
A Denotational Semantics for a Process-
Based Simulation Language

CHRIS TOFTS and GRAHAM BIRTWISTLE
University of Leeds

In this article, we present semantic translations for the actions of mDemos, a process-based,
discrete event simulation language. Our formal translation schema permits the automatic
construction of a process algebraic representation of the underlying simulation model which
can then be checked for freedom from deadlock and livelock, as well as system-specific safety
and liveness properties. As simulation methodologies are increasingly being used to design
and implement complex systems of interacting objects, the ability to perform such verifica-
tions is of increasing methodological importance. We also present a normal form for the
syntactic construction of mDemos programs that allows for the direct comparison of such
programs (two programs with the same normal form must execute in identical fashion),
reduces model proof obligations by minimizing the number of language constructs, and
permits an implementer to concentrate on the basic features of the language (since any
program implementation that efficiently evaluates normal forms will be an efficient evaluator
for the complete language).

Categories and Subject Descriptors: D.4.8 [Operating Systems]: Performance—simulation;
F.3.2 [Logics and Meanings of Programs]: Semantics of Programming Languages—
denotational semantics

General Terms: Languages, Theory

Additional Key Words and Phrases: Discrete event simulation, process algebra, semantics

1. INTRODUCTION

Simulation is widely used for studying the behavior and performance of
complex systems. One of the underlying problems of the simulation meth-
odology is that of ensuring the correctness of the representation of the
system under study since, in general, simulation systems do not admit
formal proofs of their properties. In this article we develop a translation
schema for mDemos [Birtwistle and Tofts 1994], a sugared variant of
Demos [Birtwistle 1979, 1981] and a typical process-based simulation
language, into CCS [Milner 1980, 1990], a mechanized process algebra.
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(Since mDemos is the only simulation system currently with an operational
semantics [Birtwistle and Tofts 1993, 1994], it seems to be the most
appropriate simulation language with which to commence denotational
studies.) Once we have CCS processes representing the systems behavior,
we can then prove properties of those systems by describing them in
Hennessy–Milner logic [Stirling 1987, 1992] and using the Edinburgh
Concurrency Workbench [Moller 1990] to check their validity. For a general
introduction to this methodology for simulation problems see Birtwistle et
al. [1993]. A similar approach to describing the behavior of a factory can be
found in van Vlijmen and van Waveren [1992].

In companion papers [Birtwistle and Tofts 1993, 1994], we presented the
operational semantics of Demos. Operational definitions are quite detailed
and may be used to guide an implementation (as in Birtwistle and Tofts
[1993]) or argue in detail the precise way a particular program should
unfold. In this article we develop a denotational definition of Demos by
giving a construct-by-construct translation into CCS. Denotational defini-
tions are much more abstract than operational definitions with detailed
timings replaced by “now, or some arbitrary time later” and all queues
(including the event list) running under random selection. Denotational
definitions are thus useful for reasoning about properties that will hold
under all possible runs of a model whatever the timing delays and what-
ever the queueing discipline imposed.

We have already demonstrated the containment relationship between the
operational and denotational accounts of Demos in Tofts and Birtwistle
[1997c]. Richer process algebras than CCS exist which can be used to
account for the timing behavior [Moller and Tofts 1990] or the probabilistic
behavior [Tofts 1990, 1994] of systems. However, timed descriptions are
highly complex and in many cases system failures result not from timing
problems, but rather from underlying interaction errors (see, e.g., Clarke et
al. [1995], especially Section 7).

This article complements Birtwistle and Tofts [1994] and presents a
denotational semantics for some of the compound instructions of mDemos.
Short introductions to mDemos and CCS are given as appendices. For more
detail see Birtwistle et al. [1993]. The reader should also be aware of
Milner’s [1990] excellent book as the source guide to CCS.

In Section 2 we present a brief overview of the basic translations of the
constructs of mDemos into CCS. In Section 3 we introduce the wait-until
construction, which allows mDemos processes to perform compound acqui-
sitions of resources, and demonstrate how such a command can be repre-
sented within our process algebra. The translation of a conditional branch-
ing construction is also presented in Section 4. We then use these
translations to give a normal form for mDemos processes.

By providing a formal representation of a system described in mDemos we
permit the production of proofs of properties of those systems. Given that
these properties are often used to make cost or safety critical decisions, we
need to be sure that systemic predictions are genuine and not the result of
some programming artifact. CCS is well suited to this task, as it provides a
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succinct formal notation within which it captures the behavior of the
underlying system. Furthermore, formal description of systemic properties
provided in Hennessy–Milner logic can be automatically checked against
its implementation as described by CCS.

2. TRANSLATING mDEMOS TO CCS

In this section we present the translation of an idealized object-oriented
simulation language (mDemos [Birtwistle and Tofts 1994]) into CCS (the
translation of wait-until is deferred to Section 3.1). mDemos may be
considered as a clutter-free, syntactically checked, designated intermediate
language. We demonstrate how a mDemos model can be represented as the
composition of CCS processes. To achieve the translation, we must find
process encodings for all of the parts that make up a mDemos program.
Since process algebras in general and CCS in particular do not have such
auxiliary data structures as monitors, queues, or variables, we have to
provide explicit process constructions for all our system components. (A
similar construction for shared variable While programs is presented in
Milner [1990].)

We start with an informal presentation working from the bottom up,
giving the style of, and intuition behind, the translation process. We show
how resources are modeled as CCS agents, and then how process tasks are
translated. Since a process body may be viewed as a sequence of tasks
strung together, and a mDemos program a sequence of object definitions,
the remainder of the translation process is straightforward. The product of
the translation is a CCS description of the model whose properties, such as
absence of deadlock and livelock, safety, liveness, and the like can be
mechanically checked on the CWB. The validity of this methodology has
been proven elsewhere [Tofts and Birtwistle 1997c]. In Section 2.4 we
comment on three powerful theorems proved in that paper.

2.1 Translation of Resources

In translating a resource into a process, we use the actions getR1, getR2,
. . . , getRn to represent the acquisition of amounts 1 to n, respectively, of
the resource R. The actions putR1, putR2, . . . , putRn represent returning
the respective amounts of resource to the resource pool.

A straightforward and elegant way of achieving the foregoing is to
predefine a general template in CCS for a resource of size n, for example,

R~n, n! 5
def O i51

n geti.R~n 2 i, n!

:

R~ j, n! 5
def O i51

j geti.R~ j 2 i, n!

1 O i51
i5n2j puti.R~ j 1 i, n!

:

R~0, n! 5
def O i51

n puti.R~i, n!.
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To create a specific resource process with its appropriate access channels
we “instantiate” the template and with its actions renamed:

Res~i, n! 5
def R~i, n!@ putRj/putj, getRj/getj#

where 1 # j # n,

which may be read as: Res(i, n) is a resource of size n(R(i, n)) with all putj
actions renamed putRj and getj actions renamed getRj.

From the preceding we can observe that all resources of a particular size
are identical up to renaming of the access channels.

In Demos a distinction is made between those objects that are claimed
and released by the same process, called resources, and those into which
items are placed by one process and removed by another, called bins.
Unfortunately1 at this point we have to assume that our bins are finite in
order to successfully encode them. The only distinguishing feature between
a finite bin and a resource is that we do not assume that the same process
gives and takes items from the bin. In terms of its operation it is indistin-
guishable from a resource of the appropriate size.

We choose actions putBi and getBi to represent giving or taking i items
from a bin B. Notice that these are both input actions as the bin is assumed
to be responding to instructions from mDemos processes. With the observa-
tion that the bin is the same as a resource we can achieve a bin with a
maximum capacity2 of maxbin as the following process,

Bin~i, n! 5
def R~i, n!@ putBj/putj, getBj/getj#

where 1 # j # maxbin .

2.2 Translation of Processes

The entities that use resources are mDemos processes. It is natural to
translate each of these processes as a separate CCS agent. Whenever a
mDemos process performs an action ACQUIRE(R, i) we translate this into
getRi, which is the complementary output action to the input actions of the
resource. In this style of translation, we need do no checking to see whether
this amount of resource is available as the action can only synchronize with
its dual when the complementary input can be performed, which implies
that the appropriate amount (or more) of the resource is indeed available.
We make the sole assumption that processes do not attempt to hand back
more of a resource than they took. In the vast majority of cases, resources
are acquired and released in constant chunks, and this assumption can be
checked syntactically.

1In practice this is the case in Demos as well. It is possibly a language design flaw that buffers
and bins were distinguished originally—one of the problems of designing languages without a
semantic basis from the outset.
2We assume that there is some fixed maximum capacity for all bins (maxbin) before embarking
on the translation.
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We use HOLD(T) actions as markers to permit tests upon system
behavior to be written as Hennessy–Milner formulae. This translation is
achieved directly by the use of sT.fT (start time and finish time) actions for
our representative processes. At this point for all of the activities of a
mDemos process we have analogues in terms of actions for a CCS process.
In the following summary, we write !vObjb to mean the translation of a
mDemos action into a CCS action.

!vACQUIRE~R, i!b 5
def

getRi#

!vRELEASE~R, i!b 5
def

putRi#

!vTAKE~B, i!b 5
def

getBi#

!vGIVE~B, i!b 5
def

putBi#

!vHOLD~T!b 5
def

sT.f T

!vCOOPT~Q!b 5
def

cooptQ#

!vFREE~Q!b 5
def

freeQ#

!vWAIT~Q!b 5
def

cooptQ.freeQ.

We assume that the body of a mDemos process is a list of actions, using
the infix operator < to denote list concatenation. To translate a list of
actions we simply recurse down the list translating each action in turn and
prefixing to the remaining actions. Formally our translation of action
sequences is as follows,

!vaction < actsb 5
def

!vactionb.!vactsb.

The first translation we make is that for pDemos processes; we distin-
guish the processes that execute once from those that execute repeatedly,
assuming that if a repeat is used it starts the process definition (process
definitions can always be arranged in this way).

!vnewP~Name, repeat~acts!, time!b 5
def

mX.!vactsb.X

!vnewP~Name, acts, time!b 5
def

!vactsb.0.

All the fix-point operator does is to produce arbitrarily many copies of the
body of the process definition in sequence. It is merely a different way of
writing X def

5 !vactsb.X but avoids extra names. Notice that this implies
two different interpretations of the empty list of actions; in one case it
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should be instantiated by a process variable, in the other by the 0 process.
When we translate the wait-until construct it is necessary to make this
separation clear, but for simplicity, we avoid it in this initial translation.

The close relationship between mDemos and CCS is demonstrated by the
fact that sequential composition of mDemos actions is directly encoded as
an appropriate sequence of action prefixes in CCS.

2.3 Translation of Programs

We are now in a position to translate entire mDemos programs into CCS. A
mDemos program is simply a list of definitions, each specifying either a
mDemos process or a resource. To achieve our translation we simply take
each of these entities in turn and convert it into its representative CCS
process. We then compose that collection of processes together in parallel
and finally restrict that parallel composition with respect to the communi-
cation channels performing the exchanges of information between the parts
of the mDemos program.

The first translation we make is that for mDemos processes:

!vNEWP~Name, Actions, time!b

5
def

!vActionsb.0.

To translate resources and bins we use the following translations,

!vNEWR~Name, max!b

5
def

R~max, max!@getNamei/geti, putNamei/puti#

where 1 # i # max

!vNEWB~Name, init!b

5
def

R~init, max!@giveNamei/puti, takeNamei/geti#

where 1 # i # max.

The definitions were supplied in a list, so we need to take each of the
entities specified and replace it by the appropriate CCS representation,
finally composing those representations together in parallel. Thus we
arrive at the following interpretation of a collection of mDemos definitions.

!vDefn < Defnsb 5
def

!vDefnbu!vDefnsb

!vIb 5
def

0.

Remember that in CCS, P u0 5 P. So far we have translated all of the
components of a mDemos program but at this point we have not forced them
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to exchange information; this is achieved by restriction on all the commu-
nication labels that have been defined as part of the representative CCS
processes. We call the function that gives us the appropriate restriction set
L, and define it recursively by cases over the syntax of mDemos.

For our resources we must ensure that each of the possible giving or
taking actions is restricted in the eventual process. Hence we define:

L~NEWR~Name, max!!

5
def

$getNamei, putNamei u1 # i # max%

L~NEWB~Name, max!!

5
def

$giveNamei, takeNamei u1 # i # max%

L~NEWP~Name, Bod y, Time!!

5
def

$cooptName, freeName%.

Formally we define the set of restriction actions generated by a list of
mDemos definitions as follows.

L~Defn < Defns! 5
def

L~Defn! ø L~Defns!

L~I! 5
def

À.

So now the final translation of a mDemos program into a CCS process is
defined as follows.

SIM 5
def

~!vDefnsb!\L~Defns!.

This semantics describes mDemos as a collection of interacting parallel
components, matching the original intent of mDemos. It should be noted
that both the resources and processes of mDemos are equal in this repre-
sentation; they are all processes. The only difference between them is
whether they generate input or output actions on channels. Resources are
passive in that they only perform input actions. Processes can be consid-
ered active as they produce output actions (except when being coopted, in
which case they are then viewed as subservient resources by their coopting
process). The ability to change view of what is an entity and what is a
resource (or bin) is often useful when producing system models. Notice that
since CCS models both resources and processes as active agents, the
techniques we espouse hold good for either style.

2.4 Application

In Birtwistle and Tofts [1993, 1994], Tofts and Birtwistle [1997a, 1997b],
and this article we have given an operational semantics and a denotational
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semantics for mDemos. The two styles of semantic definition serve quite
different ends. Operational definitions are quite detailed and may be used
to guide an implementation (as in Birtwistle and Tofts [1993]) or argue in
detail the precise way a particular program should unfold. Denotational
definitions are much more abstract with detailed timings replaced by “now,
or some arbitrary time later” and all queues (including the event list)
running under random selection. Denotational definitions are thus useful
for reasoning about properties that will hold under all possible runs of a
model whatever the timing delays and whatever the queueing discipline
imposed.

For these semantic definitions to be of full value, we must prove a
containment relation between them. In Tofts and Birtwistle [1997c] we
established that mDemos processes within CCS were conservative over all
possible timing and queueing disciplines.

THEOREM 2.1. SIM simulates the operational semantics of mDemos.

Among the important auxiliary theorems proved in Tofts and Birtwistle
[1997c] are:

THEOREM 2.2. The CCS semantics of a mDemos system is independent of
the timing model.

Hence, we can make arbitrary changes to the timings in the mDemos
program without affecting provable properties of the CCS description. In
other words, the results we obtain for the denotational description will be
true with arbitrary distributions in place of the fixed times in the holds,
and for any model of the insertion of event notices at equal times into the
event list.

THEOREM 2.3. The CCS semantics of a mDemos system is independent of
the queuing model.

For all queueing models, the CCS denotation is the same wherever a
process is inserted in the event list or in the blocked queue associated with
a resource.

From the proof in Tofts and Birtwistle [1997c] it is clear that the position
that a process is inserted in the event list after performing a hold or
delaying action is irrelevant since all entities in that list have equal
precedence as a result of the commutativity and associativity of the parallel
operator of CCS, and similarly for processes blocked in the waiting queue of
any resource. Thus all queueing disciplines are simulated by the CCS
translation. Note that within this proof we do take account of the fact that
the operational semantics of mDemos uses a first-come-first-served queue-
ing discipline.

These results establish that the CCS description of a mDemos program
has captured the structure of the computation, and also successfully
abstracted the timing and queueing structures of the execution system.
That is, we can execute the model with FIFO, LIFO, or random queueing
and the provable properties of the CCS description will still hold under all
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such strategies. Thus properties established for the CCS description hold
under all possible simulation executions. Hence, we can establish systemic
properties such as deadlock and livelock freedom with the knowledge that
they are independent of the execution model and thus will hold for all
timing and queueing structures.

3. A NORMAL FORM

One of the uses of a denotational semantics is to discover normal forms for
programming languages. Often these allow us to simplify either the lan-
guage definition or its implementation. By demonstrating that only a
restricted collection of syntactic forms are necessary for the description of
any particular problem, the implementer can concentrate on rendering
these language components in as efficient a form as possible. Equally, a
normal form is highly desirable when attempting to prove properties of a
system since these properties need be proved only for the normal forms,
and not for the complete language.

In this section we start by giving a very general definition for the
wait-until construct. This necessitates our extending our previous defini-
tion of a resource in that we must be able to test whether a specified
amount of it is free. This in turn requires the introduction of conditionals.
We give an informal presentation in Sections 3.1 and 3.2, after which the
full technical details are presented in Section 3.3. Section 3.4 presents two
theorems that enable us to define a normal form for mDemos programs in
terms of wait-until.

Normal forms are of practical importance because they enable us to
verify model properties in a standard, consistent, and simple manner.

3.1 Translation of Wait-Until

In Birtwistle et al. [1993] a simple example of the representation of a
wait-until instruction is presented. We present a different example of the
translation then generalize the constructions necessary to our subset of the
Demos language.

Since we cannot form compound actions in CCS whose occurrence is
atomic, we have to ensure that while the actions of the wait-until are being
performed no other process can interfere with them. Furthermore we
cannot simply issue requests to acquire necessary resources and return
those claimed earlier if the request is denied. As a definition language CCS
only permits us to describe actions that a process may perform, that is, its
capabilities. We cannot in any sense observe that an action cannot be
performed; it simply may be the case that we have to wait for it for a very
long time. Therefore, we must adopt a regime where each object resource,
bin, or process in the Demos system will inform a possible acquirer of both
its availability or nonavailability with an explicit action (these were
available in the original language through the function Avail for this very
same purpose).
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We solve the problem of atomic access by the introduction of a binary
semaphore and the availability problem by the introduction of explicit,
positive and negative, availability actions. As a small example consider a
Demos process that needs to claim 1 unit of resource R (maximum avail-
ability 1) and the simultaneous cooperation of process Q in order to perform
its task. First we can describe the resource R:

Sem 5
def

gS.pS.Sem

R 5
def

getR.R9 1 gavR.R

R9 5
def

putR.R 1 nav.R9.

Notice that the resource R has four access actions; two are the usual ones
associated with getting or putting the resource, the other two ( gavR and
navR) record whether the resource is available to be taken. We now
provide a skeleton for the Demos process Q assuming that it is finishing a
hold (called q), before becoming available to be coopted.

Q 5
def

fq.Q1 1 navQ.Q

Q1 5
def

cooptQ.Q2 1 cavQ.Q1

Q2 5
def

freeQ.Q9 1 nav.Q2

Q9 5
def

. . . .

The state Q9 represents Q ’s continuing behavior after it has been
coopted. Notice that again we have introduced two new actions navQ and
cavQ that record whether the process Q can be coopted at this point in its
execution.

We are now in a position to describe a process that waits until both the
resource R and the process Q are available to be acquired and coopted,
respectively. P starts by obtaining the token from the semaphore by hand-
shaking on gS, possession of which permits it to claim potential resources.

P 5
def

gS# .P1

P1 5
def

gavR# .P2 1 navR# .pS# .P

P2 5
def

cavQ# .P3 1 navQ# .pS# .P

P3 5
def

getR# .cooptQ# .pS# .P9.
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In the foregoing process P must first obtain the acquisition token, then
test that all the resources it needs are available. If they are not, it returns
the acquisition token and will try again later. If its requirements can be
met, the appropriate resources will be claimed and the token returned.
Obviously in the preceding we have assumed that P is a process that
cannot itself be coopted, as it can respond neither positively nor negatively
to a cavP signal. Encoding in general we would have to write:

P 5
def

gS# .P1 1 navP.P

P1 5
def

gavR# .P2 1 navR# .pS# .P 1 navP.P1

P2 5
def

cavQ# .P3 1 navQ# .pS# .P 1 navP.P2

P3 5
def

getR# .cooptQ# .pS# .P9 1 navP.P3.

The foregoing process is already becoming somewhat tedious to write by
hand. Our fragment of a complete Demos system would look as follows.

SYS 5
def

~P uQ uR u. . . uSem!\

$ gS, pS, navQ, cavQ, navP, cavP, getR, putR, navR, gavR%.

As we have seen, we need to add information to process, bins, and
resources so that other processes can detect whether a request to them will
be successful. This is achieved by amending the definitions of bins and
resources from Birtwistle and Tofts [1994] in the following way. In the
general case, a resource needs to indicate precisely how much of it is
available to be claimed. Obviously if more is available than necessary, it
must indicate that lower amounts of resource are also all free. Similarly,
we must indicate for all possible amounts whether more is not free than the
current minimum nongrantable request.

Res~m, m! 5
def O i51

i5m geti.Res~m 2 i, m!

1 O i51
i5m gavi.Res~m, m!

Res~ j, m! 5
def O i51

i5j geti.Res~ j 2 i, m!

1 O i51
i5j gavi.Res~ j, m!

1 O i51
i5m2j puti.Res~ j 1 i, m!

1 O i5j11
i5m navi.Res~ j, m!

Res~0, m! 5
def O i51

i5m puti.Res~ j 1 i, m!

1 O i51
i5m navi.Res~0, m!.
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Similarly we can define our extended bins as follows.

Bin~i, max! 5
def

Res~i, max!@ givei/puti, takei/geti#

where 1 # i # max.

In the “hand” translation of processes we gave previously they needed to
produce actions to record whether the process was currently available to be
coopted. In order that our translated mDemos process have this (necessary)
capability we must know the name of a process throughout its translation.
So instead of a semantic function !vbodyb, we have a semantic function
!vbody, nameb, where name is the (uniquely named) mDemos process under
translation, and body is the remaining set of commands to be translated.
The range of this function is

!vb : AcList 3 Name 3 CCS.

We also have semantic functions:

$vb : DemosDefns 3 CCS, and

0vb : AcList3AcList3AcList3Name 3 CCS.

Finally we take advantage of the presence of the process name to change
our definition of the repeat operation to be compatible with that of
Birtwistle and Tofts [1993]. We assume that the translation of the body of
any mDemos process (called N) occurs within the scope of a mN operator
(alternatively, N def

5 ) and thus whenever we see a repeat action we need
only replace it with the appropriate process variable name.

3.2 Translation of Conditionals

We regard a conditional branch as having the form COND([Cacqi, Pi]),
where Cacqi is either a simple acquisition action or a wait-until, and Pi are
the Demos actions to be executed if the branch is possible and taken.
Notice, that we do not use explicit CondQs, as they can be absorbed into
the direct request for the resources conditioned upon, and then continue
execution. We do not need to permit the returning of the resource to be
guarded with a conditional as it is always possible to return resources that
are owned.

Ideally we should like to translate the conditional statement as a
nondeterministic sum of the acquire actions within the body of the state-
ment. Unfortunately, as a result of encoding the wait-until construct, we no
longer have direct access to the process but must go through a check to see
that the process is available before attempting to acquire it.

As an example of the encoding we present the following problem. Con-
sider processes P and Q competing for resources A, B, and C. Process P
can proceed in one of two ways depending on whether it can acquire A and
B, or B and C. Similarly, process Q can proceed in two different ways
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depending on whether it acquires A and C or B. Obviously we would like
the compound acquisitions to be performed within a wait-until for effi-
ciency. This system can be modeled by the following CCS processes.

First the fixed objects in the environment are:

A1 5
def

getA1.BA1 1 gavA1. A1

BA1 5
def

putA1. A1 1 navA1.BA1

B1 5
def

getB1.BB1 1 gavB1.B1

BB1 5
def

putB1.B1 1 navB1.BB1

C1 5
def

getC1.BC1 1 gavC1.C1

BC1 5
def

putC1.C1 1 navC1.BC1

Sem 5
def

gS.pS.Sem.

The first of the processes, P, is coded:

P 5
def

gS# .PC1

PC1 5
def

gavA1# .PC1R2 1 navA1# .PC2

PC1R2 5
def

gavB1# .PC2C1 1 navB1# .PC2.

In the foregoing process, we claim possession of the acquisition token, and
then see if the first choice A and B is possible; if it is not, we see if the
second is; even if the first branch is possible we still need to check the
second branch, noting the availability of both.

This process knows that the first branch cannot be taken and checks to
see if the second (claiming B and C) can be taken:

PC2 5
def

gavB1# .PC21 1 navB1# .pS# .P

PC21 5
def

gavC1# .PC2OK 1 navC1# .pS# .P

PC2OK 5
def

getB1# .getC1# .p1# .pbr2.putB1# .putC1# .P.

If either of the resources is not available, then the process will retry the
complete conditional statement, after allowing other processes access to the
acquisition token by returning it. If it finds that it can claim the second
branch (given that the first is not possible at this time), the resources will
be claimed and the process proceed on the appropriate action sequence.

In the following process, the first branch could be taken, so it needs to
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check the availability of the second.

PC2C1 5
def

gavB1# .PC21C1 1 navB1# .PC1OK

PC21C1 5
def

gavR# .PC2C1OK 1 navC1# .PC1OK

PC2C1OK 5
def

getB1# .getC1# .p1# .pbr2.putB1# .putC1# .P

1 getA1# .getB1# .p1# .pbr1.putA1# .putB1# .P

PC1OK 5
def

getA1# .getB1# .p1# .pbr1.putA1# .putB1# .P.

If the second is not available, claim the resources A and B and continue
appropriately; otherwise make a nondeterministic choice between the two
as both are possible.

The process Q is identical to P up to the nature of the resources claimed
by the particular conditional statement:

Q 5
def

g1# .QC1

QC1 5
def

gavA1# .QC1R2 1 navA1# .QC2

QC1R2 5
def

gavC1# .QC2C1 1 navC1# .QC2

QC2 5
def

gavB1# .QC2OK 1 navB1# .p1# .Q

QC2OK 5
def

getB1# .p1# .qbr2.putB1# .Q

QC2C1 5
def

gavB1# .QC2C1OK 1 navB1# .QC1OK

QC2C1OK 5
def

getB1# .p1# .qbr2.putB1# .Q

1 getA1# .getC1# .p1# .qbr1.putA1# .putC1# .Q

QC1OK 5
def

getA1# .getC1# .p1# .qbr1.putA1# .putC1# .Q.

Finally constructing the appropriate restriction set and composing the
system together, we obtain:

L 5
def

$ getA1, putA1, gavA1, navA1,

getB1, putB1, gavB1, navB1,

getC1, putC1, gavC1, navC1, p1, g1

SYS 5
def

~P uQ u. . . uSem uA1 uB1 uC1! L.

Although we would not make any claims for the simplicity of the
foregoing, it does encode an appropriate form of conditional statement for
the Demos language. The general description of the preceding is going to be
quite complicated because it has to check whether each branch is possible,
store the result, and then choose among the available branches.
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3.3 Technical Detail

To simplify the construction we define the following maps on actions.

Definition 3.1. A map ! : DemosAcq 3 Act for acquisition actions:

!~ACQUIRE~R, n!! 5
def

getRn#

!~TAKE~B, n!! 5
def

takeBn#

!~COOPT~P!! 5
def

cooptP# .

A map 5: DemosRet 3 Act for release actions:

5~RELEASE~R, n!! 5
def

putRn#

5~GIVE~B, n!! 5
def

giveBn#

5~FREE~P!! 5
def

freeP# .

A map ^: DemosAcq 3 Act to allow a process to determine the availabil-
ity of a resource or a process:

^~ACQUIRE~R, n!! 5
def

gavRn#

^~TAKE~B, n!! 5
def

gavBn#

^~COOPT~P!! 5
def

cavP# .

A map 1: DemosAcq 3 Act to allow a process to determine the nonavail-
ability of a resource or a process:

1~ACQUIRE~R, n!! 5
def

navRn#

1~TAKE~B, n!! 5
def

navBn#

1~COOPT~P!! 5
def

navP# .

We are now in a position to translate our mDemos processes into CCS
agents. To simplify our translation we make the following assumptions.

—action a ranges over all mDemos acquisition actions ACQUIRE(R, n),
TAKE(B, n), COOPT(P)

—action r ranges over all mDemos return actions RELEASE(R, n),
GIVE(B, n), FREE(P).

First we translate processes that have finished all their behaviors or are
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about to start again from the beginning:

!vI, Nb 5
def

0

!vrepeat, Nb 5
def

N;

a process with no further actions is the 0 agent and the action repeat starts
execution again from the beginning of the process definition.

We can now translate acquisition-like actions in the following fashion,

!va < bod y, Nb 5
def

gS# .~^~a!.!~a!.pS# .!vbod y, Nb

1 1~a!.pS# .!va < bod y, Nb! 1 navN.!va < bod y, Nb.

In the foregoing process, the acquisition semaphore is claimed, the resource
is tested for availability, and if so claimed and the semaphore released;
otherwise the semaphore is released and the process retries. Note that this
process is not available to be coopted.

Release actions are translated as follows,

!vr < bod y, Nb 5
def

5~r!.!vbod y, Nb
1 navN.!vr < bod y, Nb.

This leaves the WAIT(P) action of the basic actions of a Demos process:

!vWAIT~P! < bod y, Nb

5
def

cooptN.Wait~!vbod y, Nb!
1 cavN.!vWAIT~P! < bod y, Nb

where Wait~!vbod y, Nb!

5
def

freeN.!vbod y, Nb
1 navN.W~!vbod y, Nb!.

Finally we translate hold actions as before:

!vHOLD~t) < bod y, Nb 5
def

st.ft.!vbod y, Nb.

In this sublanguage of Demos we have one compound construction,
namely, the wait-until. This takes a list of acquisition actions and waits
until they can all be simultaneously satisfied. We do not need to include
release-like actions as they can always be performed, and we would never
need to wait upon them. Since the wait-until itself consists of a list of
actions, we make use of the previously cited auxiliary denotation function

0vb : AcList 3 AcList 3 AcList 3 Name 3 CCS:
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!vWU~Acts! < body, Nb

5
def

gS# .0vActs, Acts, Acts9, Nb

and define the auxiliary denotation function as follows,

0va < acl, a1, bod y, Nb

5
def

^~a!.0vacl, a1, bod y, Nb

1 1~a!.pS# .!vWU~a1! < bod y, Nb
0vI, a < acl, bod y, Nb

5
def

!~a!.0vI, acl, bod y, Nb
0vI, I, bod y, Nb

5
def

pS# .!vbod y, Nb.

We also need to add Cond to the basic action semantics for mDemos, and
are thus required to define the following two auxiliary semantic functions.

#vb : ~CacqList 3 ~Cacq 3 bod y!list! 3 ~bod y 3 Name! 3 CCS, and
&vb : AcqList 3 CCS.
!vCond~L! < bod y, Nb

5
def

gS# .#v~L, I!, ~Cond~L! < bod y, N!b
1 navN.!vCond~L! < bod y, Nb.

Notice the preceding has to inform other processes that it is not available
to be coopted at the moment. The definition of the auxiliary semantic
functions for the Cond construction is:

#v~~a < L, P! < t, AvList!, Initb

5
def

^~a!.#v~~t, ~a, P! < AvList!!, Initb
1 1~a!.#v~~t, AvList!!, Initb
#vI, I, Initb

5
def

pS# .!vInitb
#vI, @~a, P!#, ~Cond~L! < bod y, N!b

5
def

!~a!.pS# .!vP@bod y, Nb
#vI, ~a, P! < t, ~Cond~L! < bod y, N!b

5
def

!~a!.pS# .!vP@bod y, Nb
#v~~WU~aL! < L, P! < t, AvList!, Initb
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5
def

0!vaL, ~t, ~WU~aL!, P! < AvList!!.
~t, AvList!, Initb
#vI, @~WU~L!, P!#, ~Cond~L! < bod y, N!b

5
def

&vLb.pS# .!vP@bod y, Nb
#vI, ~WU~L!, P! < t, ~Cond~L! < bod y, N!b

5
def

&vLb.pS# .!vP@bod y, Nb 1 #vI, t, ~Cond~L! < bod y, N!b.

The semantic function that checks to see if a wait-until is possible is:

0!vI, Pav , Pnav , Initb

5
def

#vPav , Initb
0!va < t, Pav , Pnav , Initb

5
def

^~a!.0!vt, PAv , Pnav , Initb
1 1~a!.#vPnav, Initb.

Finally the semantic function to perform the appropriate series of acquisi-
tions is:

&v@a#b 5
def

!~a!

&va < tb 5
def

!~a!.&vtb.

We can use the same semantics for definitions, just extending the range
of the function !vb as given previously.

We can now present the translation of the definitional part of a Demos
program. First define two relabeling maps

Rl1 5
def

@ getRi/geti, putRi/puti,

gavRi/gavi, navRi/navi

where 1 # i # max

Rl2 5
def

@takeBi/geti, giveBi/puti,

gavBi/gavi, navBi/navi

where 1 # i # max

and our translation of the object definitions:

$vNEWP~P, bod y, t! < defnsb

5
def

mP.!vbod y, Pbu$vdefnsb
$vNEWR~R, max! < defnsb
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5
def

Res~max, max! Rl1 u$vdefnsb
$vNEWB~B, max! < defnsb

5
def

Res~0, max! Rl2 u$vdefnsb.

To complete our translation we define the restriction sort of a collection of
mDemos definition:

L~defn < defns!

5
def

L~defn! ø L~defns!

L~NEWP~P, ACTIONS, y!!

5
def

$cooptP, freeP, cavP, navP%

L~NEWR~n, amount!!

5
def

$ getni, putni, gavni, navni u1 # i # amount%

L~NEWB~n, amount!!

5
def

$takeni, giveni, gavni, navni u1 # i # amount%.

The translation of a mDemos program is:

Sem 5
def

gS.pS.Sem

SIMCCS~P! 5
def

~$vDefnsbuSem!

\L~Defns! ø $ gS, pS%.

3.4 Application to the Normal Form

We can now prove the following two facts about mDemos.

THEOREM 3.2. Let a be an acquire type action, then

!va < bod yb , !vWU~@a#! < bod yb.

The proof follows immediately from the translation. As an example con-
sider the mDemos fragments:

: :

Acquire~Sem, 1!; WU@Acquire~Sem, 1!#;
P P

The CCS translations of these fragments are, respectively,
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!vAcquire~Sem, 1!; Pb

5
def

gS# .~gavSem1# .getSem1# .pS# .!vPb
1 navSem1# .pS# .!vAcquire~Sem, 1!; Pb
5 mX.gS# .~gavSem1# .getSem1# .pS# .!vPb
1 navSem1# .pS# .X!vWU@Acquire~Sem, 1!#; Pb

5
def

gS# .~gavSem1# .getSem1# .pS# .!vPb
1 navSem1# .pS# .!vWU@Acquire~Sem, 1!#; Pb
5 mX.gS# .~gavSem1# .getSem1# .pS# .!vPb
1 navSem1# .pS# .X.

!vAcquire(Sem, 1); Pb and !vWU[Acquire(Sem, 1)]; Pb denote the same
function since they have identical definitions when expressed as fix-point
equations.

THEOREM 3.3. If WU(L) is a Demos action, then

!vWU~L! < bod yb , !vCOND~WU~L!! < bod yb.

Again, the proof follows immediately from the translation.
Considering a third version of our code fragment:

:

COND~WU@Acquire~Sem, 1!#, P!;
:

we obtain the CCS translation:

!vCOND@WU@Acquire~Sem, 1!#, P#b

5
def

gS# .~gavSem1# .getSem1# .pS# .!vPb
1 navSem1# .pS# .
!vCOND@WU@Acquire~Sem, 1!#, P#b
5 mX.gS# .~gavSem1# .getSem1# .pS# .!vPb 1 navSem1# .pS# .X

which is identical to the earlier translation.
The fact that these two theorems obtain is reassuring, since we would

intuitively expect them to hold from a naive understanding of the behavior
of mDemos programs. From these two facts we can define a normal form for
mDemos processes.

Definition 3.4. A Demos process is in normal form if it is either:

(1) repeat(body);
(2) r < body;
(3) COND(WU(Li) < bodyi) < body;
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where body, bodyi are in normal form, r is any return type action, and Li is
a list of acquire type actions.
This syntactically small language has the same expressive power as that of
mDemos.

4. CONCLUSIONS AND FURTHER WORK

Increasingly the results of simulated systems are used to make decisions of
both cost and safety criticality. Hence, the ability to formally derive
properties of simulation systems is of great importance. Our translations
from Demos (-like) syntax to Edinburgh Concurrency Workbench [Moller
1990] syntax have been automated; the ability to study simulation systems
with these formal systems allows the early detection of design errors.

We have been able to represent a large class of syntactic constructions
used in the presentation of simulation problems within the CCS frame.
Exploiting these descriptions we can produce normal forms for the under-
lying languages which begin to address the notion of what constitute the
basic constructions of a simulation problem, and allow system designers
and implementers to concentrate on the fundamental interactions present
in such systems.

In later work, we hope to be able to address issues of representation.
Simulation systems admit many possible representations within languages
such as Demos, making comparisons between different implementations of
the same problem system difficult. In particular there is a duality between
those components that are represented as “full-blooded” processes, and
those that are represented as auxiliary resources or bins; often these
depend on the focus of the implementer’s interest. Removing the (artificial)
distinction between these entities should allow us to reconcile descriptions
of such systems written from any point of view.

Our description of mDemos within CCS was in part motivated by the
availability of a tool to formally demonstrate properties of the described
systems. More detailed semantic accounts of the timing or probabilistic
properties of mDemos can be obtained by using appropriate process calculi;
Moller and Tofts [1990] and Tofts [1990, 1994] are examples. When suitable
tools exist for exploiting process algebraic descriptions of systems within
these calculi it may be useful to extend our descriptions to include these
properties. However, the majority of problems within simulation systems
are caused by interaction errors (leading to deadlock and livelock, for
example) and CCS is more than expressive enough to address these
important problems.

The production of a normal form for the mDemos language permits an
implementer to concentrate on the basic features of the language. Since any
program can be translated to normal form, any implementation that
efficiently evaluates normal forms will be an efficient evaluator for the
complete language. In the production of proof methods the normal form
allows for direct comparison of programs. That is, two programs with the
same normal form should execute in identical fashion.
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APPENDIX A. mDEMOS

mDemos programs are abstractions consisting of resource declarations,
process declarations, and a simulation run length.

Res, bin, and queue declarations take the form:

—NEWR(Rid, max) which defines a new resource Rid of size max that may
be acquired and later released in chunks. Resources are used to handle
finite resources.

—NEWB(Bid, max) defines a new bin Bid of maximal capacity max that
may be given and taken in integer chunks. Bins are typically used as
buffers to smooth the flow of materials between processing agents.

—NEWQ(Qid) defines a new queue Qid in which processes may wait, be
coopted by another process, and later freed. The queue synchronization is
used to handle cooperation among processes.

Process declarations typically take one of the forms:

—NEWP(Pid1, repeat(actions), t1) which defines a process Pid1 that exhib-
its cyclic behavior starting at time t1;

—NEWP(Pid2, actions, t2) which defines a process Pid2 that exhibits linear
behavior starting at time t2;

The process bodies are (possibly cyclic) lists of get and put actions on
resources. As an example, here is a very short, but complete mDemos
program for the classic producer consumer problem, which here runs for
100 time units:

[ NEWB(“B”, 4),
NEWP(“P”, repeat[hold(5), give(“B”, 1)], 0),
NEWC(“C”, repeat[take(“B”, 1), hold(4)], 0),
hold(100)

].

Since delay times are abstracted in CCS, we have contented ourselves here
with constant times.

APPENDIX B. CCS

To define CCS we presuppose a set A of atomic action symbols and the dual
of the input a [ A being a# . These complements a and a# are the basis of
communication as input and output actions, respectively. The collection of
CCS expressions ranged over by E is defined by the following BNF
expressions, where a ranges over the set Act def

5 A ø t, Names a set of
names; A # Names; S: Act 3 Act such that S(a) 5 S(a# ) and S(t) 5 t; X
a set of variable names. Pr is the set of closed process expressions E.

E < 5 a.E uX u0 uE 1 E uE uE uE@S# uE\A uX 5
def

E).

The intuitive interpretation of these terms can be given as follows.
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—X represents the process bound to the variable X in some assumed
environment.

—a.P represents the process that can perform the (atomic) action a and
evolve into the process P upon so doing.

—0 represents the completely dead process. It cannot perform any compu-
tation. In terms of a concrete machine, it may be thought of as one that is
shut down or with its “plug pulled.”

—P 1 Q represents the notion of choice between the two processes P and
Q. The process behaves as the process P or the process Q, with the choice
being made only at the time of the first action.

—P uQ represents the parallel composition of the two processes P and Q.
Each of the processes may perform any actions independently, or they
may synchronize on complementary actions, resulting in a t action.

—P\a represents the process P with the action a [ + (as well as its
complement action a# ) restricted away, that is, not allowed to occur.

—P[S] represents the process P with its actions renamed by the relabeling
function f.

—P\a represents the process P with the action a [ + (as well as its
complement action a# ) restricted away, that is, not allowed to occur.

—X def
5 E represents the (least fixed point) solution to the equation.
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