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The Hierarchical Simulation Language (HSL) was designed and developed to serve process-ori-
ented simulation of discrete systems. It is interpreter-based and hence offers certain advantages,
such as portability (hexdware independence) and modifiability (during program execution). An
HSL model consists of two major sections. The Environment contains the specifications of the
model and model control statements. The Simulator is a set of functions and processes that
carry out the run-time activities of the model. Processes can be hierarchically refined or
compressed, to whatever level of model detail desired. This paper describes the design character-
istics and programming constructs of HSL. Several issues relevant to simulation languages in
general and HSL in particular are then discussed. This is followed by an example HSL program
presented to illustrate many of its features.
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1. INTRODUCTION

A new simulation programming language, called Hierarchical Simulation

Language (HSL), has been designed, implemented and tested. In appearance,

it resembles structured languages like Pascal. In simulation-specific capabili-

ties, it belongs to the category of procedural simulation languages, such as

SIMULA [3]. HSL views simulation as attributed entities flowing concur-

rently through the simulated system each according to its process script,

consuming resources along the way. Statistics relevant to entities, processes

and resources are automatically collected and reported.

In view of the myriad of simulation programming languages already in

existence (e.g., see Banks and Carson [1] Fishman [6] and Unger [39]), it is

reasonable for the reader to ask: why yet another language? Analysis of
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traditional simulation languages leads to the observation that many of them

favor either the modeler (who is not also an expert programmer) at the

expense of the expert programmer, or vice versa. For instance, a language

that accommodates the modeler’s conceptual framework may not be suffi-

ciently expressive for the programmer or support principles of software

engineering for modular development. One approach to overcoming these

problems is to define a model specification language as an intermediate form

between the conceptual model and its programmed implementation [18].

Another approach is to design a programming language that attempts to

meet the needs of both the modeler and the programmer.

HSL, which is currently in a prototype implementation state, takes the

latter approach. Its design is based on principles of programming language

design (e. g., see MacLennan [17] and Pratt [20]) and process oriented simula-

tion [8]. It takes advantage of modern-day software engineering techniques

such as structured programming and abstraction. With its process orienta-

tion and hierarchy [42], various software engineering principles (e.g. see

Golden [101 and Sheppard [341) can be utilized to support top-down, detailed

model construction. On the other hand, its conceptual and structural proper-

ties enable modeler-conducive correspondence [28] between a conceptual

model and the software model and its manipulation. The object-oriented

programming perspective, which we and others (e.g. see Bezivin [2] and

Rothenberg [25]) feel is appropriate for discrete system simulation, is sup-

ported in HSL by user-defined entity classes. The general HSL language

design philosophy can be summarized as providing high-level simulation

constructs and full programming power, while keeping the language small

but extensible.

In addition, HSL is machine-independent. Its prototype implementation is

interpreter-based. The host language for the interpreter was chosen to be

C+ + [361. In the interpretive mode of execution, an HSL program is first

translated into intermediate form. That intermediate program is used as

input to an executor, which executes one intermediate instruction at a time

by calling a function to perform the specified action. HSL was implemented

through an interpreter rather than a compiler, despite the faster execution

speed of the latter. Advantages of doing so include (1) the above-mentioned

portability, (2) the ability to modify model parameters during program

execution, and (3) easier development and changes of the language itself,

especially during its formative stages. Use of the Lex [16] and Yacc [12]

grammar definition tools permitted total freedom to experiment with the

language design. The unique syntax was chosen to be concise, in keeping

with the language design philosophy.

Documentation of the details of HSL syntax [23] and semantics [24] as well

as a user’s guide [27] are available in technical report form. In addition, HSL

interpreter-based implementation techniques [26] and an HSL overview pa-

per have been published [28]. But, this is our first attempt to provide detailed
language statements and examples of interest to a wider audience of simula-

tion programmers and specialists.
This paper first presents an introduction to HSL, in terms of its high-

level modularity, language constructs and features. Several specific issues
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relevant to HSL language design are then discussed. This is followed by an

illustration of HSL use in a simulation program given by means of a machine

shop model. A discussion of HSL implementation status and related research

follows the example.

2. MODEL DICHOTOMY

A model written in HSL is divided into two modules. One of them encom-

passes the global environment in which the model exists and the other

provides a functional view of the simulated actions undertaken by the

entities within the model. The two modules are described below.

2.1 HSL Environment

The Environment of an HSL model represents those characteristics of the

modeled system, or its configuration, that remain static over the duration of

a simulation. Although the Environment normally remains the same during

a particular run, it is changed between runs in order to exercise the model

under different conditions. For this reason, the Environment of an HSL

program is a module separate from the Simulator. The HSL Environment is

similar to Zeigler’s “experimental frame. ” [41].

A programming language is described in terms of what its programs look

like (the language syntax) and what its programs mean (the language

semantics). Syntax is much simpler to describe formally than semantics, and

is commonly done so using context-free grammars expressed using Backus-

Naur Form (BNF) or an extension of it. For HSL syntax specification, we

have chosen an extended BNF (EBNF) similar to that adopted for specifying

the Ada language [9]. For the interested reader, an EBNF portrait of the HSL

Environment, along with a description of the notation, is listed in Appendix

A. It remains difficult, however, to visualize a language through its EBNF

specification, so we introduce HSL Environment syntax and semantics infor-

mally through an annotated example. The sole purpose of this model is to

illustrate a wide range of language features.

The program module shown in Figure 1 exhibits most features of the HSL

Environment. The statements are presented and explained in logical groups,

with each code segment preceding its explanation. HSL reserved words,

functions and variables are displayed in boldface type. Line numbers are

included for ease of reference; they are not part of the language.

1: model Demonstrate
. . .

26: end Demonstrate;

The model statement, which is completed by its corresponding end clause,

encloses and identifies the HSL Environment. Dashes indicate omitted

statements.

2: constant real InterArrive:= 3.4,
3 ServeMean:= 7.0,
4: ServSD:= 2.7;
5: int Arrivals[O. .4]:= 1000;
6: bool StopFlag, TraceFlag;

ACM Transactions on Modeling and Computer Simulation, Vol 1. No 2, April 1991.
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! Illustrative HSL Environment Module.

1:

2:
3:
4:
5:
6:

7:

8:

9:

10:

11:
12:
13:
14:

15:
16:
17:

18:
19:
20:

21:

22;

23:

24:

25:

26:

model Demonstrate

! Base declarations.

constant real InterArrive := 3.4,
ServeMean := 7.0,
ScrvcSD:= 2.7;

int Arrivals[O..4] := 1000 ;
bool StopFlag, TraceFlag ;

! Component declarations.

stat Duration : ind ;
queue HoldA, HoldB : fifo ;
resource Guard : fcfs ;
resource [2] Server[l 1..20] : fcfs ;

! Entity class declarations.

entity Job :
real EntryTime ;
boql Success ;

end Job :

Job entity CompileJob :
int LinesOfCode ;

end CompileJob ;

! Model control statemen~s.

start GenJobs ( 100) ;
stop clock >120.0 or StopFlag ;

trace TraceFlag ;
report rptlapse >= 10.0 ;
report Duration.curr >22.0

entity I true ;
stat I HoldA.lcn.curr >5.0 ;

end report ;

end DemonsEate ;

Fig. 1 Illustrative HSL envwonment

Four base data types are available for declaring global variables: integer,

real, boolean, and string. A declaration can be extended in two ways: by

specifying an initial value and by declaring an array of variables. All

declarations containing the assignment operator (:= ) specify an initial value,

which overrides HSL’S default initialization of variables. The variable
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Arrivals is declared as an array of five integers accessed through subscript

values O through 4. Only one initial value can be specified for an array; each

element of the array receives the specified value. Global constants are

declared by prepending the reserved word constant to the entire declaration.

A constant is distinguished from a variable in that its value may not be

changed in any of the Simulator code.

2 stat Duration: ind;
8 queue HoldA, HoldB: fife;
9: resource Guard: fcfs;

10: resource [2] Server [11. .20]: fcfs;

Statistics, queues, and resources are abstract data types which are significant

to discrete system simulation. Each has a full complement of data and

functional attributes to implement appropriate semantic actions. They define

simulation objects which exist for the duration of model execution and are

globally accessible. The words specified after the colon (:) represent operation

modes.

In this segment, Duration is declared as a time-independent

statistic for which values are explicitly collected in the Simulator module.

Time-dependent statistics are also available. HoldA and HoldB are declared

as two queues for holding entities. Each operates in a first-in-first-out man-

ner. Other available modes are life, priority order, and random order. Every

queue contains a set of automatically maintained statistics. Guard is de-

clared as a resource of capacity 1 which is allocated in a first-come-first-served

manner. Other modes are first-fit, and preemptive allocation. Every resource

contains a predefined queue, which is accessible but maintained automati-

cally, along with statistics. Server is declared as an array of 10 resources

(accessed by subscript values 11 through 20), each of which has capacity 2.

Capacities may also be specified for queues, as well as arrays of queues and

statistics.

11: entity Job:
12: real EntryTime;
13: bool Success;
14 end Job;

15: Job entity CompileJob;
16 int LinesOfCode;
in end CompileJob;

HSL provides a data-typing capability using the entity class. It enables the

modeler to define an abstract data type and its attributes (component parts).

Objects of the entity class may then be dynamically created and destroyed

within the Simulator. Each entity object represents a transaction flowing

through the model, such as a job through a computer system. The description

of an entity’s activities in the system is called a process, which forms the

basis for model execution.

The declaration of an entity class consists of its name and a list of
declarations of its attributes. This is similar to the record construct of Pascal.

An attribute may be of any of the previously mentioned types, but, in the

ACM Transactions on Modeling and Computer Simulation, Vol. 1, No. 2, April 1991.



118 . D, P Sanderson, et al.

current version, may not be of an entity class. Only the data attributes of an

entity class are declared here. Its functional attributes are endogenous

processes linked to the class through the accepts clause of the process

definition, as shown in Section 2.2. The HSL Environment contains only the

definition of entity classes; instances of a class, called entities, are created

during execution in the HSL Simulator.

Refinement or specialization of a class of entities is facilitated through the

use of inheritance. Inheritance allows a class to extend its attributes auto-

matically with those of another class, called its parent class. Tree-shaped

hierarchies of entity classes may be formed by specifying in a class definition

the name of its parent entity class. An entity declared in a process to be of a

child class contains all the attributes declared for that class plus all those

declared for all its ancestor classes. All entities inherit the system-defined

attributes id, which is assigned an identification number upon entity cre-

ation, and priority, which is assigned the value O (lowest priority) upon

entity creation (and can be changed using setpriorit y(n)). In this example,

Job is a parent class and CompileJob is its child class, as specified by

prepending the parent class name to the entity reserved word.

18:
19:
20:
21:
22:
23:
24:
25:

start GenJobs (100);
stop clock > 120.0 or StopFlag;
trace TraceFlag;
report rptlapse > = 10.0;
report Duration. curr > 22.0

entity I true;
stat I HoldA.len.curr > 5.0;

end report;

Statements to control the execution of the simulation program, from within

the Environment module, provide the starting, stopping, tracing and report-

ing conditions. No restrictions are placed on the order of these statements

except that they must be preceded by all of the global declarations of the

simulation model. Conditions are specified as boolean expressions and are

evaluated with each simulation clock update.

The start statement is used to specify which processes of the model begin

execution at the start of the simulation run. These are exogenous processes,

since their execution is controlled by the Environment and not from within

the Simulator. The stop statement specifies the conditions under which the

simulation run terminates. The HSL reserved identifier clock contains the

current value of the simulation clock. Default time units and starting time

are seconds and 0.0, respectively. The trace statement controls when a trace
of simulation activity is to be produced.

The report statement establishes the conditions under which a simulation

report is to be generated. A simulation report by default contains the

statistical values for all user-defined statistics, queues, resources, entity

classes and processes in the model. All statistics in the report are maintained

automatically, except user-defined statistic variables. In this example, re-

ports are generated under two sets of conditions. Line 21 specifies that a full

report is to be produced when the elapsed simulation time since the last

report (stored in HSL variable rptlapse) is at least 10 seconds. If additional
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conditions are specified, as they are in the second report statement (lines

22-25), then information about the indicated system component type is

included only if its expression evaluates to true at the time of report

generation. If a stat condition is specified and evaluates to true, all statisti-

cal values in the model are reset.

Much of the power of the model control statements is derived from the

modeler’s ability to use predefined attributes of statistics, queues’ resources

and processes in specifying conditions. Each variable declared to be of type

statistic, for example, has attributes for its mean, standard deviation, num-

ber of observations, and minimum, maximum and current value.

2.2 HSL Simulator

The second major module of an HSL program is the Simulator. It represents

the functional description of a modeled system. The Simulator consists of an

unordered collection of process and function definitions, all of which are

considered global. The HSL Simulator is conceptually similar to Zeigler’s

“lumped model” [41] or model frame. Processes simulate the actions under-

taken by the entities within the model. A process describes the activities of a

model entity through a sequence of HSL statements. This activity sequence

may be developed “hierarchically”, by introducing calls to other processes,

much as subroutines or procedures are used in general-purpose languages.

Alternatively, it may be developed “laterally” using schedule statements,

involving permanent transfer of entities to the scheduled processes without

any return. This distinction is clarified in the following presentation and in

Section 3.1.

Presentation proceeds as with the Environment. The full EBNF grammar

of the HSL Simulator is listed in Appendix B, while the flavor of the

language is presented through an annotated example. The program module

shown in Figure 2 exhibits most features of the HSL Simulator.

The statement sequence within a process or function includes local declara-

tions and programming statements. A process, in addition, contains simula-

tion control instructions. There are no unique symbols for grouping a state-

ment sequence (such as { }); constructs supporting statement sequences

enclose them using an end statement (e.g. loop . . . end loop). The simple

programming instructions include assignment (:= ), read and write state-

ments. The expected arithmetic, logical and relational operations are avail-

able. Type conversion, where legal and necessary, is performed implicitly.

Specifically, integer and real expressions are compatible, with real being

converted to integer through truncation.

1: process GenJobs (int NumArrival: in)
. . .

14: end GenJobs;
15: process Work ( ) accepts CompileJob Cjob

. . .

32 end Work;
33 function CompTime (int Amt) returns real

. . .

32 end CompTime;
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! Illustrative HSL Simulator Module.

1:
2:

3:

4:

5:

6:

7:

8:

9:

10:
11:
12:

13:
14:

15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:

33:
34:
35:
36:
37:

! Exogenous process to generate job entities.

process GenJobs ( brt NumArrival : in )
int Count:= O;
CompdeJob Comp;
loop

delay expo ( 1, Inter,lrnve ) ;
Comp.create ;
schedule Work ( ) with Comp ;
if Count c NumArrival then

Count := Count+ 1 ;
else

break ;
end if;

end loop ;
end GenJobs ;

! Process to carry out the work of a CompileJob entity,

process Work ( ) accepts CompileJob Cjob
int WorkAmt, Class ;
CJob.En~yTlme := clock ;
WorkAmt := Cjob.LinesOfCode / 200 ;
case WorkAmt of

0..5 I Ckt.ss:=ll;
6..8 1 Class:= 12;
9..12 I Class:= 13;
default Class := 20;

end case ;
Server [ Class] . request ( 1 ) ;

delay CompileTime ( WorkAmt ) ;
Server [ Class] release ( 1 ) ;
call MoreWork ( ) with Cjob ;
write “Job”, Cjob.id, “entered at”, Cjob.EntryTime,

“completed at”, clock ;
Cjob,destroy ;

end Work ;

! Function to calculate required resource time.

function CompTime ( int Amt ) returns real
real result;
result:= Amt * 2.56 + 5.2 ;
return result;

end CompTime ;

Fig 2. Illustrative HSL simulator.
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A process definition contains the process name, the formal parameter list,

an optional entity parameter and a sequence of statements. If the optional

entity parameter is specified, the process becomes an attribute of the entity

class and activation of the process applies to an instantiated entity. Other-

wise, the process is an exogenous process and can only be initiated by the

Environment’s start statement. Thus, process GenJobs (lines 1-14) is exoge-

nous, and Work (lines 15-32) is associated with entity class CompileJob.

The formal parameter list indicates the type and mode of each of the

arguments that are passed to the process. Parameter passing modes may be

specified as in, out, or inout. In means the parameter cannot be modified in

the process body, out means the parameter can only be modified and inout

means the parameter can be referenced freely within the process.

A function definition contains the function name, the formal parameter

list, the function’s type and a statement sequence. The execution of a

function is terminated with a return statement containing an appropriately

typed value that indicates the function’s result (see line 36 in Figure 2).

Parameter-passing modes are not specified, as parameters must be of mode

in. Functions are provided for computational ease only and may not contain

HSL simulation control statements. The actual parameters used in the

invocation of a function or process must match the formal parameters in both

type and number.

2: int Count:= O;
3: CompileJob Comp;

. . .

16 int WorkAmt, Class;
. . .

34 real result;

Variables and constants declared within a process or function are considered

local to that process or function. Local constants must be of one of the simple

types and local variables must be either of one of the simple types or of an

entity class (line 3). Arrays may be declared and all local variables except

entity variables may be initialized. It is important to note that declaration of

an entity does not create an entity, it merely allows the modeler to refer to a

subsequently created entity using the variable name.

1:

14:
15:

2&

31:
32:

process GenJobs (int NumArrival: in)
. . .

CompileJob Comp;
. . .

Comp. create;
schedule Work ( ) with Comp;

. . .

end GenJobs;
process Work ( ) accepts CompileJob Cjob

. . .

call MoreWork ( ) with Cjob;
. . .

Cjob. destroy;
end Work;
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The essence of entity activity is captured in this collection of statements. The

GenJobs generating process declares a variable (line 3) to represent an

entity. An entity is subsequently created and bound to that name (line 6),

then scheduled to execute the Work process (line 7). Since no future time is

specified, Work commences execution at the current simulation time. Once

the schedule is issued, GenJobs continues execution but may no longer access

that entity. The scheduled process Work then binds the entity to the variable

declared to accept it (line 15) and commences execution independently of and

in parallel to GenJobs.

When the subprocess More Work (not shown) is called (line 28), execution of

Work is suspended until its return. In general, either a single process or

multiple processes (which work in parallel) may be invoked in a call state-

ment, The calling process is suspended until the called process has(have)

completed, after which the suspended process continues its execution. It is

through this call mechanism that processes may be developed in a hierarchi-

cal manner.

Finally, the entity has completed all activity and its memory space is

reclaimed (line 31). This is necessary because HSL does not provide a

garbage collection facility for automatically reclaiming storage.

25: Server [Class] .request (l);
26: delay CompileTime (WorkAmt);
27: Server [Class] .release (l);

Some HSL statements affect the simulation time and hence are specifically

important for simulation programming. These statements can only be used in

process definitions, not in functions. The delay statement is used to suspend

a process for a specified period of simulation time. Line 26 illustrates the use

of a function invocation to calculate the delay time. Explicit and indefinite

process suspension is controlled through the suspend and awaken opera-

tions (not shown).

The request and release operations, shown in lines 25 and 27, are HSL

resource attributes which enable the current entity (the one accepted by the

enclosing process) to use system resources in the amount indicated by the

parameter. If, at the time of the request, the necessary resource is not

available, the process is immediately suspended, and the entity enqueued for

the resource. When the request is granted (upon release by another entity),

process execution is resumed at the statement following the request. When

use of the resource is complete, it is released so that others may gain access.

No simulation time passes during resource release.

4 loop
. . .

8: if Count < NumArrival then
9: Count:= Count + 1;

10 else
11: break,
12: end it
13: end loop;

. . .

19: case WorkAmt of
20 0..5 I Class:= 11;
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21: 6..8 I Class:= 12;
22: 9..12 [ Class:= 13;
23: default Class:= 20;
24: end case;

For general-purpose program control, complex statements can be constructed

for selection and iteration of a statement sequence. Selection is done with two

constructs, the if and the case statements. The if construct is of the if— then

—else—end if variety, with the else clause being optional. The case state-

ment provides a selection mechanism for a situation in which alternative

actions are available. A default clause may optionally be specified. If it is

not specified and none of the other choices applies, no action is taken.

Only one iteration mechanism, namely the loop construct, is available.

This limitation was imposed purposely, to keep the HSL prototype reasonably

simple. Loop execution ends when a break statement is executed; a loop

iteration ends and the next one begins either when the corresponding end

loop is reached or a next statement (not shown) is executed.

1%
18

25:

27:

29:
30
31:

Finally,

Cjob.EntryTime:= clock,
WorkAmt:= Cjob.LinesOfCode/200;
. . .

Server [Class] .request (l);
. . .

Server [Class] .release (l);
. . .

write “Job”, Cjob.id, “entered at”, Cjob. EntryTime,
“completed at’’, clock;

Cjob. destroy;

in the Simulator, the modeler can use the predefined attributes of

statistics, queues, resources, entities, entity classes and processes along with

modeler-defined attributes of entities. Predefined attributes are equivalent to

a constant or the result of a function. In any case, they may not be altered by

the modeler. Attributes are specified using dot notation, as are Pascal record

components. The request and release operations (lines 25 and 27), explained

above, are implemented as attributes of model resources. Modeler-defined

entity attributes may be either variables or constants and used accordingly.

Line 29 shows an example of both HSL-defined (id) and modeler-defined

( Entry Time) entity attributes.

3. SELECTED LANGUAGE ISSUES

In order to more fully understand the HSL language, selected issues are

discussed in greater detail. These are HSL support capabilities for (1) proc-

ess-oriented simulation, (2) probability and statistics and (3) object-oriented

programming and a comparison of HSL with several well-known simulation

languages.

3.1 HSL Processes

A brief overview of the process view of simulation [81 facilitates understand-
ing of HSL processes. A process describes the activity sequence undertaken

by a model entity. A process is defined once, in the form of a programmed

procedure. However, at any given time during the simulation, many copies,
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or activations, of this process (as well as those of other processes) may be in

use by different entities. Conceptually, these process instances are executing

in parallel, but in reality they may be executing serially on a single processor

system. In this case, they are said to be executing concurrently. Program-

ming languages that support concurrency (and there are not many) do so

through coroutines, which are distinguished from subroutines by their role

as equal partners as opposed to servants. In general, a process is a coroutine.

In this high-level discussion of concurrency presented, the term “process”

refers to a process instance. The simulation executor, an underlying simula-

tion control program, allows a process to run until it must suspend awaiting

external action. Suspension can occur under several conditions. A process

which delays for a specified period of time cannot continue until the simula-

tion clock is advanced. A process which is blocked awaiting access to a

modeled resource cannot continue until the resource becomes available. A

process may also choose to deactivate itself, relying on another process to

reactivate it. When a process suspends, its execution state is retained and the

simulation executor selects a previously suspended process to resume execu-

tion from its point of suspension. The process selected must be from the set of

suspended processes whose conditions for resumption have been satisfied.

The basis for process execution in HSL is the entity-process pair. After an

HSL entity (an instance of an entity class) is dynamically created, it cannot

pursue its activities until bound to a process activation. When a call or

schedule of a process is executed, the process activation is created and bound

to the entity. A called process then proceeds immediately; a scheduled

process proceeds when conditions allow. When a suspended process (process-

entity pair) is scheduled for resumption at a known time, it is placed on a

time- and priority-ordered process-resumption (’future-event’) list maintained

by the simulation executor. Priorities are used to determine order in the case

of simultaneous resumptions. Since a process itself has no priority attribute,

the executor uses the system-defined priority attribute of its associated

entity. All entities are created with equal priority, but higher priorities may

be assigned using the entity attribute setpriority(n).
An abstract view of process invocation is shown in Figure 3. Normal flow

through a process can be visualized as shown in Figure 3a. An invoked

process can operate either synchronously or asynchronously with its invoking

process. In the synchronous case, the invoker suspends until the invoked

procedure terminates and returns control to it. This represents hierarchical

refinement, as through a subroutine, and can be visualized as the vertical

control flow shown in Figure 3b. In asynchronous operation, the invoker
continues execution while the invoked procedure proceeds independently and

in parallel. This represents a lateral model refinement which can be visual-

ized as the horizontal control flow shown in Figure 3c.

Hierarchical refinement is realized in HSL through the call statement and

lateral refinement through the schedule statement. These statements may

be used and combined in various ways to support different conceptual views

of process flow. Two extreme abstract views are shown in Figure 4. The

process flow embodied in Figure 4a is localized in that each operation in a
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Fig. 3. (a) Normal process flow, (b) hierarchical refinement (vertical orientation); (c) lateral
refinement (horizontal orientation).

process OperA process Overall
... call OperA
... call OperB
schedule OperB call OperC

end OperA end Overall

process OperB process OperA
... ...
... ...
schedule OperC end OperA

end OperB
process OperB

process OperC ...
...
...

end OperC

.,.
end OperB

process OperC
...
...

end OperC

(a) (b)

Fig. 4. Two abstract HSL process flow views.

sequence is encapsulated in a process, which, when completed, schedules its

associated entity for the next operation. There is no encapsulated representa-

tion of the operation sequence. In this sense, the sequence of operations is

“chained” together. An alternative view, summarized abstractly in Figure

4b, represents an operation sequence hierarchically with one process at the

top level and sequence implied by the order of its subprocess calls. These

views may also be combined to model a system having both sequential and

hierarchical aspects, as is seen in the example HSL model presented in

Section 4. In general, the method utilized should be that which most closely

resembles the system being modeled.

3.2 Probability and Statistics

Systems to be simulated generally contain elements of uncertainty and
evolve through time in an unpredictable manner, These are referred to as

stochastic systems. The modeling of stochastic systems requires the
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application of probability concepts to characterize this variability y. The appli-

cation of statistical methods is required to interpret system variability. HSL

supports stochastic modeling through random number generators, probability

distributions and both system- and user-defined statistics.

3.2.1 Probability Functions. The building block for sampling random

variates is the randOl function which returns a pseudo-random value se-

lected uniformly from the range O-1. This function uses a congruence, or

residue, method [111 for generating random numbers, which means that the

value of any random sample is a function of the previous sample. An initial

value, or seed, is required to produce the first sample. This method supports

the notion of random number streams, sequerrce~ o! random numbers which

can be replicated at will given a known seed value. HSL provides 16 streams

with distinct system-supplied seeds accessible by supplying the value O– 15 as

the first parameter of randOl or any of the probability distribution functions.

The setseed function not only allows the modeler to supply specific seed

values, it also extends the effective number of streams infinitely because

when invoked it returns the old seed value. The old seed can be saved in a

variable, then restored by using that variable as the new ~= d parameter in a

subsequent invocation of setseed.

HSL provides a number of useful probability distribution functions, each of

which utilizes randOl internally. Randint returns an integer umformly

selected from the specified range. Uniform returns a real number uniformly

selected from the specified range. Expo returns a value selected from the

exponential distribution having the specified mean. Normal, hyperex and

erlang return a value selected from the normal, hyperexponential and erlang

distributions, respectively, having the specified mean and standard devia-

tion. The modeler may define additional probability y distribution func- : as

HSL functions which utilize randOl as a source of random values.

3.2.2 Statistics and Reports. The HSL approach to statistical analysis

parallels its approach to other aspects of the language; it provides ba.i~

constructs to facilitate initial modeling, plus extensibility to enable special-

ization. The basic constructs include automatic statistics collection and

reporting for user-defined resources, queues, entity classes and processes.

Extensibility is provided through user-defined statistical variables and access

to all statistical values.

An HSL statistic should be thought of as an object; that is, an instance of a

system-defined object class having several numerical and functional at-

tributes. Its numerical attributes are maintained automatically and include
the number of observations, the mean value, the standard deviation, the

minimum value collected so far, the maximum value collected so far and the

last collected value. The sole functional attribute is the collect operation.

Statistics are discussed in greater detail in Section 4.4 in the presentation of

the example program.

HSL defines several statistics to be attributes of all user-defined resources,

queues, entity classes and processes. The collect operation cannot be used

with these statistics, as all collection is performed automatically. Their
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numerical attributes are available on a read-only basis using dot notation

thereby enabling the programmer to use such values to control execution

flow or program customized reports. HSL-defined statistics are referenced

through their associated resource, queue, entity class or process identifier.

For instance, the mean utilization of resource CPU is referenced by

CPU.util.mean. The statistic util is an attribute of the resource CPU, and

the real-valued mean is an attribute of the statistic util.

A statistics reporting feature is provided by the HSL report statement.

Report statements are situated in the Environment so that reporting condi-

tions can be altered between simulation runs without disturbing the Simula-

tor, or action, part of the model. A report is output upon satisfaction of the

specified boolean expression and a final report is always output upon simula-

tion termination. By default, a report consists of a formatted dump of all

HSL- and user-defined statistical values. It is possible to limit the report by

specifying output of selected groups of statistics (e.g., only those associated

with resources), Statistics may also be reset upon report completion if de-

sired. Section 4.4 contains more information about HSL reports as well as a

sample report.

HSL does not perform further statistical analysis methods, such as those to

support designed experiments. However, it is possible to define one or more

special exogenous processes which serve to oversee the simulation and carry

out a controlled experimental sequence, including customized reporting, based

on its knowledge of statistical values.

3.3 Object-Oriented Languages

The object-oriented programming perspective, which is considered quite ap-

propriate [2, 25] for discrete system simulation, is supported in HSL by

user-defined entity classes. Wegner [401 defines an object-oriented language

as one that supports objects, which belongs to classes, which may be defined

hierarchically by an inheritance mechanism. In other words,

object-oriented = objects + classes + inheritance.

An object is informally defined as consisting of a set of operations and a

state that remembers the effect of operations. A class is a template from

which objects may be created. All objects of the same class have uniform

behavior. Inheritance refers to the ability to define a class as the child of an

existing class, thereby inheriting the attributes of the parent class and

extending them by defining additional attributes of its own.

HSL meets this definition for an object-oriented language, albeit in a subtle

way. The key is to consider the relationship between entities and processes,

as formally defined in HSL. An entity class definition specifies only state

variables (data members). However, every HSL process (except exogenous

processes referenced in the Environment module) is bound to a specific entity

class through the required accepts clause in the process definition. This is a
weaker binding than declaring the process in the class definition but stronger

than specifying the entity as a process parameter, because the clause is
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syntactically required. A process instance is subsequently bound to an entity

class instance (entity) at run-time. The process can therefore be considered

an operation of this entity class. An entity class acts as a template for

creating entities, each of which contains an identical set of data members and

an identical set of processes with which it can be invoked. The object and the

class requirements of an object-oriented language have been met.

HSL has furthermore been designed to allow a parent class to be specified

in an entity class definition, with the child class inheriting all data members

and processes defined for its parent class. For example, given the entity class

declarations:

entity Base:
int Battr;

end Base;
Base entity Derived:

int Dattr;
end Derived;

and the process definition:

process operate ( ) accepts Base Obj
. . .

end operate;

then the following statements are all valid:

Base Boj;
Derived Dobj;
. . .

write Bobj .Battr, Dobj. Battr, Dobj. Dattr;
call operate ( ) with Bobj;
call operate ( ) with Dobj;
schedule operate ( ) with Bobj in 5.0 sees;
schedule operate ( ) with Dobj;

HSL meets the inheritance requirement and therefore also Wegner’s defini-

tion of an object-oriented language. There is no standard definition of what

constitutes an object-oriented language, however, and HSL may not meet

other, more stringent, definitions. For example, entity class members are not,

and cannot be, protected, so its encapsulation is weak. Also, primitive types

such as int and real are treated differently than entity objects. On the other

hand, SIMULA also has both these properties and is considered a prototypi-

cal object-oriented language. HSL, like SIMULA, allows inheritance from
only a single parent. It was decided that the benefits to be derived from

multiple inheritance were outweighed by the complexities [35] of its imple -

mentation, particularly for a prototype.

The decision to design the language syntax so that processes are bound to

entity classes only upon process definition was motivated by the twin desires

to enhance the separation of the Environment and Simulator modules and to

enhance model readability. The decision to invoke processes through sched-

ule . . . with and call . . . with was also motivated by the desire to enhance
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readability. The “object operation” notation cannot distinguish the syn-

chronous (call) and asynchronous (schedule) methods of process invocation.

3.4 Language Comparisons

A comparison of HSL with well-known simulation languages enables better

understanding of where HSL fits into the simulation language landscape.

The discussion focuses on languages that support a process view [8] of

simulation for modeling discrete systems. The process-oriented (sometimes

called process-interaction [1]) approach, has been widely accepted as the best

approach for model structuring [5].

For languages that support multiple viewpoints (i.e., processes and events)

and continuous as well as discrete simulation, this discussion is limited to

language features for process-oriented discrete system simulation. Further-

more, it addresses textual language structure, rather than model develop-

ment support systems, such as graphical specification tools. We acknowledge

that HSL is deficient in the area of model development support, although our

current research, discussed in Section 6, includes development of such a

system.

The languages with which HSL is compared are divided into two groups:

scenario languages and procedural languages [15]. Scenario languages model

by specifying descriptive scenarios, typically in the form of block diagrams, to

be carried out by active transactions. Indeed, Banks and Carson [1] distin-

guish them as “transaction flow” implementations of the process-interaction

approach, and Rose [22] distinguishes them as “transaction-oriented.” Major

scenario languages include SLAM II [21], SIMAN [19] and the older versions

of GPSS [31].

Procedural languages are distinguished by inclusion of general-purpose

programming constructs in addition to simulation-specific constructs [15].

They are considered lower-level, for simulation purposes, than the scenario

languages because they usually provide fewer simulation constructs. How-

ever, they are applicable in a wider range of situations due to the power and

flexibility provided by the general-purpose constructs. Major procedural lan-

guages include SIMULA [3], SIMSCRIPT 11.5 [141 and CSIM [331. Also,

GPSS/H [32], a more recent version of that popular language, can be viewed

as qualifying for this category. We consider HSL to be another procedural

simulation language.

3.4.1 Software Engineering Considerations. The framework for language
comparison is Golden’s software engineering considerations for the design of

simulation languages [10]. Software engineering for simulation concerns the

efficient development, expansion and maintenance of large simulation mod-

els. The focus is on efficient use of human resources and the effect of

language design. The efficient use of computer resources, which concerns

space and time requirements for compilation and execution, is of secondary

importance.
The most important concept of structured program design is modularity.

Large models should be subdivided along clear, functional lines into smaller
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components (modules) that are of a more manageable size. This top-down

approach eases the development of a software model through the use of

stepwise refinement. Model maintenance is facilitated because changes and

corrections will tend to fall within modules and are much easier to imple-

ment without affecting other software components.

The types of control structures used within a program are also important to

structured design. It has been proven [4] that any computer program can be

written using only control structures for sequence, selection and iteration.

One of the software engineering measures, then, of a programming language

is its ability to support structured control statements.

The ability to define flexible data structures to use in conjunction with

control structures is equally important. The data in the model should logi-

cally correspond to physical components of the system being modeled. Other

software engineering considerations are improved program readability

through self-documenting code and meaningful variable names and con-

trolled data communication between program modules through use of param-

eters and localized data. Since there is little real variation among the

languages regarding data communications, it is not discussed further.

3.4.2 Scenario Languages. Pursuant to these software engineering con-

cerns, procedural languages (e. g., SIMULA, SIMSCRIPT 11.5, HSL) hold a

decided advantage over scenario languages (e.g., SLAM II, SIMAN, older

versions of GPSS). First, consider modularity and support for top-down

design. Top-down, or hierarchical, design in a process-oriented simulation

means building an initial or prototype model from a few abstract processes,

then refining those determined to be significant into subprocesses to intro-

duce greater detail. Scenario languages, which represent models as networks

of blocks, are designed to model sequence, not hierarchy. Model refinement to

introduce more detail results in replacement of entire sequences, which

complicates model reverification. Scenario languages support process extensi-

bility through general programming language inserts, which are typically

FORTRAN subroutines. Thus hierarchical refinement results in a model that

consists largely of FORTRAN code. Even if all the language statements are

available in this subcode, the programmer must interface with them using

FORTRAN syntax, which is inconsistent with the top level of the model.

SIMAN, however, does provide high-level modularity in the separation of a

model into an experimental frame, which encapsulates experimental control

information and a system model, which contains the action statements. This

separation, inspired by Zeigler [41] and emulated by HSL, allows the model
to be exercised by changing only the experimental frame.

As for control structures, the scenario languages depend on the base

language to provide full algorithmic power to the programmer through

inserts. The inclusion of language constructs for assignment, selection (if)

and iteration (loops), as exemplified by GPSS/H, vastly reduces the need for

inserts. The data structures available are typically attributed entities imple-

mented as arrays. They must, if needed in the base language code, be

accessed as global arrays. The use and length of user-defined identifiers is

limited, thus inhibiting program readability.
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In general, the major advantage of scenario languages is that they provide

very high-level support for simulation constructs through block diagrams and

thus are expected to be more easily understood by the modeler and conducive

to graphical specification techniques. They also enable small systems to be

specified quickly and easily. Unfortunately, as the model expands in scope

and detail, the model becomes more difficult to understand and the program-

mer is forced to compromise good program structure.

3.4.3 Procedural Languages. The procedural languages embody software

engineering techniques in different ways and hence cannot be compared with

HSL in a uniform manner. We only highlight certain comparable features, on

a selective basis. Such languages typically support modular program expan-

sion through one or more procedural constructs. For example, SIMSCRII?T

11.5 (hereafter referred to as SIMSC!RIPT) supports hierarchical refinement

by a call to a routine, SIMULA by invoking a procedure, and HSL by a

call to a process. SIMSCRIPT and SIMULA support lateral refinement by

an activate of a process, and HSL by a schedule of a process. HSL is

conceptually simpler and more flexible in that a process may be invoked in

either fashion. Another aspect of modularity is the separation of model

control from model action, as exemplified by SIMAN’S experimental frame

and system model. The closest feature to an experimental frame in SIM-

SCRIPT is use of the preamble section in conjunction with the main

program, to declare globals and initialize simulation. The main program of a

SIMULA model serves a similar function. The HSL Environment module

contains declarations of global variables plus simulation control statements

and is roughly equivalent to a SIMAN experimental frame. The HSL Sim-

ulator is equivalent to a SIMIAN system model. ‘The HSL Environment

and Simulator rnodul es may also be compiled separately, which facilitates

experimentation.

Procedural languages provide a full complement of structured control

statements. Compound statements in SIMULA are enclosed in a begin.. end

pair (which reflects its Algol origins), while those in SIMSCRIPT and HSL

are not distinguished other than by position within an enveloping structure

(such as Ioop..end loop), SIMULA has two assignment opc~ators, one for

regular variables and one for reference, or pointer, variables. 51MSCRIPT

and HSL do no pointer assignment and thus have only one assignment

operator. These three languages, as well as GPSS/H, contain an if..then..else

construct for selection. HSL additionally offers a case statement for more

concise selection. SIMSCRIPT and SIMULA have both for loops and

while/until loops, while HSL supports only a generic loop construct which

relies on execution of an enclosed break statement for Ioop exit. SIMSCRIPT

and SIMULA provide a goto statement for uncontrolled flow transfer within

a procedure, while HSL does not support uncontrolled flow transfer. HSL

provides the next statement to branch to the next iteration of a loop, the

break statement to exit a loop, the exit statement to prematurely terminate
a process and the return statement to leave a function. In summary, HSL

emphasizes selection over iteration and does not permit uncontrolled transfer

of execution flow.
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SIMULA and HSL provide more sophisticated data structuring than SIM-

SCRIPT. Each SIMSCRIPT process can define a set of data attributes which

can be referenced once a process instance is created. SIMULA provides the

class construct, object templates which contain both data and procedural

attributes. Additionally, hierarchies of classes may be defined, with a child

class inheriting all attributes of its parent. These properties characterize

SIMULA as an object-oriented language, as discussed in Section 3.3. HSL

provides a similar feature for defining entity class hierarchies with inheri-

tance. The major difference is that processes defined for use with an entity

class are not declared in the class definition, which is contained in the

Environment. The association is made in the process definition, which is

contained in the Simulator. This support in SIMULA and HSL for extensible

and abstract data types enables program data structures to more closely

model structures in the system being modeled thereby facilitating model

verification.

SIMSCRIPT has adopted the Cobol approach to self-documenting code by

allowing long variable names and superfluous words to result in an English-

like syntax. This also helps to bridge the gap between the modeler and the

programmer; the model is more easily understood by the modeler and the

language contains all the programming features needed by the programmer.

SIMULA maintains readability through the use of long, meaningful variable

names and clear, conceptually simple Algol-like syntax. Unfortunately, SIM -

ULA has never achieved widespread use in America, although popular in

Europe. It is clearly, however, a programmer’s language. HSL strives for

improved readability through long, meaningful variable names, requirement

of identifiers on all end statements (e. g., end ifi end GenJobs;), the free use

of “white space” (spaces, tabs and carriage returns) within and between

statements, and certain sacrifices in syntactic purity for the sake of clarity,

such as the use of call..with and schedule.. with. These features help to

bridge the gap between the modeler and the programmer, as much as that is

possible in a general-purpose simulation language.

3.4.4 Language Comparison Summary. In summary, HSL addresses

Golden’s simulation language software engineering considerations more fully

than any of the scenario languages. It also provides more flexible data

structures than the procedural language SIMSCRIPT. Distinguishing HSL

from SIMULA is more difficult because both provide process and data exten-

sibility as well as structured control statements. HSL supports better simula-

tion control through separate Environment and Simulator modules, allows

processes to be invoked either synchronously or asynchronously, provides
language primitives to rcyment simulation constructs (statistic, queue, and

resource objects, automatic statistics collection and reporting) and is less

intimidating syntactically to the modeler than SIMULA.

4. HSL PROGRAM EXAMPLE

To illustrate the use of HSL, we present a program for a simple “machine

shop model. ” Numerous versions of such manufacturing shop models have
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been reported in the literature (e.g., see Ford and Schroer [7] and Ketcham et

al. [13]).

4.1 Machine Shop Model

A hypothetical machine shop (or suboperation within a shop) produces metal

shafts for large electrical motors. Two types of shafts are produced, lathed

shafts and drilled shafts. The former is characterized by a groove which is

lathed near one tip of the shaft, the latter by a threaded hole which is drilled

in a similar spot.

To save inventory costs, shafts are produced only upon receipt of an order.

The interarrival time of orders is exponentially distributed. Orders are given

to a cutter, who cuts shafts to the specified length from a continuous (and

infinite, for our purpose) strand of metal having a fixed diameter. Shafts to

be lathed are placed on one conveyor and those to be drilled are placed on

another. The conveyers lead to the lathe area and drill area, respectively,

where the shafts are machined. After machining, the shafts are placed on

conveyers leading to a single inspection area where each is accepted or

rejected. The operation beyond that point is not of interest for this example.

The performance objective of the study is to minimize the number of

lathing machines and drilling machines necessary to fill orders in a “timely”

fashion. What constitutes “timely” is not critical here, but it clearly implies

a need to minimize waiting time in the machining and inspection areas.

Because shafts do not arrive at these areas in a uniform fashion, some

waiting occurs unless a large number of machines are available. Therefore a

tradeoff between waiting time and number of machines is necessary.

A diagrammatic version of the resulting HSL model is shown in Figure 5.

This figure has been transcribed from the N-CHIME Graphics-based HSL

Editor (to be described in Section 6), so a short explanation of symbols is in

order. Each ellipse represents a process. Each box represents a resource. A

nondirected line represents the request and release of a resource within the

connected process. A solid arrow represents hierarchical process invocation

through call, with the arrow directed toward the subprocess. A dashed arrow

represents lateral process invocation through schedule, with the arrow

directed toward the process being scheduled. The label on an arrow identifies

the entity class of the entity associated with the invoked process.

Inspection of Figure 5 reveals the simulation structures in the model:

processes, resources and entities.

(1) Each process in the model represents an operation, or suboperation, of the

shaft manufacturing procedure. Each operation is applied in sequence, in

the direction indicated by the arrows in the figure. The flow of entities

through the system via processes is as follows:

(a) The GenOrder process drives simulation activity by periodically

generating orders for shafts and sending them to the cutting area;
(b) The Cutting process cuts each shaft to length as specified in the order

then sends it to the appropriate machining area;
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Fig. 5. Machine shop model.

(c)

(d)

(e)

The Lathing process machines only the lathed shafts, then sends

them to the inspection area.

The Drilling process machines only the drilled shafts, then sends

them to the inspection area. The drilling operation consists of two

sequential suboperations, which are modeled as subprocesses. They

are the following:

(1) the DrillOperl process, which positions the shaft and drills the

threaded hole to the specified depth, and

(2) the Dril10per2 process, which repositions the shaft under a differ-

ent drill bit and drills a concentric smooth hole for countersink-

ing.

The Inspection process inspects all shafts after machining and ac -

cepts or rejects each.

(2) Beyond order receipt, each step of the operation requires the use of

consumable system resources. The resources for this system are the

following:

(a)

(b)

(c)

The “Cutter, which requires a certain amount of time to cut each

shaft to length. The system includes one, but this number can

easily be modified, as will become apparent when the program is

presented.

The set of lathing machines, Lathe, which performs the lathing

operation. The set is mockled as a specified number of identical

machines operating in parallel and drawing from a common queue.
The set of drilling machines, Drill, which performs both drilling

operations. As above, the set is modeled as a specified number of

identical machines operating in parallel and drawing from a com-

mon queue.
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(d) The Inspector, which requires a certain amount of time to inspect

each finished shaft.

(3) The model entities represent the objects that move through the opera-

tion sequences. Individual entities are created, activated and deleted

dynamically. The classes of entities in the model are the following.

(a) an Order, which represents the purchase order for a specified

number of each shaft type,

(b) a LaShaft, which represents a lathed shaft, and

(c) a DrShaft, which represents a drilled shaft.

4.2 Machine Shop Model Environment

The Environment module of the model’s HSL program is listed in Figure 6. It

includes declarations of the resources and entity classes required by the

model, declarations of other global identifiers and model control specifica-

tions. The four required resources are declared first. Each resource has a

built-in queue, which can be accessed if needed, and all queueing is handled

automatically. The capacity for each is enclosed in brackets. A resource

request specifies the number of units requested, which must be no larger

than the resource capacity. For this model, each request is for one unit and

each unit of capacity represents one physical machine. All units of the

capacity are served by the same queue. Therefore the number of machines to

be used for lathing or for drilling is modified simply by changing the

capacity.

There are two main classes of entities to represent purchase orders and

shafts. A purchase order, which is vastly simplified for this example, contains

the quantity of lathed shafts and drilled shafts, plus specification of the width

of lathed sections and depth of holes. Although the two types of shafts are

processed differently, both are shafts, so a generic entity class called Shaft is

defined to contain characteristics common to both. The declarations of the

LaShaft and DrShaft entity classes confirm their common heritage. Every

child class inherits the attributes of its parent; every entity instantiated

during simulation contains all defined and inherited attributes. The Shaft

class is used here as an abstract class, which means that it exists only as an

ancestor; all entities are either LaShafts or DrShafts.

An extra statistical variable is declared to confirm the acceptance rate of

inspected shafts. The acceptance rate is specified below, but acceptance or

rejection of a specific shaft is determined by a random variate. The decision

to accept or reject is verified by collecting a value for this time-independent

statistic, the reported average of which reflects the percentage of accepted

shafts.

Several global identifiers are declared to represent model parameters.

Since they are declared as constants, they can be modified only between

simulation runs. The more such parameters a model contains, the more

flexible it becomes in terms of the range of factors that can be easily
considered in an experimental study. If they were declared as variable

identifiers, their values could be modified, for example, by a “metaprocess,”

an exogenous process designed to control an entire experimental study by
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! Environment module for Machine Shop model

! This is a simulation of a simple milling operation for a shop which

! produces shafts (only on demand) for large electrical generators.

! The supply of raw material used to make the shafts IS llmlt less.

model MachlneShop

! Declaration of system resources, with capac~ty of each in brackets

resource [1] Cutter fcfs ;

resource [3] Lathe : fcfs ;

resource [2] DrIil : fcfs ;

resource [1] Inspector : fcfs ,

! There are two main entity classes: to represent order sheets, and

! shafts. Subclasses are defined to represent the two types of shafts.

entity Order :

lnt LaQuantlty ,

DrQuantlty ,

real Tot al Length ,

LatheWldth ,

DrlllDepth ;

end Order ;

entity Shaft

lnt Serial ,

real Length ;

end Shaft .

Shafl entity La Shaft

real LaWldth ,

end La Shaft ;

Shaft entity DrShaft

real DrDepth ,

end DrShaft ;

stat Pct Good Ind ; ! Stat lstlcal varlablc to confirm acceptance rat e.,

! Global ldentlfiers, to change expcrlmcntal parameters between runs.

lnt SerlalNumber =0; ! ALL TIMES HERE AP.E IN SECKXWX,

constant real Arrlvallklean := 60.0 , ! Order Inter arrival mean

Cut”rlme := 7.0 , ! Time needed to cut shaft

InspectMean = 7.0 , ! Avg amount of time to Inspect

Inspect SD := 2.0 , ! Std Dcvlatlon of time to Inspect

Accept Prob := 095; ! Prob of acceptance by Inspector

! lvbdel Con Irol statements, lle exogenous process GenOrder WI1l kick

I off (be ~,mulat, on A full ,epc, .t w,l I be ~eme rated every hour of

! simulated time After 3 simulated hours, the simulation wll I halt,

start GenOrder( ) ,

report rpt lapse >= 1 0 hrs ;

stop clock >= 3 0 hrs ;

end Machtne Shop ;

Fig,6. HSLEnvironment module formachine shop model
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awakening periodically to check the state of the simulation and adjust

parameters accordingly.

The model control specifications for this example are few and simple.

Simulation is to commence by executing the exogenous process GenOrder. A

full, automatically generated, statistical report is to be output every hour of

simulation time (rptlapse, the time lapse since the previous report, is

maintained by HSL). Execution, which commences by default at time 0.0, is

to be halted at simulation time 3.0 hours.

4.3 Machine Shop Model Simulator

The Simulator module of the machine shop model is listed in Figure 7. It is

observed to be a collection of processes, one for each ellipse in Figure 5, and

functions. The model includes one function for illustrative purposes; it does

not appear in Figure 5 because functions cannot include simulation con-

structs.

The exogenous process, GenOrder, must be started in the Environment.

All other processes are endogenous; each accepts an entity of a particular

class from within the simulated model. This entity is then used within the

context of the process invoked on its behalf. Thus, for example, the Cutting

process uses the information from the Order entity (identified by Sheet) to

determine how many of each type of shaft to create. After each individual

shaft entity is created, it is scheduled for the next operation. Cutting

continues after issuing the schedule, looping to create more shafts as re -

quired. The Inspecting process is special in that it accepts either LaShaft or

DrShaft entities. This can be seen in Figure 5. This is accomplished by

specifying the name of their common ancestor class, Shaft, in the process

accepts clause. Thus in effect, entity subclasses inherit processes from their

ancestors as well as data attributes.

The machine shop model as written contains examples of both process

views discussed in Section 3.1: the localized, or sequential, view is reflected

by the scheduling of shafts for inspection after being machined, and the

hierarchical view is reflected by the hierarchical breakdown of the Drilling

process into two subprocesses: DrillOperl and Dril10per2. The model can be

revised to support either view exclusively, but at a loss of correspondence to

the real system.

As previously described, the schedule and call statements are two options

for interprocess communication in HSL. While a schedule invokes another

process in an asynchronous manner (i.e., independently continuing with its

own execution), a call initiates synchronous behavior. That is, the calling

process suspends itself until the called process return(s) control. The

example program illustrates this kind of hierarchical control flow in the

Drilling process, where two different subprocesses are called in sequence. A

fork-join capability is effected by naming several processes in the call state-

ment; all subprocesses are invoked at once and the calling process is sus-

pended until all have returned.
However, the hierarchical nature of HSL can be exploited much more

extensively in the example program and in HSL programs in general. Any
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ll!l!!ll! !1!!!1111!1 !!!! !1!11!!1!!11!1!1 l!!l!ll! !l!!ll!! 111! !l!!!!! 1!!!!!!!!

t Generate orders forever Slmulatlon tcrmln.itlon conditions must be specified

! in the Environment, because there IS no provlslon here for haltlng arrivals

I Th]s exogenous process must he I“ltiatcd by a ‘start’ In the Envlronmcnl.

process GcnOrder ( )

Order Sheet ,

loop

delay expo ( 1, ArrlvafMean ) ;

Sheet, create ,

Sheel LaQuantlty = randlnt ( 2, 1, 10 ) , ! flal shaft quantity

Sheet DrQuantlty .= randlnt ( 3, 2, 4 ) , ! drilled shaft quantity

Sheet .To Lal Length =260; ! shaft length

Sheet LatheWldtb = 2 5 , ! width of Ialhed groove

Sheet Drill Depth = 12; I Depth of threaded hole

schedule Cutting ( ) with Sheet ,

end loop ,

end GenOrder ,

ll!lllllllll! 111 111! !l!l!ll!! 111 111! !!!l!ll!! )1! !1!!!!!!!1!!!1!1 1!!! !lll !!!!

I The cultlng proces< Orders rccelved are handled ft

1 supply of rawmaterlal IS Ilmlt less The cultcr Cu

t then to-be-drilled shafts A! each cut, J shaft c“
I a Serldl number, and scheduled for machlnlng $+fler

process Cutting ( ) accepts Order Sheet

lnt counl ,

LaShaft La theShaft ,

DrShaft Drill Shaft ,

Cutter request ( 1 ) ,

count =0,
loop

st-in-6rst-OuI The

s all to-be-lathed shafts

1(Y 1s created, assigned

O seconds on conveyer

lf count = Sheet LaQuantlty [hen break . end If ;

Serial Nuntber = Sh’Irtc rement(Se rlal ATumber) ,

delay CuIT’lrnc , ! CUt Off a shaft

La the Shaft crea:e ,

La the Shaft Serial := Serlalhrumbcr ,

Lathe Shaft Length = Sheel Tot al Length ,

LatheShaft LaWldlh := Sheet LatbeW]dth ,

schedule I.athlng ( ) with Lathe Shaft In 10 0 sees ,

count = count + 1 ,

end loop ,

count =0,

loop

If count = Sheet DrQuantlty then break , end If ,

Sert al Number = SNIncremcn t(Serlal Nuntbcr ) ,

delay Cut Time , I cut off a shsft

DrtllSbaft.create ,

Drill Shaft Serial = Scrlalhlumber ,

Drill Shaft Length = Sheet Total Length ,

Drill Shaft DrDepth = Sheet Drill Dep Lh ,

schedule Drilllng ( ) with Drill Sb aft In 10 0 sees ,

count = count + I ,

cnd loop ,

Cutter release ( 1 ) ,

Sheet dcstro} . I For Imt Ial version, order sheet IS fin,

end Cutting ,

!l!l!!l! !1!1!1!11!1! l!!llllllllll !111!1! 1!!! !ll!!!!ll!!! 11!! 111!!!1

! Tft Is represents the “lathing” operation, ln which a groove ~s la

hed

!l!!! 1!!

hed near

1 one tlp of the shaft “Ills operation IS s~mple, so ~o s“bprocesses are

1 called The shaf[ then spends 15 seconds betng conveyed to the Inspector

(a)

Fig. 7 HSL Simulator module for machine shop model.
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process La[hlng ( ) accepts LaShaft TbIng
Lathe .request ( 1 ) ;

delay 5.0 ; ! posltlon the piece
delay 8.5 * Thing .LaW1dth ; ! Work shaft edge at

La[he. release ( 1 ) ;
schedule Inspection ( ) with Thing in 15.0 sees ;

end Lathing ;

!!!!!!!!!!!!!!!!!!!!!!!! !!!! [l!l!l! !1!!111!!!1!1 !!1!1!1!11

! Two part “drilling” operation. First, a threaded hole
! concentric countersink hole (same machine). Then 15 se

process Drilllng ( ) accepts DrShaft Thing

Drill.request ( 1 ) ,

call Drill DperA ( ) with ‘fltlng ;

call Drill Oper B ( 0.35 ) with ‘fling ;

Drill.release ( 1 ) ;

schedule Inspect Ion ( ) with ‘f?tIng in 15.0 sees ;

end Drilling ;

8.5 sees/inch

[I!III!I1[III1[lI

s drilled, then a

ends being conveyed

! 1!!!!!!!!!!!!!!!!!!! !!!] !!!! ]!!! !!]! ]!!![ !!]!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!

! This process represents drilllng the threaded hole. For brevity of

I presentation, the process is not refined.

process Drll lOperA ( ) accepts DrShaft Thing

delay 5 0 ; ! posltlon the shaft

delay 10.0 * Thing, DrDepth ; ! Drill threaded hole 10 sees/l”ch

end DrI 1 lOperA ;

1!!!!!!!!!!!!!!!!!!!! 1!!!!!!!!!]]!!!!]!!!! !!!!!!!!!}!]!!!!!I!I] !!!]!!!!!!!!!

I This process represents drilling the smooth countersink hole. ‘the depth is

! a parameter representing percent. Rate of drilling is 7 seconds per Inch,

process Drill OperB ( real Pct Depth : In ) accepts DrShaft ‘Illng

delay 3.0 ; ! Reposltlon shaft for the other blt

delay 7.0 * Tblng. DrDepth * PctDepth ; ! Drill countersink hole.

end Drll lDperB ;

!!!!!!!!!!!!!!!!! HI!!!]!!!!!!!!!!! !!!!!!!!]!!!!!!!! !!!! !!!! !!!! !!!!1 !!!! !!!1

! Shaft Inspcctlon process The Inspector handles either kind of shaft the

! same way, so this process accepts an entity of their common parent.

! ‘fhe user-defined statlstlc WL II just verify the acceptance probability.

process Inspection ( ) accepts Shaft Product

Inspect or. request ( 1 ) ;

delay normal ( 4, InspectMean, Inspect SD ) ;

Inspect or. release ( 1 ) ;

if rand Ol ( 5 ) <= Accept Prob then

PctGood. collect( 100.0 ) ;

else

PctGood. collect( 00);
end if ;

Product destroy ; ! Flnl shed with entity, so r

end Inspection ;

ll![l!! !!!! ! 1!!!!!!!! 1!!! 11 ! ! ! ! ! !,.,.,.,.l!l!!llll! !!l!!l! 1!!! ![!!

I Useful (but unsophlstt ca ted) function 10 Increment Ser ia

function SNIncrement (Int Number ) returns lnt

return Number + 1 ;

end SNIncrement ;

b)

Fig. 7. (Continued).

claim its storage

!!!! !![!!!!!1!!1!

Number counter,
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process including a delay statement, each simulating some constant or

variable time delay in the process’ action sequence at that point, can be

refined by the modeler into a more detailed representation of that delay. The

modeler can simply do the following:

(1) replace a delay statement with a call statement to invoke a new sub-

process at that point;

(2) program that subprocess to model the time delay at a finer level of

granularity; add the resulting subprocess to the Simulator’s collection of

processes;

(3) update the model Environment to reflect any requirements (e.g., re-

sources) imposed by the new process.

Such hierarchical refinement of an HSL model is one of the significant

features of the language. The opposite of refinement, namely compression,

can also be carried out easily by replacing unnecessarily detailed subproc-

esses with simple delay statements in the calling processes. As a result, a

simulationist has the flexibility of zeroing in on the troublesome parts of a

model, in great detail (to whatever hierarchical level desired), while simplify-

ing (and minimizing simulation effort) those parts of the system that exhibit

predictably stable and noncritical behavior.

4.4 Machine Shop Model Output

The Machine Shop model has been written such that all output is generated

automatically by HSL pursuant to the conditions specified in the model

control section of the Environment. The modeler is not limited to using the

provided fixed report formats; customized reports may be written within any

process using write statements in conjunction with the identifiers of HSL and

user-defined statistical values and variables. An automatically generated full

HSL report is, however, always output upon termination of the simulation

run. The Machine Shop model has been written to output a complete report

after each hour of the three-hour simulation.

The experimental conditions for this model are also contained in the

Environment. One simulation run is to be made using the parameter values

specified in the Environment. HSL does not include a feature for designing

and conducting experimental studies, but it does provide the programming

tools for implementing these capabilities. An experiment control mechanism

can be included by careful programming of one or more exogenous processes

which act as ‘‘ metaprocesses” to monitor the state of the simulation run and
react if necessary. Experiments can also be controlled externally by provid-

ing for interactive user entry of parameter values in a startup process. This

is accomplished by defining an exogenous process to request values using

read and write statements before any further simulation activity takes place.

As a result, a sequence of simulation runs can be performed without recompi-

lation of the model. This feature has proven very useful, when used in

conjunction with file redirection, for exercising simulation models in a

“batch” mode during nonpeak computing hours. File redirection is an operat-
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ing system feature which allows keyboard input and display output to be

redirected from/to disk files.

Figure 8 shows an abbreviated default HSL report produced by the Ma-

chine Shop model run under the conditions specified in the program listing.

Statistical reports are generated for all user-defined statistics, queues, re-

sources, entity classes and processes. The abbreviated report contains one or

more examples of each. No user-defined queues were included in the model,

but a queue report is included within each resource report for its built-in

queue.

Each line of numerical output represents one statistic. The values output

for each statistic are the following: number of observations (OBS), mean

value (MEAN), standard deviation (STDEV), minimum value collected (MIN),

maximum value collected (MAX) and the most recent value collected (CUR-

RENT). If the number of observations is output as a real number (as opposed

to an integer), then the statistic is time-dependent and the OBS value

represents the length in time units of the observation period. Examples of

time-dependent statistics are queue length and resource utilization, in which

each collected value must be weighted by the time period for which it applies.

The statistic report for user-defined statistic PctGood serves to confirm,

through its mean value of 94.8966, that the 95% acceptance ratio specified in

the Environment was met. A total of 1450 observations was collected, repre-

senting the number of shafts completing inspection (the collection point for

this statistic).

A resource report contains several statistics. Utilization is the fraction of

time that the resource was not idle, i.e., that at least one unit was in use.

Occupancy is the fraction of total resource capacity in use over the time

period. For example, if a resource of capacity two had both units busy for one

second and one unit busy for the next second, then the utilization for that

time period is 1.0 and the occupancy is ((2 busy* 1 see) + (1 busy* 1 see))/(2

units * 2 see) = .75. If the resource is of capacity one, utilization and occu-

pancy are identical. Other resource statistics are number of users, capacity

(which can be varied under program control using the chrcap resource

attribute) and periods of idle time.

Since every resource has a single built-in queue (resource attribute q), a

queue report is embedded within the resource report. Queueing statistics are

entity wait time, queue length and queue capacity (which can be varied

under program control using the chqcap queue attribute). An array of

resources has one queue per array element.

An entity class report includes statistics gathered from the individual

entities generated from that class. Two statistics are collected: population,

which tracks the number of “alive” entities (those that have been created but

not yet destroyed) in the system at any given time and lifetime, which is

collected when an entity is destroyed to identify the length of time since its

creation.

Finally, two statistics are collected for each process in the model, including
exogenous processes. These statist ics are gathered from individual activa -

tions of processes, much like entity class statistics are gathered from
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FINAL REPCRT simulation time: 10800.65

pctgood STATIST lC REPORT 10800.65

OBS MEAN STDEV MIN MAX

1450 94.8966 22.0144 0.0000 100.0000 100.0000

. . ..- . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

cutter RESCURCE REPCRT 10800.65

OBS

UTILIZATION 10800.65

CXXUPANCY 10800.65

USERS 10800 65

CAPACITY 10800.65

IDLE TIME 11

queue

WAIT 151

LEMiTH 10800.65

CAPACITY 10800.65

. . . . . . . . . .
MEAN

0,9481

0.9481

0.9481

1.0000

50.9227

195 1099

2.7387

65536.0000

STOEV

0.2217

0,2217

0.2217

0.0000

40.1177

139.6290

2.2013

0.0000

MIN

0.0000
0,0000
0.0000
0.0000
4.8591

3.0325

0.0000

0.0000

MAX

1.0000
1.0000

1.0000

1.0000

108 3496

531,3901

9.0000

65536.0000

. . ..- . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . .

1.0000

1.0000

1.0000

1.0000

105.2888

28.8274

2.0000

65536.0000

order ENTITY CLASS REPORT 10800.65

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
OBS MEAN STOEV MIN Mix

population 10800.65 3 6868 2 2757 0.0000 10 0000 3.0000

llfetlmc 161 245,9862 146 2255 31 0325 622,3901 310.5030

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

shaft ENTITY CLASS REPORT 10800.65

. . .
OBS MEAN STDEV NUN M&i

population 10800.65 10.7982 2.6832 0.0000 17 0000 12,0000

Ilfetlme 1450 80.0558 12.7784 52.2763 122.9799 79.2536

cutting PRKESS REPCRT 10800.65

OBS MEAN STDEV MIN MAX

calls 10800 65 3.6868 2.2757 0 0000 10.0000 3.0000
thru time 161 245,9862 146.2255 31.0325 622 3901 310 5030

lathlng PRCCESSREP@.T 10800.65

OBS MEAN STDEV MIN w
calls 10800.65 3.6202 1.5110 0.0000 7.0000 3.0000

thru time 959 30 6861 4.5579 26 2500 47,2500 31 5000
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ACRM4LSItvUL4T10N TEFMIN4TION

Fig.8, Abbreviated HSLreport formachine shop model
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individual entities. The calls statistic tracks the number of activations of the

process that exist at any given time. The thru time statistic is gathered at

process termination to measure the length of time since its activation. Both

are directly analogous to the entity class statistics.

4.5 Results Summary

Simulation results obtained by running the example Machine Shop model are

summarized in Table I for resources and Table II for processes. For resources,

the occupancy statistic is more useful than utilization because both Lathe

and Drill are multicapacity resources where each unit of capacity represents

one machine and occupancy represents the fraction of the total machine

capacity in use over the course of the simulation.

Table II contains information relevant to system throughput in the thru

time statistic. The number of observations for each process represent the

number of entities, of the class it accepts, passing through that process. The

161 observations for Cutting represent the number of orders that were

completed by the cutter. Likewise, the observations for Lathing and Drilling

represent the number of shafts drilled and lathed, respectively. Both shaft

types are included in the numbers for Inspection. Notice that the sum of

observations for Lathing and Drilling is greater than the observations for

Inspection; this is because several shafts were awaiting inspection when the

simulation ended.

5. HSL STATUS

The HSL language has been implemented in an interpreter-based prototype.

Language processors are classified as being either interpreters or compilers,

although most exhibit characteristics of both to some degree. A pure inter-

preter is characterized by its complete processing of one program statement

at a time. Each statement is recognized and its actions carried out before the

next statement is considered. A pure compiler is characterized by its translat -

ing of the entire program into machine code. The compiled program is then

executed with no further compiler involvement.
The HSL interpreter is a hybrid, combining methods of both interpreters

and compilers into a two-phase process. Specific structures and methods are

presented by Rozin and Treu [26]. The key to this two-phase approach is the

definition of a machine language for an abstract (nonexisting) machine. This

simple language acts as an intermediary between the two phases. The first

phase translates an HSL program into abstract machine code, much like a

pure compiler. The second phase, which is completely separate from the first,

recognizes and executes each abstract machine statement in turn, like a pure

interpreter.

The HSL interpreter includes a separate translation phase for the Environ-

ment and the Simulator modules. This allows modifications local to one or

the other to be made without necessitating recompilation of both. This is
quite useful for modifying global parameters (in the Environment) between

experiments. The prototype, however, has no mechanism for determining
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Table I. Selected Statistics for Machine Shop Resources

Resource

Cutter
Lathe

Drill

Inspector

Occu

mean

0,948

0.778

0.529

0.942

rrcy

stdev

0.22’2

0.314

0.445

0.233

obs

151

575

224

1375

aueue wait

mean

195.110

7.435

8.956

19.655

stdev

139.629

3.530

3.297

12.232

max

531.390
21.000

21.760

61.040

aueue length-
mean

2.739

0.396

0.186

2.508

Table II. Selected Statistics for Machine Shop Processes

stdev—

2.201
0.586
0.435
1.875

Cutting 3.687

Lathmg 3.620

Drilling 1.706

Inspection 5.472

I thru time

stdev—

2.276

1.511

1.340

2.154 rmax obs mean

10 161 245.986

7 959 30,686

6 498 26.968

12 1450 25.638

stdev

146.226

4.558

4.977

12.800

max

622.390
47.250

44.700

64.431

dependencies between the modules, so this feature has not realized

max

9

3

2

8

its full

potential.

The decision to implement HSL as an interpreter was a natural conse-

quence of the decision to first develop a prototype. The execution of an

interpreted model is certainly slower than that of a compiled model, but the

programming effort to implement an interpreter is much less. This is because

the code to carry out language semantics, which in a simulation language

can be very complex, is written in the high-level language of the interpreter

not in the machine code of the target computer. In addition, the intermediate

code produced by the translation phase of the HSL interpreter, unlike the

machine code produced by a compiler, is machine-independent, thus enhanc-

ing portability. Another pleasant side-effect is that an interpreter retains

source program information, such as symbol tables, throughout model execu-

tion. This facilitates the development of interactive run-time tools such as

debuggers.

The HSL interpreter itself was written using the C+ + language [36]. This

language was chosen after a deliberate selection process. Our criteria were

based on the desires to develop the interpreter on a Unix-based platform and
to explore techniques of object-oriented programming. Given the languages

available at the University at that time (early 1988), the choices were

narrowed to C + + and Modula-2. A study was conducted and C + + selected

due to its superior execution performance (both in terms of time and space)

and its anticipated wider popularity and availability.

The interpreter was originally developed on an NCR Tower running the

Unix operating system. It has since been ported to a Unix-based VAX

system, and to a DOS-based NCR personal computer. Table III summarizes
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Table III. Characteristics of Two Versions of the HSL Interpreter

Attribute

Processor

Operating System

Interpreter size:

-- lines of C++ code

-- bytes

Translation phase speed

-- lines of HSL code per second

Interpretation phase speed

-- lines of HSL code per second

NCR Tower

Motorola 68020

Unix

17602

413676

85

1180

NCR PC

Intel 80386

DOS

18967

419117

53

210

the storage space and execution speed characteristics of the Tower and PC

versions. The PC version is somewhat larger because it includes the Real-Time

Model Interrupter software (see Section 6). The prototype interpreter is

limited in the size of HSL model it can process, depending on memory

availability. The limitation is more severe for the PC version. The largest

HSL models written to date have been about 1200 lines in length. The

execution speed figures are approximations based on the Machine Shop

model and vary widely with model complexity.

HSL has been used for the most part within the University community, In

addition to NCR-sponsored research, HSL has been used in the graduate-level

simulation course for individual term projects, for the simulation of an

emergency response system written as part of a Master’s project and for the

performance evaluation of a retail transaction processing system written for

NCR as an independent project.

6. HSL-ORIENTED INTERFACE SYSTEM

Comprehensive, user-oriented design of software tools for support of any

interactive, computer-based application demands that the designers attend to

both the language software to enable effective representation of the applica-

tion of interest and the interface software to bridge any remaining gaps

between the language software and the user’s ability to utilize it effectively.

The focus of this paper is on the HSL language software. Our current

research efforts focus on the design of the interface software.

N-CHIME is the NCR-sponsored, Cohesive, HSL-oriented Interactive Mod-

eling Environment. It is a prototype interface software system designed for

use with the HSL language interpreter and implemented on a PC-based

platform [29]. The primary mission of N-CHIME is to assist the HSL user in

carrying out various modeling and simulation tasks. This is accomplished by
following user-oriented software design principles. It is important for the

interface to facilitate learning to use the interaction techniques and software
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tools and to provide context by displaying carefully structured and supportive

visual information and directions. The current prototype supports these

principles and is being extended to also adapt to the needs and preferences

of different users. The capability to automatically adapt interface behavior

to individual users requires the effective application of expert systems

technology [301.

The visible features of N-CHIME were determined as part of a three-

pronged design approach which encompassed principles and factors of user-

oriented design, interface design and application software engineering [381.

One aspect of the design analysis addressed the needs of users for guidance

and direction toward completing specific tasks. An existing method for

structuring interactive simulation sessions [371 was refined for this purpose.

The use of structures to represent the various phases of an interactive session

allows the interface to give the user a sense of orientation (or context) with

respect to where they are in the task domain, where they are going or can go

next and what they can do there.

The ability to provide guidance and direction to the user is enhanced by

superimposing a task plan, or directed graph, over the session structure.

Each such plan is designed to reflect the required steps that must be taken to

carry out a specific simulation task. The session and task structures enable

us to define for the interface a series of menus which present the user with

the most appropriate choices of tools and other options in a given context.

Each of the session phase structures is supported by one or more interface

features, which are realized in the visible interface through software tools.

An example should clarify these relationships. Suppose the goal of an inter-

active simulation session is to begin building a new simulation model. The

initial phase of that session is conceptualization of the desired model. Two

operations which support conceptualization are the browsing of an existing

library of models in search of a similar model and visually-aided model

creation. The browsing feature is supported by an interactive Browser tool

and the creation feature by a visually-oriented, graphics-based HSL editor.

Pursuant to the analysis, we identified a number of appropriate tools. They

include the following:

(1) Browser Search and Retrieval Tool,

(2) Graphics-based HSL Editor,

(3) Text Editor,

(4) HSL Interpreter Front-End (translation phase),

(5) HSL Interpreter Back-End (interpretation phase),

(6) Real-Time Model Interrupter and Manipulator,

(7) Graphic Data Display Tool, and

(8) Statistical Model Comparison Tool.

With the exception of the Statistical Model Comparison Tool, these capabili-

ties now exist in the N-CHIME prototype. Two of them are of particular

interest.
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The Graphics-based HSL Editor supports model conceptualization, develop-

ment and refinement through inclusion of specific visual structures to repre -

sent major HSL language constructs: processes, call statements, schedule

statements, entity classes, resources and resource requests. These structures

are created, deleted and moved around the screen using mouse-based direct

manipulation techniques. The figure that illustrates the example model in

Section 4 is a reproduction of a Graphics-based HSL Editor screen.

The Real-Time Model Interrupter and Manipulator tool allows the user to

interrupt an executing model, make certain changes and then resume execu-

tion. Its purpose is to enable the user to view and optionally modify the

values of global parameters during the simulation run, based on visual

inspection of intermediate reports or other output. The development of this

debugging tool was facilitated by the presence of symbol table information in

the interpreter. However, because the interpreted code is pretranslated, this

tool cannot be easily extended to allow HSL program text to be viewed/

modified.

7. OBSERVATIONS

HSL is a new, process-oriented language designed to serve the needs of both

modeler and simulation programmer, It seems conducive to the way modelers

conceptualize systems and it adheres to principles important to software

engineers. It is especially well suited for hierarchical refinement and com-

pression of its processes or process branches. That is, it supports heteroge-

neous representations, or levels of modeled details, in the various parts of a

model depending on which are deemed to be most critical or unpredictable.

In addition, being interpreter-based, HSL not only provides portability

with its machine independence; it also affords the flexibility of easier access

to an executing simulation program, to check values of variables and to make

selected parameter changes. Further, since the language is not yet locked

into a compiler, it remains more malleable for any desired changes in the

language itself.

Finally, above-indicated design features of HSL have enhanced the poten-

tial of providing effective, interactive support by means of an interface

system, such as N-CHIME. We are presently extending that prototype inter-

face to include other important capabilities, such as adaptation to different

kinds of HSL users.

APPENDIX A: EBNF NOTATlON AND HSL ENVIRONMENT GRAMMAR

EBNF Syntax Notation

The syntax of an HSL module is described by means of a context-free

grammar. The notation for expressing the grammar is an extension of the

Backus-Naur Form and is similar to that used to specify the Ada language
[9]. The notation consists of metalinguistics variables, metalinguistics symbols,

HSL reserved words and HSL symbols. The grammar itself is presented as a
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sequence of rules, where each rule consists of a left-hand side (LHS) and a

right-hand side (RHS) connected by the meta-symbol ::= . The left-hand side

of the rule is a metavariable. The right-hand side of the rule is an expression

consisting of metavariables, metasymbols, HSL reserved words and HSL

symbols. Wherever a metavariable appears in the right-hand side of a rule,

the right-hand side of any rule having that variable as its left-hand side can

be substituted for the variable. This is the distinguishing characteristic of

context-free grammars.

A metavariable is a character string consisting of letters and underscores

(-). The variable name is chosen to be meaningful in its context. The
metasymbols to be used are the following:

.._..— Connects LHS and RHS of a rule.

I Separates alternative RHS items, as an “or” operator,

[1 Encloses an optional RHS item.

{} Encloses a repeated RHS item that can appear O or more times,

HSL reserved words and functions are distinguished by their boldface type.

All other symbols are HSL symbols (which are also emboldened). Unfortu-

nately, the 1, [ and ] symbols are used both as metasymbols and as HSL

symbols. In this case, the HSL symbols are enclosed in single quotes (’ I‘, ‘[’, ‘l’),

which are not valid language symbols.

The grammar is not perfect; certain context-sensitive characteristics can-

not be expressed. Examples are the following: type-checking both for assign-

ment and for matching of formal and actual parameters, prohibition of a

return statement in a process and prohibition of an exit statement or any

simulation statement in a function. A small degree of rigor in grammar

presentation has been sacrificed for improved readability.

Some of the metavariables referenced in the RHS of rules are defined in

the HSL Simulator grammar. Any metavariable name which ends in ‘identi-

fier’ stands for a user-defined identifier consisting of a string of letters, digits

and underscores (_). Any metavariable name which ends in ‘integer’ stands

for a string of digits.

HSL Environment Grammar

environment

global–declarations

base-declaration
base _type
var_list
var_spec
array _spec
dimension
abstract _declaration

::= model model _i dent ifler
{global_ declarations }

model .control.statements
end model _identifier;
::= base _declaration
I abst~.a.t_declaration
I entity _class_declaration
::= [constant] base_type var_list;
::= int I real I bool I str
::= var_spec {,var_spec}
::= identifier [array _spec] [:= initial _value]
““– ‘[’dimension {, dimension} ‘]’..—
::= lower _bound_integer. upper _bound_integer
““= stat abs_list: stat_ mode;
“1” queue [capacity] abs_list : queue_ mode;
I resource [capacity] abs_list : resource_ mode;

ACM Transactions on Modeling and Computer Simulat,mn, Vol. 1, No 2, April 1991



The Hierarchical Simulation Language (HSL) . 149

capacity
abs_list
abs. spec
stat. mode
queue_mode
resource _mode
entity _class _declaration

attribute _declarations

base_ attr_declaration
base _attr_list
base_ attr_ spec
model control _st atements

model _control_ statement

exog_process
actual_ parm_ list
report _clause

“- ‘[’ integer ‘]’..—
::= abs_spec {,abs_spec}
::= identifier [array_spec]
“= dep lind..
::= fifo I lifo I prio I siro
.= fcfs I ffit I preempt..
::= [parent_ class_ identifier] entity class_ identi-

fier:
{attribute_ declarations}
end class_ identifier;

::= base_ attr_declaration
I abstract_ declaration
::= [constantl base-type base-attr-list;
::= base_ attr_spec {, base_ attr_spec}
““= identifier [array _spec]..
::= model_ control_ statement {model _control_

statement }
::= start exog_process {,exog_process};
I stop boolean_ expression;
I trace boolean_ expression;
I report boolean_ expression;
I report boolean/expression

{report_ clause)
end report;

::= process_ identifier ([actual_ parm_list])
::= expression {expression)
::= queue ’1’ boolean_ expression;
I entity ’/’ boolean_ expression;
/ process ‘ I ‘ boolean_ expression;
I resource ‘ I‘ boolean_ expression;
I stat ‘ I‘ boolean_ expression;

APPENDIX B: HSL SIMULATOR GRAMMAR

The syntax of the HSL Simulator module is presented as a context-free

grammar using an extended Backus-Naur Form (EBNF). An explanation of

the EBNF is found in Appendix A, along with the HSL Environment gram-

mar. Again, as stated there, a small degree of rigor in grammar presentation

has been sacrificed for improved readability. In particular, the grammar

makes no distinctions of operator precedence (which is context free) because

this vastly simplifies the expression rules. Some of the metavariables refer-

enced in the RHS of rules are defined in the HSL Environment grammar, as

presented in Appendix A.

HSL Simulator Grammar

simulator ::= {process_ definition I function_ definition}
process_ definition ::= process process _identifier ([process _parm_list])

[accepts class _identifier entity _identifier]
{base_ declaration I entity _declaration}
{generaI_statement I simulation_ statement}

end process _identifier;
function_ definition ::= function function _identifier ([func_parm_list]) re-

turns base _type
{base_ declaration}
{general_ statement}

end function_ identifier;
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process. parm.list ::= process_parm {; process_ parm}
process_parm ::= base_type identifier {, identifier}: process_ parm_

process_ parm_mode
func_parm_list
func_parm
entity _declaration
entity _spec
statement_ sequence
statement
general _statement

mode
::= in I out I inout
::= func_parm {; func.parm}
::= base _type identifier {, identifier}
::= class _identifier entity _spec {, entity _spec}
::= entity _identifier [array _spec]
::= statement {statement }
::= general _statement I simulation_ statemen
::= variable := expression;
I read variable {, variable};
I write expresion {, expression};
I if boolean_ expression

then statement _sequence
[else statement_ sequence]
end if;

\ case expression of
{choice_list ‘ I ‘ statement_ sequence}
[default statement _sequence]

end case;
I loop

statement _sequence
end looP;

I break; I ‘next; I exit; I return expression;

simulation _ st atement ::= schedule process _identifier ([actual _parm_list])
with entity preference

[in expression];
I call process_ identifier ([actual_ parm_list]) with
entity _reference

{, process_ identifier ([actual_ parm_list]) with en-
tity_reference};
I delay expression;
I suspend (queue_reference);
I awaken (queue preference);
I entity _reference.create;
\ entity preference. destroy;
I entity _reference.setpriority (expression);
I stat_ reference .collect (expression);
I queue_ reference. enqueue (entity preference);
I queue_ reference .chqcap (expression);
I resource_ reference. request (expression);
I resource_ reference .release (expression);
I resource_ reference .chrcap (expression);
::= identifier
I integer
I real_ number

“string _of _characters”
I (expression)
I expression arithmetic_ operator expression
I function_ identifier ([actual_ parm_list])
I random_ variate_ function

choice _list ::= choice {, choice}
choice ::= integer

I lower –bound_ integer .. upper _bound _integer
real _number ::= integer integer
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arithmetic .operator
boolean_ expression

relational _operator
variable

::=+ 1–1*1/\”l%
::= identifier
I true
I false
\ (boolean_ expression )
I not boolean_ expression
[ boolean_ expression and boolean_ expression
I boolean_ expression or boolean. expression
I expression relational_ operator expression
::== 1#1<1>1 <=1>=
::= identifier [ array preference ]
/ entity preference attribute
I stat_ reference attribute
I queue_ reference. attribute
I resource_ reference attribute
I process_ identifier stat _reference
I entity _class_identifier, stat_ reference

attribute ::= variable
entity preference ::= entity _identifier [ array preference ]
stat _reference ::= stat _identifier [ array preference ]
queue preference ::= queue_ identifier [array preference]
resource preference ::= resource_ identifier [array preference]
array preference ““– ‘[’ expression {expression } ’1’..—
random _variate _function ::= randOl ( stream)

I randint (stream, low, high)
I uniform ( stream, low, high) Note: These
I expo ( stream, mean) parameters are
I normal ( stream, mean, stdev ) expressions.
I hyperex ( stream, mean, stdev )
I erlang ( stream, mean, stdev )
I setseed ( stream, newvalue )
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