1. For each one of the following problems either prove that they are NP-complete or prove that they belong to \(P \).

(a) (15 Points)
- Input: A CNF \(\phi \) with 10 clauses (and \(n \) variables).
- Question: Is there a truth assignment that satisfies \(\phi \)?

(b) (15 Points)
- Input: A CNF \(\phi \) on \(2^n \) variables.
- Question: Is there a truth assignment that satisfies \(\phi \) and assigns True to exactly \(n \) variables?

(c) (15 Points)
- Input: A 3CNF \(\phi \).
- Question: Is there a truth assignment that satisfies exactly 10 clauses in \(\phi \)?

(d) (15 Points)
- Input: Positive integers \(a_1, \ldots, a_n \) and a positive integer \(M \).
- Question: Is there a subset \(S \subseteq \{1, \ldots, n\} \) such that \(\prod_{i \in S} a_i = M \)?

(e) (15 Points)
- Input: A graph \(G \) and a positive integer \(k \).
- Question: Is there a set \(S \subseteq V(G) \) of size \(k \) such that every vertex of \(G \) either belongs to \(S \) or has at least one neighbour in \(S \)?

2. (25 Points) Consider the following variation of the load balancing problem. Suppose you have a system that consists of \(m \) slow machines and \(k \) fast machines. The fast machine can perform twice as much work per unit of time as the slow machines. Now you are given a set of \(n \) jobs. Job \(i \) takes time \(t_i \) to process on a slow machine and time \(\frac{1}{2} t_i \) on a fast machine. You want to assign each job to a machine, and as before, the goal is to minimize the makespan - that is the maximum, over all machines, of the total processing time of jobs assigned to that machine.

Give a polynomial time 3-factor approximation algorithm for this problem.