
From the Zonotope Construction to the

Minkowski Addition of Convex Polytopes

Komei Fukuda

School of Computer Science, McGill University, Montreal, Canada

Abstract

A zonotope is the Minkowski addition of line segments in R
d. The zonotope construc-

tion problem is to list all extreme points of a zonotope given by its line segments. By
duality, it is equivalent to the arrangement construction problem that is to generate
all regions of an arrangement of hyperplanes.

By replacing line segments with convex V-polytopes, we obtain a natural gener-
alization of the zonotope construction problem: the construction of the Minkowski
addition of k polytopes. Gritzmann and Sturmfels studied this general problem in
various aspects and presented polynomial algorithms for the problem when one of
the parameters k or d is fixed. The main objective of the present work is to intro-
duce an efficient algorithm for variable d and k. Here we call an algorithm efficient

or polynomial if it runs in time bounded by a polynomial function of both the input
size and the output size. The algorithm is a natural extension of a known algorithm
for the zonotope construction, based on linear programming and reverse search. It
is compact, highly parallelizable and very easy to implement.

This work has been motivated by the use of polyhedral computation for optimal
tolerance determination in mechanical engineering.

Key words: convex polytope, Minkowski-addition, efficient algorithm, reverse
search

1 Introduction

Geometric computation in general dimension requires a special attention due
to so-called “curse of dimension.” For example, the number of facets of the

Email address: fukuda@cs.mcgill.ca (Komei Fukuda).
1 The paper was written while the author was visiting Institute for Operations Re-
search, ETHZ, CH-8092 Zurich, Switzerland. The research was partially supported
by NSERC of Canada Grant RGPIN 249612-02.

Preprint submitted to Elsevier Science 7 October 2003

convex hull of a set of k points in Euclidean d-space can be of order Θ(kbd/2c)
even when d is considered fixed. Therefore merely outputting the facet rep-
resentation of the convex hull might take considerable time for dimension as
small as six and is unlikely to be practically done for dimension higher than,
say ten, for the class of input attaining the worst output order. The situation
is even worse for the arrangement construction problem of outputting all re-
gions (cells) of a central arrangement of k hyperplanes in R

d, since the largest
outsize is of order Θ(kbd−1c). Fortunately, many real-world problems are often
very different from the worst output cases and one can solve many practi-
cal instances of the convex hull problem in high dimensions well above ten
and sometimes in dimension over sixty. Looking into various instances arising
in practice, one can observe that most of real-world problems have special
structures that make the problems very different from the worst-case-output
instances.

One way to go around the curse of dimension is to look for output sensitive al-
gorithms. More formally we call an algorithm polynomial or efficient if it runs
in time polynomial in both the input size and the output size. A polynomial
algorithm might be more practical than an worst-case optimal algorithm, that
is, an algorithm that runs in time linear in the size of the worst case output for
any given input instance size. The benefit of designing a polynomial algorithm
is well justified by the fact that the range of output sizes often varies from
a constant to an exponential function in the input size. While an worst-case
optimal algorithm can be a polynomial algorithm at the same time, such an
algorithm seems to be extremely rare. This is not surprising since a worst-case
optimal algorithm aims at being optimal for the worst-case instances, a poly-
nomial algorithm must deal with all possible instances efficiently including
those with small output sizes.

The main objective of the present paper is to introduce an polynomial algo-
rithm for the Minkowski addition of k convex polytopes in R

d. Our algorithm is
also a compact algorithm, i.e. algorithm whose space complexity is polynomi-
ally bounded by the input size only. The compactness is obviously important
because the size of output is usually enormously large. Gritzmann and Sturm-
fels (1993) studied the Minkowski addition in search for worst-case optimal
algorithms and obtained many fundamental results with interesting applica-
tions to the Gröbner basis computation. As we explained, our goal of finding
a polynomial algorithm for variable dimension and variable k is considerably
different. In fact, our new algorithm is totally different from any of the algo-
rithms proposed in Gritzmann and Sturmfels (1993), although all algorithms
rely on linear programming (LP).

Let us define the problem formally. The Minkowski addition or sum, denoted by
P + Q, of subsets P , Q of R

d is defined as the set {x + y | x ∈ P and y ∈ Q}.
P and Q are called Minkowski summands of P + Q. Let P1, P2, ..., Pk be

2

convex V -polytopes i.e. polytopes given by their sets of extreme points V1, V2,
..., Vk. Thus Pi is the convex hull conv(Vi) of Vi for each i. The (polyhedral)
Minkowski addition problem is to compute the set V of all extreme points of
the Minkowski addition P1 + P2 + · · ·+ Pk, when V1, V2, ..., Vk are given. The
following is an example of the Minkowski addition of 2 polytopes in R

3.

+ =

It is a natural generalization of the zonotope construction problem of gener-
ating all extreme points of the Minkowski sum of k line segments in R

d. By
polarity, the zonotope construction problem is equivalent to the arrangement
construction problem mentioned above with the same parameters. As shown in
Gritzmann and Sturmfels (1993), the worst case output has size Θ(kd−1n2(d−1))
where n is the largest number of extreme points in Pi’s. On the other hand,
there is a class of nontrivial problems whose output size is Θ(k n), as shown
in Proposition 2.6. These facts already provide us with a good reason to look
for a polynomial algorithm rather than a worst-case optimal algorithm.

We will show that the reverse search algorithms presented in Avis and Fukuda
(1996); Ferrez et al. (2003) can be extended naturally to the Minkowski ad-
dition problem, once the original algorithm is dualized for the zonotope con-
struction problem and the basic combinatorial properties of the Minkowski
addition are observed. The resulting algorithm is a compact polynomial algo-
rithm which can be highly parallelizable. In addition, the algorithm is fairly
easy to implement with an external linear programming solver. We should also
note that the algorithm can be further extended to unbounded cases where
each Pi is given by its vertices and extreme rays.

Gritzmann and Sturmfels (1993) presented applications of the Minkowski ad-
dition problem to the Gröbner basis computation. In particular, it was shown
that the Minkowski addition computation can be used to determine whether
a given set of polynomials is a Gröbner basis with respect to some monomial
order, and if the answer is no, it can be used to find a monomial order which
is optimal in some natural measure associated with the Hilbert function of an
polynomial ideal. Recently we have encountered a new application in tolerance
analysis and synthesis in mechanical engineering, see Giordano et al. (2001).
They use six dimensional mathematical models representing mechanical parts,

3

joints and their displacements in order to analyze and design optimal toler-
ances. The dimension six comes from three plus three, each representing the
3D location and 3D rotation. One tolerance analysis requires to check whether
A ⊆ B where both A and B are six dimensional polytopes, each given as a
Minkowski addition of polytopes.

We shall not discuss a variant of the Minkowski addition problem where in-
put and output polytopes are H -polytopes, i.e. those given by systems of
inequalities. In fact, the existence of a polynomial algorithm (for variable d

and k) for the Minkowski H -addition problem is open. For the special case of
the zonotope H -construction, Seymour’s polynomial (and non-compact) algo-
rithm Seymour (1994) exists but it is not clear the algorithm can be extended
to the general case. There are two other variations where exactly one of input
and out polytopes is H -polytope and the other is V -polytope. These “mixed”
problems are proper generalizations of the convex hull problem (i.e. a mixed
Minkowski addition problem with k = 1). Since the existence of a polynomial
algorithm for the convex hull problem is still open, the same is true for the
mixed Minkowski addition problems.

2 Combinatorial Properties of the Minkowski Addition

In this section, we review some of the basic properties of the Minkowski sum
of k polytopes given by Gritzmann and Sturmfels (1993). We shall follow
their notations whenever possible. Also, we present some new results on the
Minkowski sum that are useful to see the importance of polynomial algorithms
to compute the Minkowski sum.

Faces, Minkowski Decomposition and Adjacency

A convex polytope or simply polytope is the convex hull of a finite set of points
in R

d. For a polytope P and for any vector c ∈ R
d, the set of maximizers x of

the inner product cT x over P is denoted by S(P ; c). Thus each nonempty face
of P is S(P ; c) for some c. We denote by F (P) the set of faces of P , by Fi(P)
the set of i-dimensional faces, and by fi(P) the number of i-dimensional faces,
for i = −1, 0, . . . , d, For each nonempty face F , the relatively open polyhedral
cone of outer normals of P at F is denoted by N (F ; P). Thus, c ∈ N (F ; P)
if and only if F = S(P ; c). The normal fan N (P) of P is the cell complex
{N (F ; P)|F ∈ F (P)} whose body is R

d. If F is i-dimensional (i = 0, 1, . . . , d),
the normal cone N (F ; P) is (d − i)-dimensional. Thus the extreme points of
P are in one-to-one correspondence with the full dimensional faces (which we
call the regions or cells) of the complex.

4

Proposition 2.1 Let P1, P2, ..., Pk be polytopes in R
d and let P = P1 +

P2 + · · · + Pk. Then a nonempty subset F of P is a face of P if and only if
F = F1 +F2 + · · ·+Fk for some face Fi of Pi such that there exists c ∈ R

d (not
depending on i) with Fi = S(Pi; c) for all i. Furthermore, the decomposition
F = F1 + F2 + · · · + Fk of any nonempty face F is unique.

Proof. The equivalence follows directly from the obvious relation (Gritz-
mann and Sturmfels, 1993, Lemma 2.1.4)

S(P1 + P2 + · · ·+ Pk; c) = S(P1; c) + S(P2; c) + · · · + S(Pk; c) for any c ∈ R
d.

For the uniqueness, let F be a nonempty face with F = S(P ; c) for some
c and let F = F1 + F2 + · · · + Fk be any decomposition. First, note that
Fi ⊆ S(P;c) for all i, because the value cT x for any x ∈ F is the sum of the
maximum values cT xi subject to xi ∈ Pi for i = 1, . . . , k, and thus if x ∈ F and
x = x1 +x2 + · · ·+xk for xi ∈ Fi, then xi ∈ S(Pi, c). Now suppose there exists
Fi properly contained in S(Pi; c). Let v be an extreme point of S(Pi; c) not in
Fi. Then there is a linear function wTx such that wTv is strictly greater than
any value attained by x ∈ Fi. Now let x∗ be any point attaining the maximum
of wTx over the polytope F1 +F2+ · · ·Fi−1 +Fi+1+ · · ·+Fk. Clearly x∗+v ∈ F

but this point cannot be in F1 + F2 + · · · + Fk, a contradiction. This proves
the uniqueness.

We refer the unique decomposition F = F1 + F2 + · · · + Fk of a nonempty
face F as the Minkowski decomposition. Here, the dimension of F is at least
as large as the dimension of each Fi. Thus we have the following.

Corollary 2.2 Let P1, P2, ..., Pk be polytopes in R
d and let P = P1+P2+· · ·+

Pk. A vector v ∈ P is an extreme point of P if and only if v = v1 +v2 + · · ·+vk

for some extreme point vi of Pi and there exists c ∈ R
d with {vi} = S(Pi; c)

for all i.

For our algorithm to be presented in the next section, it is important to
characterize the adjacency of extreme points in P .

Corollary 2.3 Let P1, P2, ..., Pk be polytopes in R
d and let P = P1 + P2 +

· · ·+Pk. A subset E of P is an edge of P if and only if E = E1 +E2 + · · ·+Ek

for some face Ei of Pi such that dim(Ei) = 0 or 1 for each i and all faces Ei

of dimension 1 are parallel, and there exists c ∈ R
d with Ei = S(Pi; c) for all

i.

The following variation of the above is useful for the algorithm to be presented.
The essential meaning is that the adjacency of extreme points is inherited from
those of Minkowski summands.

Proposition 2.4 Let P1, P2, ..., Pk be polytopes in R
d and let P = P1 +P2 +

5

· · · + Pk. Let u and v be adjacent extreme points of P with the Minkowski
decompositions: u = u1 + u2 + · · · + uk and v = v1 + v2 + · · · + vk. Then ui

and vi are either equal or adjacent in Pi for each i.

Proof. Let u and v be adjacent extreme points. It is sufficient to show that
[u, v] = [u1, v1]+[u2, v2]+· · ·+[uk, vk] and each [ui, vi] is a face of Pi. Let c ∈ R

d

be such that [u, v] = S(P ; c). Because [u, v] = S(P1; c)+S(P2; c)+· · ·+S(Pk; c)
and by the uniqueness of decomposition of u and v, both uj and vj are in
S(Pj, c), for all j. This implies that [uj, vj] ⊆ S(Pj, c), for all j. On the other
hand, one can easily see that in general [u, v] ⊆ [u1, v1]+[u2, v2]+ · · ·+[uk, vk].
The last two relations give [uj, vj] = S(Pj, c) for all j. This completes the proof.

This proposition immediately provides a polynomial algorithm for listing all
neighbors of a given extreme point using linear programming.

Face Complexity

One of the basic questions on the Minkowski addition of polytopes is its com-
plexity in terms of the number of faces, in particular the number of extreme
points in the present paper.

Gritzmann and Sturmfels obtained the largest number of i-faces in the Minkowski
addition of k polytopes in terms of the number of non-parallel edges in the
input polytopes.

Theorem 2.5 (Gritzmann and Sturmfels (1993)) Let P1, P2, ..., Pk be
polytopes in R

d and let m be the number of non-parallel edges of P1, P2, ...,
Pk. Then fi(P1 +P2 + · · ·+Pk) attains its maximum when each Pj is a generic
zonotope, and thus we have:

fi(P1 + P2 + · · · + Pk) ≤ 2

(

m

i

)

d−i−1
∑

h=0

(

m − i − 1

h

)

, for i = 0, 1, . . . , d − 1.

In the theorem above, the number f0 of 0-faces (extreme points) is the most
important for our purpose:

f0(P1 + P2 + · · ·+ Pk) ≤ 2
d−1
∑

h=0

(

m − 1

h

)

. (2.1)

Thus, for fixed d, the bound is in Θ(md−1). This bound itself does not imme-
diately show the fact that the output size of the Minkowski addition problem
may not be polynomially bounded by the input size, because the input size can

6

be exponentially large in m, e.g. when Pj’s are possibly rotated d-hypercubes.
The simplest way to see it is by setting Pj’s to be line segments in general
position (i.e. m = k). Then this upper bound is exactly the number of extreme
points of a generic zonotope generated by k intervals (i.e. k pairs of points) in
R

d, and for fixed d it is in Θ(kd−1). This indicates that the output size cannot
be polynomially bounded by the input size. In contrast, there is an infinite
family of Minkowski addition problems whose output size is small and linearly
bounded by the size of input.

Proposition 2.6 For each k ≥ 2 and d ≥ 2, there is an infinite family of
Minkowski addition problems for which f0(P1 + P2 + · · · + Pk) ≤ f0(P1) +
f0(P2) + · · ·+ f0(Pk).

Proof. Suppose k ≥ 2 and d ≥ 2. First pick up any d-polytope, say Q, with
at least k extreme points, and select k extreme points. For each jth selected
extreme point vj, make a new polytope Pj from Q by truncating only vj with
one or more hyperplanes. Now we claim that the number f0(P1+P2+· · ·+Pk) ≤
f0(P1) + f0(P2) + · · · + f0(Pk). See Figure 1 for an example for k = 2, d = 3
and Q is a 3-cube. To see this, let v be an extreme point of Pj for some fixed
j. There are three cases. The first case is when v is an unselected one, i.e. an
extreme point of Q not selected. In this case, it can be an Minkowski summand
of an extreme point of P in a unique way, since any linear function maximized
exactly at v over Pj is maximized exactly at v over other Pi’s. The second case
is when v is a newly created vertex by the truncation of vj. Since it is obtained
by the truncation of vj, any linear function maximized exactly at v over Pj is
maximized exactly at vj over other other Pi’s. The last case is when v = vi

for some i 6= j. This case is essentially the same as the second case where v

contributes uniquely to a new extreme point with each truncation vertex of
Pi. By Corollary 2.2, every extreme point of Pj contributes at most once to
f0(P1 + P2 + · · · + Pk). This completes the proof.

Proposition 2.6 shows that a polynomial algorithm can be much more efficient
than any worst-case optimal algorithm that runs in Θ(md−1) for fixed d, such
as one given in Gritzmann and Sturmfels (1993). Note that m = Ω(f0(P1) +
f0(P2) + · · ·+ f0(Pk)) when there are no parallel edges in the input.

3 Extension of a Zonotope Construction Algorithm

We assume in this section that P1, P2, ..., Pk are polytopes in R
d given by the

sets V1, V2, ..., Vk of extreme points. We also assume that the graph G(Pj) of
Pj is given by the adjacency list (aj(v, i) : i = 1, . . . , δj) of vertices adjacent to
vertex v ∈ Vj in graph G(Pj), where δj is the maximum degree of G(Pj) for
each j = 1, . . . , k. If the degree deg j(v) of v is less than δj in G(Pj), we assume

7

+ =

Fig. 1. A construction of “easy” Minkowski addition problems

that aj(v, i) = null for all i > deg j(v). Finally we define δ = δ1 + δ2 + · · ·+ δk,
an upper bound of the maximum degree of G(P), due to Proposition 2.4.
For example, when the input polytopes are simple and full dimensional then
δj = d for all j and δ = k d. Note that for a given set Vj, one can compute the
adjacency list in polynomial time using linear programming.

Recall that the Minkowski addition problem is to compute the set V of extreme
points of P = P1 + P2 + · · · + Pk. We shall present a compact polynomial
algorithm for the Minkowski addition problem.

The key idea in our algorithm design

The main algorithmic idea is quite simple. Just like for the vertex enumeration
for convex polyhedra using reverse search Avis and Fukuda (1992), it traces a
directed spanning tree T of the graph G(P) of P rooted at an initial extreme
point v∗. The difference from the vertex enumeration algorithm is that the
polytope P is not given by a system of inequalities (i.e. not an H-polytope)
in the present setting but as a Minkowski-addition of V-polytopes. Thus we
need to introduce a new way of defining a directed spanning tree that is easy
to trace. We shall use the following simple geometric property of normal fans.

Proposition 3.1 Let v and v′ be two distinct extreme points of P , and let
c ∈ N (v; P) and c′ ∈ N (v′; P). Then there exists an extreme point v′′ adjacent
to v such that N (v′′; P) contains a point of form (1 − θ)c + θc′ for some
0 ≤ θ ≤ 1.

Proof. Since v 6= v′, their outer normal cones are two distinct full dimen-
sional cones in the normal fan N (P). This means that the parameterized point
t(θ) := c + θ(c′ − c) (0 ≤ θ ≤ 1) in the line segment [c, c′] must leave at least
one of the bounding halfspaces of the first cone N (v; P) as θ increases from
0 to 1. Since the bounding halfspaces of N (v; P) are in one-to-one correspon-
dence with the edges of G incident to v, any one of the halfspaces violated

8

first corresponds to a vertex v′′ adjacent to v claimed by the proposition.

Let us fix v∗ as an initial extreme point of P . Finding one extreme point of P

is easy. Just select any generic c ∈ R
d, and find the unique maximizer extreme

point vi of cT x over Pi, for each i. The point v = v1 + v2 + · · · + vk is an
extreme point of P .

Now we construct a directed spanning tree of G(P) rooted at v∗ as follows. Let
v ∈ V be any vertex different from v∗. We assume for the moment that there
is some canonical way to select an interior point of the normal cone of P at
any given vertex, as we shall give one method to determine such a point later.
Let c and c∗ be the canonical vector of N (v; P) and N (v∗; P), respectively.
By Proposition 3.1, by setting v′ = v∗, we know that there is a vertex v′′

adjacent to v such that N (v′′; P) meets the segment [c, c∗]. In general there
might be several such vertices v′′ (degeneracy). We break ties by the standard
symbolic perturbation of c as c + (ε1, ε2, . . . , εd)T for sufficiently small ε > 0.
Define the mapping f : V \ {v∗} → V as f(v) = v′′. This mapping, called
a local search function in reverse search, determines the directed spanning
tree T (f) = (V, E(f)) rooted at v∗, where E(f) is the set of directed edges
{(v, f(v))|v ∈ V \ {v∗}}.

Proposition 3.2 The digraph T (f) is a spanning tree of G(P) (as undirected
graph) and v∗ is a unique sink node of T (f).

Proof. By the construction, v∗ is a unique sink node of T (f). It is sufficient
to show that T (f) has no directed cycle. For this, take any edge (v, v ′′ =
f(v)) ∈ E(f). Let c, c∗ be the canonical vector for v, v∗, respectively. Without
loss of generality, we assume nondegeneracy, since one can replace c with the
perturbed vector c + (ε1, ε2, . . . , εd)T . Since c is an interior point of N (v; P),

cT (v − v′′) > 0. (3.2)

Again, by the construction and because the canonical points are selected as
interior points of the associated normal cones, there exists 0 < θ < 1 such
that ĉ := (1 − θ)c + θc∗ ∈ N (v′′; P). This implies ĉT (v′′ − v) > 0, that is,

0 < ((1 − θ)c + θc∗)T (v′′ − v)

= (1 − θ)cT (v′′ − v) + θ(c∗)T (v′′ − v)

< θ(c∗)T (v′′ − v) (by (3.2)) .

This implies that the vertex v′′ attains a strictly higher inner product with c∗

than v. Therefore, there is no directed cycle in T (f).

The critical computation in our algorithm is solving a linear programming
problem. We denote by LP(d, m) the time necessary to solve a linear pro-
gramming in d variables and m inequalities. Here we ignore the dependency

9

on the binary size of input for simplicity, and we assume that the time neces-
sary to solve an LP depends only on the two critical parameters. We assume
that the constant magnification of the problem does not change the complex-
ity: O(LP (d, m)) = O(LP (c d, m)) = O(LP (d, c m)) for any positive constant
c ≥ 1, which is true with any polynomial algorithms, and is practically true
with the simplex method. One can easily replace LP(d, m) by LP(d, m, L)
where L is the binary size of an input LP for a more precise analysis. Now we
can state the complexity of our algorithm.

Theorem 3.3 There is a compact polynomial algorithm for the Minkowski
addition of k polytopes that runs in time O(δ LP(d, δ)f0(P)) and space linear
in the input size.

The algorithm

The sequel of the section is devoted to present the technical details of a reverse
search algorithm that traces T (f) starting from its root vertex v∗ against the
orientation of edges. We shall prove Theorem 3.3 at the end.

As usual, our reverse search algorithm requires, in addition to the local search
function f , an adjacency oracle function that implicitly determines the graph
G(P).

Let v be any vertex of P with the Minkowski decomposition v = v1+v2+· · ·+vk

(see, Corollary 2.2). Let

∆ = {(j, i) : j = 1, . . . , k and i = 1, . . . , δj}. (3.3)

Recall that for any (j, i) ∈ ∆, aj(vj, i) is the ith vertex adjacent to vj whenever
it is not null . We shall call a pair (j, i) valid for v if aj(vj, i) 6= null , and invalid
otherwise. Let us define the associated edge vectors ej(vj, i) by

ej(vj, i) =

aj(vj, i) − vj (j, i) is valid for v

null otherwise.
(3.4)

Proposition 2.4 shows that all edges of P incident to v are coming from the
edges incident to vj’s, or more precisely, each edge of P incident to v is parallel
to some ej(vj, i). This immediately implies that δ is an obvious upper bound of
the degree of v. For each (s, r) ∈ ∆, let us group the same (parallel) directions
together as

∆(v, s, r) = {(j, i) ∈ ∆ : ej(vj, i) ‖ es(vs, r)}. (3.5)

Consider it as the empty set if (s, r) is invalid. Now, for any given pair
(s, r) ∈ ∆, checking whether es(vs, r) determines an edge direction of P is

10

easily reducible to an LP (or more precisely, a linear feasibility problem):

es(vs, r)
Tλ < 0,

ej(vj, i)
T λ ≥ 0 for all valid (j, i) 6∈ ∆(v, s, r).

(3.6)

More precisely, the system (3.6) has a solution λ if and only if the direction
es(vs, r) determines an edge of P incident to v. If it has a feasible solution,
then by Proposition 2.4, the vertex v̂ adjacent to v along this direction is given
by

v̂ = v̂1 + v̂2 + · · ·+ v̂k

v̂j =

aj(vj, i) if there exists i such that (j, i) ∈ ∆(v, s, r)

vj otherwise.

Let us denote by ∆(v) as the set of all pairs (s, r) ∈ ∆ such that es(vs, r)
determines an edge of P and (s, r) is a member of ∆(v, s, r) with the smallest
first index. This set represents a duplication-free index set of all edge directions
at v.

Now we are ready to define our adjacency oracle as a function Adj : V ×∆ →
V ∪ {null} such that

Adj (v, (s, r)) =

v̂ if (s, r) ∈ ∆(v)

null otherwise.
(3.7)

Lemma 3.4 One can evaluate the adjacency oracle Adj (v, (s, r)) in time LP(d, δ).

Proof. The essential part of the evaluation is solving the system (3.6). Since
δ = |∆|, the system has d variables and at most δ inequalities and the claim
follows.

Lemma 3.5 There is an implementation of the local search function f(v)
with evaluation time O(LP(d, δ)), for each v ∈ V \ {v∗} with the Minkowski
decomposition v = v1 + v2 + · · ·+ vk.

Proof. The implementation of f essentially depends on how we define the
canonical vector of the normal cone N (v; P). Like in the adjacency oracle
implementation, we use an LP formulation. Since the set of directions ej(v, i)
for valid (j, i) ∈ ∆ include all edge directions at v, the normal cone N (v; P)
is the set of solutions λ to the system

ej(vj, i)
T λ ≤ 0 for all valid (j, i) ∈ ∆.

11

Since we need an interior point of the cone, we formulate the following LP:

max λ0

subject to

ej(vj, i)
T λ + λ0 ≤ 0 for all valid (j, i) ∈ ∆

λ0 ≤ K.

(3.8)

Here K is any positive constant. Since v is a vertex of P , this LP has an
optimal solution. We still need to define a unique optimal solution. For this,
we use a very pragmatic definition: fix one deterministic algorithm and define
the canonical vector as the unique solution returned by the algorithm. Since
the number of variables is d+1 and the number of inequalities is at most δ+1,
the assumptions on LP implies the time complexity O(LP(d, δ)) to compute
the canonical vector. Note that for practical purposes, we should probably add
bounding inequalities for λ to the LP (3.8) such as −1 ≤ λi ≤ 1 for all i to
make sure that the optimal solution stays in a reasonable range. This does
not change the complexity.

An execution of f requires to compute the canonical vectors c and c∗. Once
they are computed, the remaining part is to determine the first bounding
hyperplane of the normal cone N (v; P) hit by the oriented line t(θ) := c +
θ(c∗ − c) (as θ increases from 0 to 1). This amounts to solving at most δ one-
variable equations, and is dominated by the canonical vector computation.

In Figure 2 , we present the resulting reverse search algorithm, where we
assume that the δ index pairs (j, i) in ∆ are ordered as (1, 1) < (1, 2) < · · · <

(1, δ1) < (2, 1) < · · · < (k, δk).

Finally, we are ready to prove the main theorem, Theorem 3.3.

Proof. We use the general complexity result (Avis and Fukuda, 1996, Corol-
lary 2.3) which says the time complexity of the reverse search in Figure 2 is
O(δ(t(Adj) + t(f))|V |) where t(·) denotes the time to evaluate the function
·. By Lemma 3.4 and Lemma 3.5, both t(Adj) and t(f) can be replaced by
LP(d, δ). Since f0(P) = |V |, the claimed time complexity follows. The space
complexity is dominated by those of the functions f and Adj which are clearly
linear in the input size.

12

procedure MinkowskiAddition(Adj,(δ1 , . . . , δk), v∗,f);
v := v∗; (j, i) := (1, 0); (* (j, i): neighbor counter *)
output v;
repeat

while (j, i) < (k, δk) do
increment (j, i) by one;

(r1) next := Adj(v, (j, i));
if next 6= 0 then

(r2) if f(next) = v then (* reverse traverse *)
v := next;(j, i) := (1, 0);
output v

endif
endif

endwhile;
if v 6= v∗ then (* forward traverse *)

(f1) u := v; v := f(v);
(f2) restore (j, i) such that Adj(v, (j, i)) = u

endif
until v = v∗ and (j, i) = (k, δk).

Fig. 2. Reverse Search Algorithm

4 Concluding Remarks

The new algorithm presented here is a natural extension of the arrangement
construction algorithm given in Ferrez et al. (2003). The best way to see is
through the dualization of the latter for the zonotope construction problem. It
is easy to relate an interior point of a cell of an arrangement of hyperplanes to
an interior point of the outer normal cone of the dual zonotope at the vertex
corresponding the cell. It might be interesting to think whether there is a
natural way to dualize the new algorithm. What could be a problem dual to
the Minkowski addition of convex polytopes? What can be a notion extending
that of arrangements of hyperplanes?

We presented the algorithm for the polytopal case where input polyhedra are
bounded. As long as input polyhedra are pointed (i.e., having at least one
extreme point), the essentially the same algorithm works. The only change is
an extra treatment of extreme rays in addition to extreme points. Since the
unbounded directions of extreme rays can be considered as extreme points at
infinity, the treatment is merely cosmetic.

As we see in Proposition 2.6, the output size of Minkowski-addition problems
can be very small. This is in strong contrast with the worst-case output result,
Theorem 2.5 due to Gritzmann and Sturmfels. It is interesting to study further
refinements of the worst output sizes in relation to the input size. For example,

13

if input polytopes are all full dimensional, can the output size be exponential
in the input size?

As we already remarked, there is no known efficient algorithm for the Minkowski-
addition of H -polytopes that is to list all facets of the Minkowski-addition of
polytopes given by facets. Here again, the efficiency is measured as a polyno-
mial function of both the input and output sizes. A variant of the problem
is to list all mixed facets only, where a facet is mixed if it is the Minkowski
addition of some edges of input polytopes. This problem has important ap-
plications in generating all solutions to a system of polynomial equations, see
Sturmfels (1998).

There is a parallel implementation of the algorithm Ferrez et al. (2003) avail-
able in Fukuda and Ferrez (2002). We plan to extend it to the Minkowski-
addition problem using the algorithm presented here.

References

Avis, D., Fukuda, K., 1992. A pivoting algorithm for convex hulls and vertex
enumeration of arrangements and polyhedra. Discrete Comput. Geom. 8,
295–313.

Avis, D., Fukuda, K., 1996. Reverse search for enumeration. Discrete Applied
Mathematics 65, 21–46.

Ferrez, J., Fukuda, K., Liebling, T. M., 2003. Solving the fixed rank convex
quadratic maximization in binary variables by a parallel zonotope construc-
tion algorithm. European Journal of Operational ResearchTo appear.

Fukuda, K., Ferrez, J., 2002. Implementations of LP-based reverse search al-
gorithms for the zonotope construction and the fixed-rank convex quadratic
maximization in binary variables using the zram and the cddlib libraries.
http://www.cs.mcgill.ca/˜fukuda/download/mink/RS TOPE020713.tar.gz.

Giordano, M., Kataya, B., Pairel, E., April 2001. Tolerance analysis and syn-
thesis by means of clearance and deviation spaces. In: 7th CIRP Interna-
tional Seminar on Computer-Aided Tolerancing. ENS de Cachan, France.

Gritzmann, P., Sturmfels, B., 1993. Minkowski addition of polytopes: com-
putational complexity and applications to Gröbner bases. SIAM J. Dics.
Math. 6, 246–269.

Seymour, P., 1994. A note on hyperplane generation. J. Combin. Theory, Series
B 61, 88–91.

Sturmfels, B., 1998. Polynomial equations and convex polytopes. Amer. Math.
Monthly 105 (10), 907–922.

14

