1. (10 points) Prove that the following problem belongs to \(P \): Given a graph \(G \), we want to know whether \(G \) has an independent set of size 100.

2. (10 Points) Prove that the following problem belongs to \(\text{PSPACE} \): Given a graph \(G \) and an integer \(k \), we want to know whether the number of independent sets in \(G \) is equal to \(k \).

3. (10 Points) Show that the following problem is \(\text{NP}\)-complete:
 - Input: An undirected graph \(G \) and an edge \(e \).
 - Question: Does \(G \) have a Hamiltonian cycle that passes through the edge \(e \).

4. (10 points) In the MAX-CUT problem, given an undirected graph \(G \) we want to partition the vertices of \(G \) into two parts \((A, B)\) such that the number of edges between \(A \) and \(B \) is maximized. Prove that the following is a \(\frac{1}{2} \)-factor approximation algorithm for this problem:
 - Let \(v_1, \ldots, v_n \) be all the vertices of \(G \).
 - Initially set \(A = B = \emptyset \).
 - For \(i = 1, \ldots, n \) do
 - IF \(v_i \) has more neighbours in \(A \) than in \(B \) THEN
 - add \(v_i \) to \(B \)
 - Else
 - add \(v_i \) to \(A \)
 - EndFor

5. (10 points) Prove that the following algorithm is a 2-factor approximation algorithm for the minimum vertex cover problem:
 - While there is still an edge \(e \) left in \(G \):
 - Delete all the two endpoints of \(e \) from \(G \)
 - EndWhile
 - Output the set of the deleted vertices

6. (10 points) Prove that the following algorithm is a \(\frac{1}{2} \)-factor approximation algorithm for the MAX-SAT problem: Given a CNF \(\phi \) on \(n \) variables \(x_1, \ldots, x_n \):
 - For \(i = 1, \ldots, n \) do
 - IF \(x_i \) appears in more clauses than \(\overline{x_i} \) THEN
 - Set \(x_i = T \)
7. (10 points) A kite is a graph on an even number of vertices, say $2k$, in which k of the vertices form a clique and the remaining k vertices are connected in a tail that consists of a path joined to one of the vertices of the clique. Prove that KITE problem defined as in the following is NP-complete.

- Input: An undirected graph G, and a positive integer k.
- Question: Does G contain a kite on $2k$ vertices as a subgraph?

8. Consider a graph $G = (V, E)$. The chromatic number of G is the minimum number of colors required to color the vertices of G properly. Let \mathcal{I} be the set of all independent sets in G (Note that every element in \mathcal{I} is a set).

(a) (10 Points) Prove that the solution to the following linear program provides a lower-bound for the chromatic number of G.

$$\begin{align*}
\min & \sum_{I \in \mathcal{I}} x_I \\
\text{s.t.} & \sum_{I : v \in I} x_I \geq 1 \quad \forall v \in V \\
& x_I \geq 0 \quad \forall I \in \mathcal{I}
\end{align*}$$

(b) (10 Points) Write the dual of the above linear program.

(c) (10 Points) Prove that every clique in G provides a solution to the dual linear program.