armonk, New York.

International Business Machines (1981). PUI GPSS (G320-6398).
IBM Inc., Armonk, New York.

Kenvin, J. C., and Sommerfeld, J. T. (1987). Discrete-event
simulation of large-scale poliomyelitis vaccine production.
Process Biochemistry 22, No. 3, 74-77.

83

Kelton, W. D. (1986). Statistical analysis methods enhance usefl.ll-
ness, reliability of simulation models. Industrial Engineering,
September, 74-84.

Law, A. M., and Kelton, W. D. (1982) Simulation Modeling and
Analysis. McGraw-Hill, New York,

Martin, D. (1981). GPSSIVX User’s Manual. Simulation Software
Ltd., London, Ontario, Canada.

Murphy, W. H. and Schriber, T. J. et al. (1982). Analysis of the
immune response to malignant cells using computer simulation.
In: Proceedings of the 6th Annual Symposium of Computer
Applications in Medical Care. IEEE Press, New York.

Passariello, I. and Sommerfeld, J. T. (1987). GPSS simulation of
chocolate manufacturing. In: Took for the Simulation Profes-
sion. The Society for Computer Simulation, San Diego,
California, l-6.

Pegden, C. D. (1982). Introduction to SZMAN. Systems Modeling
Corporation, State College, Pennsylvania.

Pritsker, A. A. B. (1986). Introduction to Simulation and SLAM ZI,
3rd cd. Pritsker and Associates, West Lafayette, Indiana.

Richards, C. B. (1983). GPSSRIPC User’s Manual. Simulation
Software Ltd., London, Ontario, Canada.

Richards, C. B. (1984). GPSSlC User’s Manual. Simulation
Software Ltd., London, Ontario, Canada.

Richards, C. B. and Mullin, J. K. (1981). GPSSR: General
Purpose Simulation System for mini/micro machines. In:
Modelling and Simulation on Microcomputers. The Society for
Computer Simulation, San Diego, California.

Roberts, S. D. and England, W. L. (1981). Survey of the
Application of Simulation to Health Care. SCS Simulation
Series 10, No. 1. The Society for Computer Simulation, San
Diego, California.

Rubin, J. (1981). Embedding GPSS in a general purpose language.
In: Proceedings qf the 1981 Winter Simulation Conference. (T.
1. Oren, C. M. Delfosse, and C. M. Shub, eds.). The Society
for Computer Simulation, San Diego, California, 33-40.

Russell, E. C. (1983). Building Models with SIMSCRZPT 11.5.
CACI Inc., Los Angeles, California.

Schmidt, B. (1987). Model Construction with GPSS-FORTRAN
(Version 3). Springer Verlag, Berlin and New York.

Schriber, T. J. (1974). Simulation Using GPSS. John Wiley &
Sons, New York. (Russian edition, 1980, Mashinostroyenie
Press, Moscow.)

Schriber, T. J. (1985). A GPSS/H model for a hypothetical flexible
manufacturing system. Annals of operations research 3, 171-
188.

Schriber, T. J. (1987). The nature and role of simulation in the
design of manufacturing systems. In: Simulation in Computer
Integrated Manufacturing (K. E. Wichmann, ed.). The Society
for Computer Simulation, San Diego, California, 5-18.

Schultheisz, D. J. and Sommerfeld, J. T. (1988). Discrete-event
simulati.on Im chemical engmeering. Chemical Engineering
Education Spring 1988.

Solomon, S. (1983). Simulation of Wuiring Lines. Prentice-Hall,
Englewood Cliffs, New Jerc;ey.

Standridge, C. (1985). A tutorial on TESS: The Extended
Simulation System. In: Proceedings of the 1985 Winter
Simulation Conference (D. Gantz, G. Blais, S. Solomon, eds.).
The Society for Computer Simulation, San Diego, California,
73-79.

Sturgul, J. R. (1987). Building simulation models of surface coal
mines using the GPSS computer language. The Coal Journal
15, 11-17.

Sturgul, J. R. (1987). Simulating mining engineering problems
using the GPSS computer language. Bulletin of the Proceedings
of the Australian Institute t?f Mining and Metallurgy 292 (4).
75-78.

Sulzer, J. R. and Bouteille, P. (1970). La Simulation: Initiation
Prutique uu GPSS. Enterprise Modeme D’Edition, Paris.

We&r, K., Trzebiner, R. and Tempelmeier, H. (1983). Simulation
mit GPSS. Verlag Paul Haupt, Stuttgart, West Germany.

ACKNOWLEDGMENTS

This article has benefitted from thoughtful comments generously
provided by MINUTEMAN Software’s Alice Cox and Springer
Cox, Simulation Software Ltd.% David M. Martin, and Wolverine
Software’s Daniel T. Brunner and Robert C. Crain.

AUTHOR’S BIOGRAPHY

THOMAS J. SCHRIBER is a Professor of Computer and
Information Systems in the Graduate School of Business at The
University of Michigan. He holds a B.S. (University of Notre
Dame) and M.S.E., M.A., and Ph.D. (University of Michigan).
Prof. Schriber teaches, does research, and consults in the area of
discrete-event simulation. He has authored or co-authored several
dozen articles, and has authored or edited nine books. He regularly
teaches intensive courses on GPSS-based simulation, and has
consulted with such organizations as Monsanto Chemical, CPC
International, ITT, Ford Motor Company, Exxon, General Motors,
and Occidental Petroleum, both in a problem-solving and a teaching
capacity. Professor Schriber has been a National ACM Lecturer, and
has participated in the Joint Science and Technology Exchange
Agreement between the United States and the 1J.S.S.R. From 1977-
86 he was the ACM member of the Board of Directors of the Winter
Simulation Conferences, serving as Board Chairman two years. He
was Program Chairman and Proceedings Co-Editor of the 1976
Bicentennial Winter Simulation Conference. His professional
affiliations include ACM, DSI, IIE, ORSA, SCS, SME/CASA, and
TIMS.

Thomas J. Schriber
Graduate School of Business
The University of Michigan
Ann Arbor MI 48109-1234 USA
(313) 764-1398

84

