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Abstract. In this paper we study enumeration problems for polytopes
arising from combinatorial optimization problems. While these polytopes
turn out to be quickly intractable for enumeration algorithms designed
for general polytopes, tailor-made algorithms using their rich combinato-
rial features can exhibit strong performances. The main engine of these
combinatorial algorithms is the use of the large symmetry group of com-
binatorial polytopes. Specifically we consider a polytope with applica-
tions to the well-known max-cut and multicommodity flow problems:
the metric polytope mn on n nodes. We prove that for n ≥ 9 the faces
of codimension 3 of the metric polytope are partitioned into 15 orbits
of its symmetry group. For n ≤ 8, we describe additional upper layers
of the face lattice of mn. In particular, using the list of orbits of high
dimensional faces of m8, we prove that the description of m8 given in [9]
is complete with 1 550 825 000 vertices and that the Laurent-Poljak

conjecture [14] holds for n ≤ 8. Many vertices of m9 are computed and
additional results on the structure of the metric polytope are presented.
Computational issues for the orbitwise face and vertex enumeration al-
gorithms are also discussed.

1 Introduction

A full d-dimensional convex (bounded) polytope P can be defined either by the
linear inequalities associated to the set F(P ) of its facets or as the convex hull
of its vertex set V(P ). More generally, any proper face f of P can be defined
either by the subset F(f) of facets containing f or as the convex hull of the
vertices V(f) belonging to f . Given the facet set F(P ), the vertex enumeration
problem consists in enumerating all the vertices V(P ) and the face enumera-
tion problem consists in enumerating all the faces f of P in terms of facet sets
F(f). These computationally difficult problems have been well studied; see [2, 3,
13] and references there. In this paper, we consider combinatorial polytope, i.e.
polytopes arising from combinatorial optimization problems. These polytopes
are often trivial for the very first cases and then the so-called combinatorial ex-
plosion occurs even for small instances. On one hand, combinatorial polytopes
are quickly intractable for enumeration algorithm designed for solving general
polytope, but on the other hand, tailor-made algorithms using their rich combi-
natorial features can exhibit strong performance. For example, large instances of
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the traveling salesman polytope, the linear ordering polytope, the cut polytope
and the metric polytope were computed in [4, 9]. In this paper, pursuing the
same approach, we propose an orbitwise face enumeration algorithm for combi-
natorial polytope. Focusing on the face lattice of the metric polytope mn on n

nodes, we compute the first instances for n ≤ 6 and its upper layers for n ≤ 9.
These results allow us to prove that that the description of m8 given in [9] is
complete with 1 550 825 000 vertices and that the dominating set and no cut-set
conjectures, see [9, 14], hold for m8. A description of the faces of codimension 3
for any n is given as well as some preliminary results on the vertices of m9.

2 Face Enumeration for Combinatorial Polytopes

2.1 Combinatorial polytopes

We present some polytopes associated to optimization problems arising from
the complete directed graph Dn or the undirected graph Kn on n nodes: the
traveling salesman polytope tspn which is the convex hull of all the incidence
vectors of all Hamiltonian cycles of Kn, the linear ordering polytope lon which
is the convex hull of the incidence vectors of all acyclic tournaments of Dn and
the cut polytope cn which is the convex hull of the incidence vectors of all the
cuts of Kn. Another example is the metric polytope which can be defined as a
relaxation of cn by the triangular inequalities, see Section 3.1. One important
feature of most combinatorial polytopes is their very large symmetry group. We
recall that the symmetry group Is(P ) of a polytope P is the group of isometries
preserving P . The isometries preserving tsn are induced by the n! permutations
on Vn = {1, . . . , n}, that is, Is(tspn) ' Sym(n). We have Is(mn) = Is(cn) for
n ≥ 5 and both are induced by permutations on Vn and additional isometries,
see Section 3.2. For n ≥ 5, we have |Is(mn)| = 2n−1n!, see [10]. As these symme-
tries preserve the adjacency relations and the linear independency, all faces are
partitioned into orbits of faces equivalent under permutations and switchings.
An orbitwise vertex enumeration algorithm was proposed in [9] and, in a similar
vein, we propose an orbitwise face enumeration algorithm.

2.2 Orbitwise face enumeration algorithm

The input is a full d-dimensional polytope P defined by its (non-redundant) facet
set F(P ) = {fd−1

1 , . . . , fd−1
m }. The symmetry group Is(P ) is assumed to be large.

The main two subroutines are the computation of the canonical representative
f̃ of the orbit Of generated by a face f and the computation of the dimension

dim(f). The algorithm first computes the list Ld−1 = {f̃d−1
1 , . . . , f̃d−1

Id−1} of all the
canonical representatives of the orbits of facets. Then the algorithm generates
the set Ld−2 = {f̃d−1

s ∩ fd−1
r : s = 1, . . . , Id−1, r = 1, . . . , m}. After computing

the dimension of each subface f̃d−1
s ∩ fd−1

r and keeping only the (d − 2)-faces,
the algorithm reduces Ld−2 to the list of canonical representatives of orbits
of (d − 2)-faces Ld−2 = {f̃d−2

1 , . . . , f̃d−2
Id−2}. In general, after generating the list
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Ld−t+1, the algorithm generates the set Ld−t by intersecting each canonical
representative f̃d−t+1

s with each facet Fr for s = 1, . . . , Id−t+1 and r = 1, . . . , m

and then computes Ld−t. The algorithm terminates after the list L0 of canonical
representatives of the orbits of vertices is computed.

Orbitwise Face Enumeration Algorithm
begin

for t = 1, . . . , d initialize Ld−t := ∅; endfor;

for each facet fd−1 ∈ {fd−1
1 , . . . , fd−1

m }

compute the canonical representative f̃d−1 of the orbit generated by fd−1;

if f̃d−1 6∈ Ld−1 then Ld−1 := Ld−1 ∪ {f̃d−1}; endif;
endfor; /* Ld−1 : list of representatives of orbits of facets */

output Ld−1 = {f̃d−1
1 , . . . , f̃d−1

Id−1};
for t = 2, . . . , d

for each (d − t + 1)-face f̃d−t+1 ∈ Ld−t+1 = {f̃d−t+1
1 , . . . , f̃d−t+1

Id−t+1}
for each facet fd−1 ∈ {fd−1

1 , . . . , fd−1
m }

if dim(f̃d−t+1 ∩ fd−1) = d − t then compute the canonical

representative f̃d−t of the orbit generated by f̃d−t+1 ∩ fd−1;

if f̃d−t 6∈ Ld−t then Ld−t := Ld−t ∪ {f̃d−t}; endif;
endif;

endfor;
endfor; /* Ld−t : list of representatives of orbits of (d − t)-faces */

output Ld−t = {f̃d−t
1 , . . . , f̃d−t

Id−t};
t := t + 1;

endfor;
end.

In order to compute the canonical representative f̃d−t of f̃d−t+1 ∩ fd−1 and its
dimension dim(f̃d−t+1 ∩fd−1), we have first to determine F(f̃d−t+1 ∩fd−1) the
set of facets containing f̃d−t+1 ∩ fd−1. The determination of F(f̃d−t+1 ∩ fd−1)
amounts to a redundancy check for the remaining facets of F(P )\{F(f̃d−t+1 ∩
fd−1)}. This operation can be done using ccclib (redcheck), see [12], and is
polynomially equivalent to linear programming; see [3]. The rank of F(f̃d−t+1 ∩
fd−1) directly gives dim(f̃d−t+1 ∩ fd−1).

Remark 1.

1. With Id−t the number of orbits of (d− t)-faces and m the number of facets,
the dimension (resp. canonical representative) computation subroutine is
called exactly (resp. at most) m(1 +

∑

t=1,...,d−1 Id−t) times.

2. The output; that is, for t = 1, . . . , d the list Ld−t of canonical representatives
f̃d−t

s : s = 1, . . . , Id−t, is extremely compact. The full list of (d− t)-faces can
be generated by the action of the symmetry group on each representative
face f̃d−t

s . With |O
f̃d−t

s

| the size of the orbit generated by f̃d−t
s , the total

number of faces is
∑

t=1,...,d

∑

s=1,...,Id−t |Of̃
d−t

s

|.
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3. Additional combinatorial properties could allow to considerate only a frac-
tion of the subfaces f̃d−t+1 ∩ fd−1. In that case, both subroutines are called
for only a fraction of the numbers given in Item 1.

Item 1 of Remark 1 indicates that the algorithm runs smoothly as long as the
number Id−t of orbits of (d− t)-faces is relatively small. The number of (d− t)-
faces usually grows extremely large with t getting close to b d

2c and can be already

very large for b d
4c ≤ t ≤ b 3d

4 c; that is: “Face lattices are very fat”. Therefore the
computation of the full face lattice of a polytope is generally extremely hard.
Besides small dimensional polytopes and specific cases such as the d-cube, we can
expect a similar pattern for the values of Id−t; that is: “Orbitwise face lattices
are also fat”. On the other hand, one can expect the combinatorial explosion
to occur at a deeper layer for the orbitwise face lattice than for the ordinary
one. Actually, this algorithm is particularly suitable for the computation of the
upper τ layers of the orbitwise face lattice for a small given τ ≤ b d

4c. In that case
the algorithm stops when Ld−τ is computed. The computation of the orbitwise
upper face lattice can be efficiently combined with classical vertex enumeration.
See Section 5.1 for an application to the complete description of the vertices of
m8.

3 Faces of the Metric Polytope

3.1 Cut and metric polytopes

The
(

n
2

)

-dimensional cut polytope cn is usually introduced as the convex hull of
the incidence vectors of all the cuts of Kn. More precisely, given a subset S of
Vn = {1, . . . , n}, the cut determined by S consists of the pairs (i, j) of elements
of Vn such that exactly one of i, j is in S. By δ(S) we denote both the cut and

its incidence vector in IR(n

2); that is, δ(S)ij = 1 if exactly one of i, j is in S and 0
otherwise for 1 ≤ i < j ≤ n. By abuse of notation, we use the term cut for both
the cut itself and its incidence vector, so δ(S)ij are considered as coordinates of

a point in IR(n

2). The cut polytope cn is the convex hull of all 2n−1 cuts, and
the cut cone Cn is the conic hull of all 2n−1 − 1 nonzero cuts. The cut polytope
and one of its relaxation - the metric polytope - can also be defined in terms of
a finite metric space in the following way. For all 3-sets {i, j, k} ⊂ {1, . . . , n}, we
consider the following inequalities:

xij − xik − xjk ≤ 0, (1)

xij + xik + xjk ≤ 2. (2)

(1) induce the 3
(

n
3

)

facets which define the metric cone Mn. Then, bounding

the latter by the
(

n
3

)

facets induced by (2) we obtain the metric polytope mn.
The facets defined by (1) (resp. by (2)) can be seen as triangle (resp. perimeter)
inequalities for distance xij on {1, . . . , n} and are denoted by ∆i,j,k̄ (resp. by
∆i,j,k). While the cut cone is the conic hull of all, up to a constant multiple,
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{0, 1}-valued extreme rays of the metric cone, the cut polytope cn is the convex
hull of all {0, 1}-valued vertices of the metric polytope.

One of the motivations for the study of these polyhedra comes from their ap-
plications in combinatorial optimization, the most important being the max-cut
and multicommodity flow problems. For a detailed study of those polytopes and
their applications in combinatorial optimization we refer to Deza and Lau-

rent [11] and Poljak and Tuza [15].

3.2 Combinatorial and Geometric Properties

The polytope cn is a
(

n
2

)

-dimensional {0, 1}-polyhedron with 2n−1 vertices and

mn is a polytope of the same dimension with 4
(

n
3

)

facets inscribed in the cube

[0, 1](
n

2). We have cn ⊆ mn with equality only for n ≤ 4. Any facet of the metric
polytope contains a face of the cut polytope and the vertices of the cut polytope
are vertices of the metric polytope. In fact, the cuts are precisely the integral
vertices of the metric polytope. The metric polytope mn wraps the cut polytope
cn very tightly. Indeed, in addition to the vertices, all edges and 2-faces of cn

are also faces of mn, for 3-faces it is false for n ≥ 4, see [7]. Any two cuts are
adjacent both on cn and on mn; in other words mn is quasi-integral; that is, the
skeleton of the convex hull of its integral vertices, i.e. the skeleton of cn, is an
induced subgraph of the skeleton of the metric polytope itself. We recall that
the skeleton of a polytope is the graph formed by its vertices and edges. While
the diameters of the cut polytope and the dual metric polytope satisfy δ(cn) = 1
and δ(m∗

n) = 2, the diameters of their dual are conjectured to be δ(c∗n) = 4 and
δ(mn) = 3, see [6, 14].

One important feature of the metric and cut polytopes is their very large
symmetry group. More precisely, for n ≥ 5, Is(mn) = Is(cn) and both are
induced by permutations on Vn = {1, . . . , n} and switching reflections by a cut
and, for n ≥ 5, we have |Is(mn)| = 2n−1n!, see [10]. Given a cut δ(S), the
switching reflection rδ(S) is defined by y = rδ(S)(x) where yij = 1 − xij if
(i, j) ∈ δ(S) and yij = xij otherwise. As these symmetries preserve the adjacency
relations and the linear independency, all faces of mn are partitioned into orbits
of faces equivalent under permutations and switchings.

3.3 Faces of the Metric Polytope

We recall some results and conjectures on the faces of the metric polytope.
The cuts are the only integral vertices of mn. All other vertices with are not
fully fractional are so-called trivial extensions of a vertex of mn−1. Consider the
following two mappings:

IR(n−1

2 ) −→ IR(n

2) IR(n−1

2 ) −→ IR(n

2)

v −→ φ0(v) v −→ φ1(v)

φ0(v)ij = vij φ1(v)ij = vij for 1 ≤ i < j ≤ n − 1
φ0(v)i,n = v1,i φ1(v)i,n = 1 − v1,i for 2 ≤ i ≤ n − 1
φ0(v)1,n = 0 φ0(v)1,n = 1.
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The vertices φ0(v) and φ1(v) are called trivial extensions of v. Note that φ1(v) =
rδ({n})(φ0(v)). In other words, the new vertices of mn - i.e. not trivial extensions

of vertices of mn−1 - are the fully fractional ones. The ( 1
3 , 2

3 )-valued fully frac-
tional vertices are well studied and include the anticut orbit formed by the 2n−1

anticuts δ̄(S) = 2
3 (1, . . . , 1)- 1

3δ(S). If G = (Vn, E) is a connected graph, we de-
note by dG its path metric, where dG(i, j) is the length of a shortest path from
i to j in G for i 6= j ∈ Vn. Then τ(dG) = max(dG(i, j) + dG(i, k) + dG(j, k) :
i, j, k ∈ G) is called the triameter of G and we set xG = 2

τ(dG)dG. Any vertex of

mn of the form xG for some graph is called a graphic vertex, see Fig. 1 for the
graphs of 2 graphic ( 1

3 , 2
3 )-valued vertices of m8. Note that for any connected

graph G = (Vn, E), we have τ(dG) ≤ 2(n− 1) and that any ( 1
3 , 2

3 )-valued vertex
of mn is (up to switching) graphic.

Since m3 = c3 and m4 = c4, the vertices of m3 and m4 are made of 4 and
8 cuts forming 1 orbit. The 32 vertices of m5 are 16 cuts and 16 anticuts, i.e.,
form 2 orbits. The metric polytope m6 has 544 vertices, see [14], partitioned
into 3 orbits: cuts, anticuts and 1 orbit of trivial extensions; and m7 has 275
840 vertices, see [8], partitioned into 13 orbits: cuts, anticuts, 3 orbits of trivial
extensions, 3 ( 1

3 , 2
3 )-valued orbits and 5 other fully fractional orbits. For m8, 1 550

825 600 vertices partitioned into 533 orbits (cuts, anticuts, 28 trivial extensions,
37 ( 1

3 , 2
3 )-valued and 466 other fully fractional) were found using an heuristic,

see [9]. The description was conjectured to be complete.

Conjecture 1. [14] Any vertex of the metric polytope is adjacent to a cut.

Conjecture 2. [9] For n ≥ 6, the restriction of the skeleton of the metric polytope
mn to the non-cut vertices is connected.

Conjecture 2 can be seen as complementary to the Conjecture 1 both graph-
ically and computationally: For any pair of vertices, while Conjecture 1 implies
that there is a path made of cuts joining them, Conjecture 2 means that there is
a path made of non-cuts vertices joining them. In other words, the cut vertices
would form a dominating set but not a cut-set in the skeleton of mn. On the
other hand, while Conjecture 1 means that the enumeration of the metric cone
Mn is enough to obtain the metric polytope mn; Conjecture 2 means that we
can obtain mn without enumerating Mn. Note that for arbitrary graphs these
are clearly independent. Conjecture 1 underlines the extreme connectivity of the
cuts. Recall that the cuts form a clique in both the cut and metric polytopes.
Therefore, if Conjecture 1 holds, the cuts would be a dominant clique in the
skeleton of mn implying that its diameter would satisfy δ(mn) ≤ 3.

The orbitwise description of the facets and ridges (faces of codimension 2) of
mn for any n was given in [6] as well as the face ∆1,2,3 ∩ ∆1,2,3̄ of codimension
n − 1 and the face ∆1,2,3 ∩ ∆1,3̄,4 of codimension 3 (this face is given in second
position in Theorem 1). We have Ld−1(mn) = {∆1,2,3} and Ld−2(mn≥6) =
{∆1,2,3 ∩ ∆1,2,4, ∆1,2,3 ∩ ∆1,4,5, ∆1,2,3 ∩ ∆4,5,6}. The full orbitwise face lattices
of m4 and m5 were given in [7]. In Section 4.1 we compute additional faces of
small metric polytopes and in Section 4.2 we characterize Ld−3(mn) for any n.
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4 Generating Faces of the Metric Polytope

4.1 Faces of small metric polytopes

As stated earlier, generating the full face lattice is usually extremely hard. While
the face lattice of m7 (defined by 140 facets in dimension 21) is currently in-
tractable, we computed the full orbitwise face lattice of m6 (80 facets in di-
mension 15) and some upper layers of the lattice of m7 and m8. As mentioned
earlier, Id−t can be quite large for t = b d

4c and therefore we set t = 5 (resp.
7) for the partial orbitwise enumeration of the m7 (resp. m8). Due to space
limitation, we refer to [5] for a detailed presentation. The set Ld−3(mn) is easy
to check for reasonable values of n as Id−3(mn) ≤ 15, see Theorem 1. As no-
ticed in Item 3 of Remark 1, additional properties of mn can be used to sig-
nificantly increase the efficiency of the algorithm. In particular, the set Ld−t

can be generated by considering for each s only the facets of mn which are not
equivalent under isometries preserving f̃d−t+1

s . Two invariants of O
f

d−t

s

are the

size |F(fd−t
s )| and the joint-support ∪

∆∈F(fd−t

s )σ(∆). The support of ∆i,j,k (or

∆i,j,k̄) is σ(∆i,j,k) = σ(∆i,j,k̄) = {i, j, k}. These two invariants can be easily
used to test non-membership to an orbit. Similarly, for small dimensional faces,
the computation of V(fd−t

s ) can be efficiently used for checking non-membership
as the number of vertices, cuts, and anticuts of fd−t

s are invariants of O
f

d−t

s

. Let
assume that, as in Section 5.2, we are interested only in the upper n − 1 layers
of the face lattice of mn. In that case, when generating f̃d−t+1

s ∩∆r with t < n,
we can disregard ∆r if σ(∆r) = σ(∆) for any ∆ ∈ F(f̃d−t+1

s ) as for such ∆r we
have codim(f̃d−t+1

s ∩ ∆r) ≥ n − 1.

4.2 Faces of codimension 3 of the metric polytope

As recalled earlier the first 2 upper layers of mn are known for any n. We have
Id−1(mn) = 1, Id−2(mn≥6) = 3 and, by Theorem 1, we get Id−3(mn≥9) = 15.

Theorem 1. For n ≥ 9, the faces of codimension 3 of the metric polytope mn

are partitioned into 15 orbits equivalent under permutations and switchings. The
15 orbits can be represented by the following triplets of facets: ∆1,2,3 ∩ ∆1,2,4 ∩
∆1,3,4, ∆1,2,3 ∩ ∆1,2,4 ∩ ∆1,3̄,4, ∆1,2,3 ∩ ∆1,2,4 ∩ ∆1,2,5, ∆1,2,3 ∩ ∆1,2,4 ∩ ∆1,3,5,
∆1,2,3 ∩∆1,2,4 ∩∆3,4,5, ∆1,2,3 ∩∆1,2,4 ∩∆3̄,4,5, ∆1,2,3 ∩∆1,2,4 ∩∆1,5,6, ∆1,2,3 ∩
∆1,2,4 ∩∆3,5,6, ∆1,2,3 ∩∆1,4,5 ∩∆2,4,6, ∆1,2,3 ∩∆1,4,5 ∩∆2̄,4,6, ∆1,2,3 ∩∆1,2,4 ∩
∆5,6,7, ∆1,2,3∩∆1,4,5∩∆1,6,7, ∆1,2,3∩∆1,4,5∩∆2,6,7, ∆1,2,3∩∆1,4,5∩∆6,7,8 and
∆1,2,3∩∆4,5,6 ∩∆7,8,9. The first 14 (resp. 13, 10 and 6) representatives generate
the 14 (resp. 13, 10 and 6) orbits of faces of codimension 3 of m8 (resp. m7, m6

and m5). The first 2 representatives and ∆1,2,3 ∩ ∆1,2,3̄ generate the 3 orbits of
faces of codimension 3 of m4.

Proof. For n ≤ 9 Theorem 1 can be directly checked using the orbitwise face
enumeration algorithm with τ = 3; that is, the algorithm is set to compute only
the upper 3 layers of the face lattice of mn. Let assume n ≥ 9, the faces of
codimension 2 of mn are partitioned into 3 orbits generated by ∆1,2,3 ∩ ∆1,2,4,
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∆1,2,3∩∆1,4,5 and ∆1,2,3∩∆4,5,6. Any faces of codimension 3 of mn can therefore
be written as the intersection of a facet ∆ of mn with one of these 3 faces ∆′∩∆”
of codimension 2. If the support σ(∆) 6⊂ {1, . . . , 9}, by elementary permutations
preserving ∆′ and ∆” we can generate ∆̃ ∈ O∆ with O∆′∩∆”∩∆̃ = O∆′∩∆”∩∆

and σ(∆̃) ⊂ {1, . . . , 9}. In other words, to generate orbitwise all the subfaces
of the canonical faces of codimension 2 it is enough to consider the case n = 9.
This way one can easily obtain 28 faces fi of codimension at least 3. Then, as for
the orbitwise face enumeration algorithm, we have to compute for i = 1, . . . , 28
and for any n the dimension dim(fi) and - if codim(fi) = 3 - to compute the
canonical representative f̃i. Therefore we have to first determine the set Fn(fi)
of facets of mn containing fi. Clearly, if an inequality (i) defining a facet of mn

is forced to be satisfied with equality by the inequalities defining ∆′, ∆” and ∆̃

being satisfied with equality, then the same inequality (i) - now seen as defining
a facet of mn+1 - will also be forced to be satisfied with equality. In other words
the set Fn(fi) can only increase with n and dim(fi) can only decrease with n.
Therefore, among the 28 faces fi, only the 15 faces of codimension 3 for m9

given in Theorem 1 are candidates for being faces of codimension 3 for mn≥9. A
case by case study of the 15 faces, gives Fn(fi) and proves that indeed these 15
faces generate 15 orbits of faces of codimension 3 for n ≥ 9. The idea is simply
to notice that the pattern of Fn(fi) is essentially given by the value of F12(fi).
Since all the cases are similar, we only present the computation of Fn(f15) where
f15 = ∆1,2,3∩∆4,5,6∩∆7,8,9. Using the orbitwise face enumeration algorithm with
τ = 3, one can easily check that F12(f15) = {∆1,2,3, ∆4,5,6, ∆7,8,9}. Let n ≥ 12
and ∆ be a facet of mn with σ(∆) 6⊂ {1, . . . , 12}. By elementary permutations
preserving F12(f15) we can generate ∆̃ ∈ O∆ with σ(∆̃) ⊂ {1, . . . , 12}. Let now
consider ∆̃ as a facet of m12. Since ∆̃ 6∈ F12(f15) at least one vertex v of m12

satisfies v ∈ f15 and v 6∈ ∆̃. Then, the (n − 12)-times 0-extension vext of v is
a vertex of mn satisfying vext ∈ f15 but vext 6∈ ∆̃ where ∆̃ is now considered as
a facet of mn. Thus, ∆̃ 6∈ Fn(f15) and, by the same elementary permutations,
∆ 6∈ Fn(f15); that is, Fn(f15) = {∆1,2,3, ∆4,5,6, ∆7,8,9} and codim(f15) = 3 for
any n ≥ 9. In the same way, for Fn(f) increasing with n, the pattern of Fn(f) is
essentially given by small values of n. Consider for example Fn(∆1,2,3 ∩∆1,2,3̄):
We have Fn(∆1,2,3 ∩ ∆1,2,3̄) = {∆1,2,i, ∆1,2,̄i : i = 3, . . . , n} and therefore
|Fn(∆1,2,3 ∩ ∆1,2,3̄)| = 2(n − 2) and codim(∆1,2,3 ∩ ∆1,2,3̄) = n − 1. As for
Fn(f15), one can compute F4(∆1,2,3∩∆1,2,3̄) and notice that ∆ ∈ Fn≥5(∆1,2,3 ∩

∆1,2,3̄) ⇐⇒ ∆̃ ∈ F4(∆1,2,3 ∩∆1,2,3̄); that is, ∆ = ∆1,2,i or ∆1,2,̄i : i = 4, . . . , n.
ut

5 Generating Vertices of the Metric Polytope

5.1 Combining orbitwise face enumeration with classical vertex

enumeration

As emphasized earlier, the face lattice is usually much larger that the number
of vertices. Therefore, computing the full face lattice in order to obtain the ver-
tices is extremely costly. On the other hand, the upper layers of the orbitwise
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face lattice might be relatively small. In that case the orbitwise face enumera-
tion can be efficiently combined with a classical vertex enumeration methods in
the following way. First, for an appropriate small τ ≤ b d

4c, compute the upper
orbitwise face lattice till the list Ld−τ of canonical (d − τ)-faces is obtained.
Then for s = 1, . . . , Id−τ , compute by a classical vertex enumeration method
the set V(f̃d−τ

s ) of vertices belonging to f̃d−τ
s . Finally, compute the canonical

representative ṽ for each vertex v ∈ V(f̃d−τ
s ). The set of all such vertices ṽ is

exactly L0 as each canonical vertex of L0 belongs, up to an isometry of Is(P ),
to at least one of the (d − τ)-faces f̃d−τ

s . Clearly, the choice of τ is critical.
Typically, for the first values of t, by going down one layer from Ld−t+1 to
Ld−t the number of orbits increases (Id−t+1 ≤ Id−t) and the average sizes of
faces decreases (V(f̃d−t+1

average) ≥ V(f̃d−t
average)). Therefore, a good τ should be such

that Id−τ and V(f̃d−τ
average) are relatively small: In particular the largest f̃d−τ

s

should within problems currently solvable by vertex enumeration algorithms.
In Section 5.2, assuming that the computation of mn−1 is just within current
vertex enumeration abilities, we indicate that for mn a good τ should satisfy
n − 1 ≤ τ ≤ bd

4c and that τ = 7 is actually enough for the description of m8.

Note that n − 1 = 7 = b d
4c for m8.

5.2 Vertices of the metric polytopes on 8 nodes

As mentioned earlier, the face f̃d−n+1
µ = ∆1,2,3 ∩ ∆1,2,3̄ generates one orbit

of faces of codimension n − 1 of mn which are combinatorially equivalent to
mn−1. In other words, the orbitwise face lattice of mn contains a copy of mn−1

in Ld−n+1. This implies that some canonical faces of Ld−n+2 are quite larger
than mn−1 and therefore intractable if we assume that mn−1 is just within
current vertex enumeration methods abilities. For m8, it means that we should
compute at least L21 and it turns out to be enough as f̃21

µ (which we do not

need to enumerate since f̃21
µ ' m7) and other elements of L21 are tractable. The

whole computation is quite long as L21 is large as well as V(f̃21
average). For the

same reasons, skipping f̃21
µ , the computation of the canonical vertices for each

V(f̃21
s ) is also long. Insertion algorithms usually handle high degeneracy better

than pivoting algorithms, see [2] for a detailed presentation of the main vertex
enumeration methods. The metric polytope mn is quite degenerate as the cut
incidence Icdδ(S) = 3

(

n
3

)

is much larger than the dimension d =
(

n
2

)

. We recall
that the incidence Icdv = |F(v)|. Thus we choose an insertion algorithm for the
enumeration of each f̃21

s : the cddlib implementation of the double description
method [12]. The ordering of the facet is lexicographic with the rule −1 ≺ 1 ≺ 0.
The result shows that L0 is made of the 533 canonical vertices found in [9]. Due
to space limitation, we refer to [5] for a detailed presentation. The conjectured
description of m8 being complete, the following is straightforward.

Proposition 1.

1. The metric polytope m8 has exactly 1 550 825 600 vertices and its diameter
is δ(m8) = 3. The metric cone M8 has exactly 119 269 588 extreme rays.
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2. The Laurent-Poljak dominating set Conjecture 1 and the no cut-set Con-
jecture 2 hold for m8.

While most of the vertices of m8 are almost simple, the only simple vertices of
m8 belong to the orbits Oṽ532

and Oṽ533
of size |Oṽ532

| =368 640 and |Oṽ533
| =430

080; that is 0.05% of the total number of vertices of m8. A vertex of a d-
dimensional polytope is simple if |F(v)| = d. Both canonical representative ṽ532

and ṽ533 are graphic ( 1
3 , 2

3 )-valued vertices, see Fig. 1. The largest denominator
among vertices of m8 is 15 and occurs for v ∈ Oṽ451

with |Oṽ451
| =2 580 480 and

ṽ451 = 1
15 (2, 4, 4, 5, 5, 7, 8, 6, 6, 5, 5, 5, 10, 8, 5, 5, 5, 4, 9, 9, 3, 4, 10, 10, 5, 10, 5, 5).

3

4

56

7

8

V
532

V
533

3

4

56

7

8

1 1 22

Fig. 1. Graphic canonical vertices of the only two orbits of simple vertices of m8

5.3 Vertices of the metric polytopes on 9 nodes

The computation of the vertices of m9 is most probably intractable as we expect
this extremely degenerate 36-dimensional polytope to have around 1014 vertices
partitioned into a couple of 100 000 orbits. Using an heuristic for the orbitwise
vertex enumeration algorithm given in [9], we computed 180 021 orbits of mn

including 762 ( 1
3 , 2

3 )-valued orbits. The largest denominator found is 39 and most
of the vertices are almost simple but the lowest incidence is 37, i.e. no simple
vertex was found so far. By construction the restriction m'9 of the skeleton of
m9 to the known 180 021 orbits of vertices satisfies Conjecture 2. All vertices of
m'9 are adjacent to at least 2 cuts; that is, satisfy Conjecture 1 and δ(m'9) ≤ 3.

Remark 2. None of the currently known vertices of m9 is simple. Since m6 and
m7 have no simple vertex, the only known simple vertices of mn for n ≥ 6 belong
to the orbits Oṽ532

and Oṽ533
. Still, we believe that for n large enough mn has

many simple vertices, see [8], even if so far we have not yet found them.

6 Conclusions

We presented an orbitwise face enumeration algorithm for combinatorial poly-
topes with large symmetry group. In particular, considering the metric polytope
on n nodes, we computed the full orbitwise face lattice for m6 and its upper



On the Face Lattice of the Metric Polytope 11

layers for m7 and m8. A description of the faces of codimension 3 of mn for any
n was also given. Using the list of the faces of codimension 7 of m8, we proved
that the conjectured description of the vertices of m8 is complete and therefore
that the Laurent-Poljak dominating set and the no cut-set conjectures hold
for n ≤ 8. Even if getting a certificate that the description m9 is complete seams
intractable, we could generate many of its vertices. Remark 2 indicates that ei-
ther mn has not as many simple vertices as believed or that m8 is not large
enough to reveal the general features of the metric polytope on n nodes.
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