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Abstract

Finding a pivot rule for the simplex method that is strongly polynomial is an open
question. In fact, the shortest length of simplex pivots from any feasible basis to
some optimal basis is not known to be polynomially bounded. An admissible pivot
is a common generalization of simplex and dual simplex pivots, and there are various
admissible pivot methods that are finite, including the least-index criss-cross method.
No polynomial admissible algorithm is known.

The key question we address here is the existence of a short sequence of admissible
pivots (where short means linear in the basis and nonbasis sizes). More precisely,
we extend the existence result due to Fukuda, Lüthi and Namiki for nondegeneate
LPs. For the feasibility problem, we prove the existence of a short admissible pivot
sequence from an arbitrary basis to a feasible basis. Furthermore, for the general LP,
the existence of a short admissible pivot sequence from an arbitrary basis to an optimal
basis is proved without any nondegeneracy assumptions. The question remains: is it
possible to design a strongly polynomial admissible pivot algorithm?

1 Introduction

Let us consider the primal and dual linear programming (LP) problems in canonical form:

(P) max cTx subject to Ax ≤ b, x ≥ 0,
(D) min bTy subject to ATy ≥ c, y ≥ 0,

where A ∈ Rm×n, b ∈ Rm and c ∈ Rn are given. The simplex method has been studied
extensively since it was invented in 1947 by Dantzig [6, 5]. The primal (dual) simplex method
is a family of methods which start with a (dual) feasible basis and use pivot operations
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selected with a proper sign restriction and using the ratio test in order to preserve (dual)
feasibility of the basis and guarantee monotonicity of the objective value. Other pivot
methods, e.g. the finite criss-cross methods [17, 10] do not preserve feasibility, they do not
use ratio test, but impose the same sign restrictions in pivot element selection as the simplex
method or the dual simplex method. Such pivots in general will be called admissible pivots
(for a precise definition, see Section 1.1 and Figure 2).

Unfortunately, there is no known pivot algorithms that is polynomial. To date, two
families of polynomial algorithms for LP exist. Ellipsoid methods [12] and interior-point
methods [11, 15]. These algorithms are not strongly polynomial since in all variants the
number of arithmetic iterations to solve an LP depends on the size of the input matrix.
In fact, the termination criteria of these algorithms depends heavily on the size of input
and thus indicate that there is a very little hope for these algorithms to be modified to be
strongly polynomial. Therefore the only reasonable approaches to find a strongly polynomial
algorithm remains to be pivot-based.

We do not know yet if such a pivot algorithm exists, however recently a basic question
was raised and partially solved by Fukuda, Lüthi and Namiki [7]. They studied the following
question:

(*) Let an LP problem be given. What is the length of a shortest admissible
pivot sequence from any (not necessarily feasible) basis to an optimal basis? Is
it polynomially bounded in m and n?

Note that if we replace “admissible” by “simplex” above then there is no known polynomial
upper bound for the length in terms of m and n. This means that the simplex method may
not be polynomial even if it always selects (magically) a shortest path. Assuming that the
LP problem is totally (i.e. primally and dually) nondegenerate, it was proved in [7] that
the length of an admissible pivot sequence can be bounded from above by min{m,n}. For
degenerate problems the authors suggested to use a perturbation technique. In this paper
the nondegeneracy assumption is removed. Our constructive proof relies on similar ideas
that were developed for strongly polynomial basis identification techniques in interior point
methods [14, 15].

One might suspect that our results would follow easily from the fundamental theorem of
linear programming:

(a) If an LP has a feasible solution, it has a feasible basic solution.

(b) If an LP has an optimal solution, it has an optimal basic solution.

It is well known that the theorem can be proved constructively by elementary arguments with
short pivot sequences, see, e.g. [13, Section 2.4]. Here, we mean by short linearly bounded in
m and n. Such procedures, sometimes called purification [1], are simply not sufficient to prove
our results which require each pivot to be admissible. Note that an admissible pivot must
be guided by (the sign patterns of the simplex tableau associated with) the current basic
solution. Furthermore the straightforward proof for (b) merely provides a pivot sequence to
an optimal basic solution and not to an optimal basis. In contrast our results immediately
yield an algorithm to find an optimal basis from a given dual pair of optimal solutions using
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at most m + n admissible pivot operations. This corollary is a strengthening of Meggido’s
theorem [14, Theorem 0.2] which states: there is a strongly polynomial algorithm that finds
an optimal basis, given a dual pair of optimal solutions. Magiddo’s approach is based on
building an optimal basis incrementally by elementary matrix operations, which can be
implemented as (typically non-admissible) pivot operations. Consequently his procedure is
not applicable for our problem. Our proof uses only one type of elementary operations, i.e.
admissible pivots. Finally, and most importantly, we can now claim that there is a good
reason to search for a strongly polynomial admissible pivot method for the feasibility and
the LP problems. As we noted earlier, the situation is highly uncertain for the special case
of simplex pivots.

In the rest of this section we fix our notations and give formal definitions. In Section 2.1
for the primal and in Section 2.2 for the dual feasibility problem it will be shown that from
any basis to a feasible basis an admissible pivot sequence exists whose length is bounded by
n and m, respectively. Our main result, in Section 3 shows that the answer to the question
(*) is positive: there always exists an admissible pivot sequence consisting of no more than
m + n pivots. The paper closes by summarizing our results and giving some outlook to
possible further generalizations.

1.1 Matrix Notation and LP Dictionary

Here we present some basic notations and definitions for matrices and linear systems.
For finite sets I and J , an I×J matrix is an array of doubly indexed numbers or variables

A = (aij : i ∈ I, j ∈ J)

where each member of I is called a row index, each member of J is called a column index and
each aij is called a component. For R ⊆ I and S ⊆ J , the R× S matrix (ars : r ∈ R, s ∈ S)
is called a submatrix of A, and will be denoted by ARS . We use simplified notations like,
AR for ARJ , A·S for AIS, Ai for A{i}J , and A·j for AI{j}.

Given a primal LP:

(P) max cTx subject to Ax ≤ b, x ≥ 0,

where A ∈ Rm×n, b ∈ Rm and c ∈ Rn, we define the initial dictionary1 system as

xf = 0xg + cTxN

xB = bxg − AxN ,
(1)

where N = {1, . . . , n} and B = {n + 1, . . . , n + m} are the initial nonbasis and basis,
respectively. Note that A is considered as B ×N matrix, xf is a new variable representing
the objective value and xg is one to make the system homogeneous. The original variable
vector in (P) is only the B = {1, . . . , n} part of an extended vector x = (xB, xN , xf , xg)

T .
For convenience, we set E = B ∪N and E = E ∪ {f, g}. By setting

D =

[
0 cT

b −A

]
, B = B ∪ {f}, N = N ∪ {g}

1The notion of dictionary was first introduced in [16] and elaborated in [2].
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the dictionary system can be written as

xB = DxN . (2)

The matrix D = D(B) is called the dictionary of the LP associated with a basis B. The
associated basic solution x(B) is the unique solution of the system with x(B)g = 1 and
x(B)N = 0. If for i ∈ B and j ∈ N , the (i, j) component dij of D is nonzero, then one can
transform the system (2) to an equivalent system with the new basis B := B − i + j, the
new nonbasis N := N − j + i and the new B × N dictionary matrix D. The replacement
is known as a pivot operation on (i, j). For each dictionary system (2), the dual dictionary
system is defined by

yN = −DTyB. (3)

This represents a dictionary system of the dual problem:

(D) min bTy subject to ATy ≥ c, y ≥ 0

in such a way that the original dual variable y is the {n+1, . . . , n+m} part of the extended
variable vector y = (yB, yN , yf , yg)

T and the variable yg expresses the negative of the original
objective function bTy. The basic dual solution y(B) is the unique solution of (3) with
y(B)f = 1 and y(B)B = 0.

A basis B (or a dictionary) is called primal feasible if x(B)B ≥ 0, dual feasible if y(B)N ≥
0, and optimal if it is both primal and dual feasible. A basis B (or a dictionary) is called
primal inconsistent if there exists i ∈ B such that dig < 0 and DiN ≤ 0, and dual inconsistent
if there exists j ∈ N such that dfj > 0 and DBj ≥ 0.

We call a basis (a dictionary) terminal if it is either optimal, primal or dual inconsis-
tent. The sign structure of optimal, primal and dual inconsistent dictionaries are illustrated
in Figure 1, where we indicate the positive, nonnegative, negative, nonpositive and zero
components by +,⊕,−,	, 0, respectively.

g
f 	 · · · 	
⊕
...
⊕

(a) optimal

g
f

∃i − 	 · · · 	

(b) primal inconsistent

g ∃j
f +

⊕
...
⊕

(c) dual inconsistent

Figure 1: Terminal dictionary structures.

For r ∈ B − f and s ∈ N − g with drs 6= 0, a pivot on (r, s) is said to be admissible
if either (I) drg < 0 and drs > 0 or (II) dfs > 0 and drs < 0. See Figure 2. Admissible
pivots are natural for pivot algorithms because it exists whenever a basis is not terminal.
All variants of the primal and dual simplex methods [4], Dantzig’s parametric self-dual dual
simplex algorithm [4] and variants of finite criss-cross methods [17, 10] use only admissible
pivots.
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g s
f

r − +

Type I

g s
f +

r −

Type II

Figure 2: Two types of admissible pivots

2 Feasibility problems

In this section both the primal and dual feasibility problems are considered. Although by
dualization one result can be derived from the other, we prefer to present both the primal
and the dual case, because both are needed for the general LP case.

2.1 The primal feasibility problem

Let us consider the linear feasibility problem:

Ax ≤ b, x ≥ 0 (4)

where A ∈ Rm×n, b ∈ Rm and x ∈ Rn.
We make use of the notation introduced in the Section 1.1. We use the dictionary notation

defined there, except we ignore the f -row representing the objective function that does not
exists for the feasibility problem.

Our first problem is as follows:

Problem 2.1 Let an arbitrary basis B and a feasible solution x∗ be given. Find a short
admissible pivot sequence from B to a feasible basis.

We prove constructively by presenting an algorithm which terminates in at most n admissible
pivots. We will see that the given feasible solution x∗ will serve as a sort thread to a feasible
basis.

The algorithm is as follows.

Admissible Pivot Algorithm
(Primal feasibility problem)

Initialization
Given: basis B; feasible solution x∗.
Let E = {1, · · · ,m+ n}, I∗ = {i ∈ E |x∗i > 0}.
Set-up
Set up a subproblem by defining F = I∗ ∪ B. Fix the variables not in F to nonbasis
permanently. The subproblem AFxF = 0, xF ≥ 0, xg = 1 is feasible. The dictionary at this
stage is as given at Figure 3.
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1 + · · · + 0 · · · 0 x∗

g N ∩ I∗ N \ I∗
+
... B ∩ I∗ (no pivot) (no pivot)
+
0
... B \ I∗ (no pivot)
0
x∗

Figure 3: Initial dictionary, primal case.

Set x = x(B). We have the following cases:
If xB ≥ 0, then a feasible basis is found, Stop.
If xr < 0, for some r ∈ B\I∗, then Reduce-F ;

else Modify-x∗.

Reduce-F
Now there is an r ∈ B\I∗ such that xr < 0. Then there is an s ∈ I∗\B = N ∩ I∗ such that
pivot (r, s) is admissible (see Figure 4). This is true, because the problem AFxF = 0, xF ≥
0, xg = 1 is feasible.

1 + · · · + 0 · · · 0 x∗

g N ∩ I∗ N \ I∗
s

+
... B ∩ I∗ (no pivot) (no pivot)
+
0
... B \ I∗ r − + (no pivot)
0
x∗

Figure 4: The situation when F is reduced.

Make a pivot at (r, s); let B := B ∪ {s}\{r}; F := F \{r}.
Go back to Set-up.
Observe: By a pivot |F | decreases by one; x∗ does not change, only the basis.
Modify-x∗

Here xi ≥ 0 for all i ∈ B\I∗, but there is an i ∈ B ∩ I∗ such that xi < 0 (see Figure 5).
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By taking an appropriate convex combination of the current basic solution and the feasible
solution x∗ we eliminate a positive coordinate of x∗.

1 + · · · + 0 · · · 0 x∗

g N ∩ I∗ N \ I∗
+
... B ∩ I∗ i − (no pivot) (no pivot)
+
0 ⊕
... B \ I∗

... (no pivot)
0 ⊕
x∗

Figure 5: The situation when x∗ is modified.

Let

λ := min

{
x∗i

x∗i − xi
|xi < 0

}
=

x∗r
x∗r − xr

.

Then by defining

x∗ := λx+ (1− λ)x∗ ≥ 0

we have AIx
∗
I = b and so a new feasible solution with fewer nonzero coordinates is obtained.

Let I∗ = {i ∈ E |x∗i > 0}.
Go back to Set-up.
Observe: The set I∗ changes. In the next iteration, because xr < 0 and r 6∈ I∗, the step
Reduce-F will be applied and the set F will be reduced.

Now we are ready to prove strongly polynomial complexity of the algorithm.

Theorem 2.2 For any given feasible solution x∗ and any given basis B, there exists an
algorithm to generate a sequence of at most n admissible pivots from B to some feasible
basis.

Proof. The presented admissible pivot algorithm produces an admissible pivot path which
is initiated by the basis B and stops only if a feasible basis is found. At the step Modify-x∗,
no pivots is performed and the step Reduce-F will be applied in the next iteration. At the
step Reduce-F , the cardinality of F is reduced by one. At initialization the cardinality of F
is at most m + n, while at termination F contains at least m elements, thus the algorithm
needs at most n pivots to find a feasible basis.

Remark 2.3 The information that a feasible solution is known was heavily used. This
reminds the reader of basis identification techniques in interior point methods. However,
there are two major differences: here only admissible pivots are allowed; convex combination
of two solutions with ratio test had to be taken.
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Remark 2.4 We do more than just purification of a feasible solution to a basic solution.
Purification procedures allow arbitrary pivots while we use only admissible ones.

Remark 2.5 The algorithm does not give a strongly polynomial algorithm to solve the fea-
sibility problem. The strongly polynomial complexity holds only, if a feasible, not necessarily
basic, solution is known. However, this result makes clear that a short admissible pivot path
always exist.

2.2 The dual feasibility problem

Let us consider the dual linear feasibility problem:

ATy ≥ c, y ≥ 0, (5)

where A ∈ Rm×n, c ∈ Rn and y ∈ Rm.
We use the dictionary notation defined in Section 1.1, except we ignore the g-column

representing the dual objective function that does not exists for the dual feasibility problem.
Our second problem is as follows:

Problem 2.6 Let an arbitrary basis B and a feasible solution y∗ be given. Find a short
admissible pivot sequence from B to a dual feasible basis.

Since the dual feasibility is equivalent to the primal feasibility, the results of the previous
section apply directly and yield a (dual) algorithm which terminates in at most m admissible
pivots.

We shall describe the dual of the feasibility algorithm below to prepare for the presenta-
tion of an LP algorithm in the next section that combines both.

Admissible Pivot Algorithm
(Dual feasibility problem)

Initialization
Given: basis B; dual feasible solution y∗.
Let E = {1, · · · ,m+ n}, J∗ = {i ∈ E | y∗i > 0}.
Set-up
Set up a subproblem by defining G = J∗∪N . Fix the variables not in G to be basis variables
permanently. The dictionary at this stage is as given in Figure 6.

Set y = y(B). We have the following cases:
If y ≥ 0, then a dual feasible basis solution is found, Stop.
If ys < 0 for some s ∈ N \J∗, then Reduce-G;

else Modify-y∗.

Reduce-G
Now there is an s ∈ N\J∗ such that ys < 0, and there is an r ∈ B ∩ J∗ such that pivot (r, s)
is admissible. (True, because the subproblem defined by G is feasible.) For the structure of
the dictionary see Figure 7.
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+ · · · + 0 · · · 0 y∗

N ∩ J∗ N \ J∗
1 f
+
... B ∩ J∗ (no pivot)
+
0
... B \ J∗ (no pivot) (no pivot)
0
y∗

Figure 6: Initial dictionary, dual case.

+ · · · + 0 · · · 0 y∗

N ∩ J∗ N \ J∗
s

1 f +
+
... B ∩ J∗ r (no pivot) −
+
0
... B \ J∗ (no pivot) (no pivot)
0
y∗

Figure 7: The situation when G is reduced.

Make a pivot at (r, s); let B := B ∪ {s}\{r}; G := G\{s}.
Go back to Set-up.
Observe: Here |G| decreases by one; y∗ does not change, only the basis changes.
Modify-y∗.
Here yj ≥ 0 for all j ∈ N \J∗, but there is a j ∈ N ∩ J∗ such that yj < 0 (see Figure 8).
By taking an appropriate convex combination of the current basic solution and the feasible
solution y∗ we eliminate a positive coordinate of y∗.

Let

λ := min

{
y∗j

y∗j − yj
| yj < 0

}
=

y∗s
y∗s − ys

.

Then by defining y∗ := λy+(1−λ)y∗ a new feasible solution with fewer nonzero coordinates
is obtained. Let J∗ = {j ∈ E | y∗j > 0}.
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+ · · · + 0 · · · 0 y∗

N ∩ J∗ N \ J∗
j

1 f + 	 · · · 	
+
... B ∩ J∗ (no pivot)
+
0
... B \ J∗ (no pivot) (no pivot)
0
y∗

Figure 8: The situation when y∗ is modified.

Go back to Set-up.
Observe: The set J∗ changes. In the next iteration, because ys < 0 and s 6∈ J∗, the step
Reduce-G will be applied and the set G will be reduced.

Now we are ready to prove strongly polynomial complexity of the algorithm, namely that
at most m pivots are needed.

Theorem 2.7 For any given dual feasible solution y∗ and any given basis B, there exists
an algorithm to generate a sequence of at most m admissible pivots from B to some dual
feasible basis.

Proof. The presented admissible pivot algorithm produces an admissible pivot path which
is initiated by the basis B and stops only if a feasible basis solution is found. At the step
Modify-y∗ no pivot is performed and the step Reduce-G will be applied in the next iteration.
At the step Reduce-G the cardinality of G is reduced by one. At initialization the cardinality
of G is at most m+n, while at termination G contains at least n elements, thus the algorithm
needs at most m pivots to find a dual feasible basis.

Remark 2.8 The information that a feasible solution is known was heavily used. This is
similar to the dual side of basis identification techniques in interior point methods. There
are two major differences: here only admissible pivots are allowed; a convex combination of
two solutions had to be taken.

3 The LP problem

Now we consider the general LP problem

max { cTx |Ax ≤ b, x ≥ 0 },
min { bTy |ATy ≥ c, y ≥ 0 }, (6)
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where A ∈ Rm×n, b ∈ Rm and c ∈ Rn.
We use the dictionary notation defined in Section 1.1.
Our main problem to be solved without any nondegeneracy assumption is as follows:

Problem 3.1 Let an arbitrary basis B and an optimal solution pair x∗, y∗ be given. Find
a short admissible pivot sequence from B to an optimal basis.

We prove constructively, without any nondegeneracy assumption, that the length of a short-
est admissible pivot path is bounded from above by m+ n.

The algorithm is as follows.

Admissible Pivot Algorithm
(LP problem)

Initialization
Given: basis B; x∗ and y∗ optimal solutions.
Let E = {1, . . . ,m+ n}, I∗ = {i ∈ E |x∗i > 0}, J∗ = {j ∈ E | y∗j > 0}.
Set-up
Let F = I∗ ∪ B and G = J∗ ∪N . The dictionary at this stage is determined by basis B as
it is given on Figure 9.

1 0 · · · 0 + · · · + 0 · · · 0 x∗

· + · · · + 0 · · · 0 0 · · · 0 y∗

g N ∩ J∗ N ∩ I∗ N \(I∗∪J∗)
· 1 f ·
+ 0
...

... B ∩ I∗ (no pivot) (no pivot) (no pivot)
+ 0
0 +
...

... B ∩ J∗ (no pivot)
0 +
0 0
...

... B \ (I∗ ∪ J∗) (no pivot) (no pivot)
0 0
x∗ y∗

Figure 9: Initial dictionary.

Let x and y be the current primal and dual basic solutions.
We have the following cases:

If x ≥ 0, y ≥ 0, then an optimal basis is found, Stop;
else if there is an r ∈ B\I∗ with xr < 0,
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or there is an s ∈ N \J∗ with ys < 0,
then Reduce-F or -G;
else Reduce solutions.

Reduce-F or -G
The same arguments as those that were used in the previous section for the feasibility
problems prove that if there is an r ∈ B\I∗ with xr < 0 or if there is an s ∈ N\J∗ with ys < 0
then a proper admissible pivot exist. The possible admissible pivot situations are indicated
in Figure 10. Specifically,

• if there is an r ∈ B\I∗ with xr < 0 then there is a s ∈ N ∩ I∗ such that pivot (r, s) is
admissible;

• if there is an s ∈ N\J∗ with ys < 0 then there is an r ∈ B ∩ J∗ such that pivot (r, s) is
admissible.

1 0 · · · 0 + · · · + 0 · · · 0 x∗

· + · · · + 0 · · · 0 0 · · · 0 y∗

g N ∩ J∗ N ∩ I∗ N \(I∗∪J∗)
s s

· 1 f · + +
+ 0
...

... B ∩ I∗ (no pivot) (no pivot) (no pivot)
+ 0
0 +
...

... B ∩ J∗ (no pivot) − −
0 + r − +
0 0
...

... B \ (I∗ ∪ J∗) r − (no pivot) + (no pivot)
0 0
x∗ y∗

Figure 10: Possible admissible pivots to reduce either F or G.

Make a pivot at (r, s); update the data structure.
Go back to Set-up.
Observe: Here neither x∗ nor y∗ change, only the basis. One of the cardinalities of F or G
decreases.
Modify-solutions
Here xi ≥ 0 for all B\I∗ and yj ≥ 0 for all N \J∗, but
• either there is an i ∈ B ∩ I∗ such that xi < 0, then Modify-x∗;
• or there is a j ∈ N ∩ J∗ such that yj < 0, then Modify-y∗.
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1 0 · · · 0 + · · · + 0 · · · 0 x∗

· + · · · + 0 · · · 0 0 · · · 0 y∗

g N ∩ J∗ N ∩ I∗ N \(I∗∪J∗)
j

· 1 f · + 	 · · · 	 	 · · · 	
+ 0
...

... B ∩ I∗ i − (no pivot) (no pivot) (no pivot)
+ 0
0 + ⊕
...

... B ∩ J∗
... (no pivot)

0 + ⊕
0 0 ⊕
...

... B \ (I∗ ∪ J∗)
... (no pivot) (no pivot)

0 0 ⊕
x∗ y∗

Figure 11: The situation when x∗ or y∗ is modified.

This situation is illustrated by Figure 11. Now we are going to show that a positive coordinate
of x∗ or y∗ can be eliminated without losing optimality. First we make some observations
that clarify the structure presented in Figure 11.
Observations.

1. Because no desired admissible pivot exists, so we have
• −yj ≤ 0 for j ∈ N \J∗;
• xi ≥ 0 for i ∈ B\I∗.

2. Although the current basis might be both primal and dual infeasible, the current
objective value equals to the optimal one.

Proof. Let us assume to the contrary that the current objective value is not equal
to the optimal one. If it has a larger value, then we can take an appropriate convex
combination x̃ = λx+ (1− λ)x∗ of x and x∗. For

0 < λ ≤ min

{
x∗i

x∗i − xi
|xi < 0

}
x̃ is a primal feasible solution with better than the optimal objective value. This is a
contradiction.

On the other hand, if the current objective value would be lower than the optimal
value, then we could take an appropriate convex combination ỹ = λy + (1− λ)y∗ of y
and y∗. For

0 < λ ≤ min

{
y∗i

y∗i − yi
| yi < 0

}
13



ỹ is a dual feasible solution with better than the optimal objective value. This is also
a contradiction, thus the current objective must be equal to the optimal one.

3. We have xi = 0 for i ∈ B ∩ J∗.

Proof. If there is an i ∈ B ∩ J∗ such that xi > 0 then by taking an appropriate
convex combination x̃ = λx + (1 − λ)x∗ of the current solution x and the primal
optimal solution x∗ we get that x̃ is optimal with a positive coordinate in J∗, i.e. it is
not complementary w.r.t. the dual optimal y∗. This is a contradiction.

4. Similarly, we have yj = 0 for j ∈ N ∩ I∗.

Proof. If there is a j ∈ N ∩ I∗ such that yj > 0 then by taking an appropriate
convex combination ỹ = λy + (1 − λ)y∗ of the current dual solution y and the dual
optimal solution y∗ we get that ỹ is optimal with a positive coordinate in I∗, i.e. it is
not complementary w.r.t. the optimal x∗. This is a contradiction.

Now the sign structure presented in Figure 11 is justified. Using this sign structure the
promised elimination can be made.
Modify-x∗

If xi < 0 for some i ∈ B ∩ I∗, then let

λ := min

{
x∗i

x∗i − xi
|xi < 0

}
=

x∗r
x∗r − xr

.

Then by defining the new optimal solution as x∗ := λx+ (1− λ)x∗ we have x∗r = 0, i.e. the
new primal optimal solution x∗ has fewer nonzero coordinates. Let I∗ = {i ∈ E |x∗i > 0}.
Go back to Set-up.
Observe: The set I∗ changes. In the next iteration, because xr < 0 and r 6∈ I∗, the step
Reduce-F will be applied and the set F will be reduced.
Modify-y∗

If yj < 0 for some j ∈ N ∩ J∗, then let

λ := min

{
y∗i

y∗i − yi
| yi < 0

}
=

y∗s
y∗s − ys

.

Then by defining the new dual optimal solution as y∗ := λy + (1− λ)y∗ we have y∗s = 0, i.e.
the new dual optimal solution y∗ has fewer nonzero coordinates. Let J∗ = {i ∈ E | y∗i > 0}.
Go back to Set-up.
Observe: The set J∗ changes. In the next iteration, because ys < 0 and s 6∈ J∗, the step
Reduce-G will be applied and the set G will be reduced.

Now we are ready to prove our main result.

Theorem 3.2 For any given optimal pair (x∗, y∗) and any given basis B, there exists an
algorithm to generate a sequence of at most m+n admissible pivots from B to some optimal
basis.
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Proof. The presented admissible pivot algorithm produces an admissible pivot path which
is initiated by the basis B and it stops only if an optimal basis is found. At the step Reduce-
F or -G either |G| reduces by one, which can happen at most m = |B| times, or |F | reduces
by one, which can happen at most n = |N | times. At the step Modify-solutions no pivot
is performed, and in the following iteration, one of the steps Reduce-F or Reduce-G will be
applied.

Consequently, we need at most m+ n pivots to find an optimal basis.

Remark 3.3 In the step Modify-solutions both the primal and dual optimal solutions can
be reduced if there exist both xi < 0 for some i ∈ B ∩ I∗ and yj < 0 for some j ∈ N ∩ J∗.

Remark 3.4 The information that an optimal solution pair is known was heavily used. The
algorithm contains elements similar to that used in basis identification techniques in interior
point methods [14, 15]. The algorithm does not give a strongly polynomial algorithm to solve
the LP problem.

4 Summary

We have shown that with no degeneracy assumption a short sequence of admissible pivots
from any basis to an optimal basis exists. The length of this admissible pivot path is bounded
by m+n. This result is in contrast with the result proved by Fukuda, Lüthi and Namiki [7].
They proved that in the fully nondegenerate case the length of such a path can be bounded
by min{m,n}.

As an introduction to the general LP case and explore some of our techniques in degener-
ate situations, we have proved that from any basis a short admissible pivot path exists which
leads to a feasible basis both for the primal and dual feasibility problems. The length of the
respective paths are bounded by n and m, the size of the dual and primal bases, respectively.

Our LP result put the case of “simplex” pivots opposed to “admissible” pivots in sharp
contract, since to date there is no easy way to analyze the length of a shortest sequence of
simplex pivots from any basis to an optimal basis.

Of course, we have proved merely the existence of a short sequence of admissible pivots
for the general LP, we have not designed a polynomial admissible pivot algorithm, which is
an ultimate goal. We hope that our existence results provide many researchers with a good
incentive and some guidance to look for such a jewel.

Finally let we make some remarks on possible extensions.
It appears to be hard to extend our main result to the case of sufficient LCP’s [3, 9, 8],

although it is possible for the nondegenerate case [7]. So the following problem remains
unsolved:

Open Problem 4.1 Let a sufficient n × n LCP be given. Without any nondegeneracy
assumption prove that the length of the shortest admissible pivot sequences from any (not
necessarily feasible) complementary basis to a feasible complementary basis can be bounded
by n.

15



It is important to note that the optimal value (not only its sign) was used in justifying
our algorithm in the LP case. This fact indicates that the LP results of the present paper
cannot naturally be extended to the more general setting of oriented matroids. The results
for the feasibility problems generalize straightforwardly, just like in [9] where the LCP duality
theorems are proved in this setting.
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