
Debugging Distributed Computations by Reverse Search
Artur Andrzejak∗

University Erlangen-Nuremberg
Department of Computer Science

Martensstr. 3, 91058 Erlangen, Germany
artur.andrzejak@gmx.de

Komei Fukuda
School of Computer Science

McGill University
Montreal, Canada H3A 2A7

fukuda@cs.mcgill.ca

ABSTRACT
We develop a memory-efficient off-line algorithm for the
enumeration of global states of a distributed computation.
The algorithm allows the parameterization of its memory
requirements against the running time. This is particularly
useful for debugging of memory-intensive parallel com-
putations, e.g. in image processing or data warehousing.
We also show how to apply our technique to evaluate in
a memory-efficient way the predicate Definitely(Φ) defined
by Cooper, Marzullo and Neiger [8, 14]. The basis for these
algorithms is Reverse Search [2], a paradigm successfully
applied for enumeration of a variety of geometric objects.

KEY WORDS
Distributed Computations, Global States, Debugging, Re-
verse Search

1 Introduction

Detecting certain conditions of a distributed computation is
fundamental to solving problems related to debugging and
monitoring of parallel programs, especially of the critical
ones. These problems include debugging, error reporting,
process control, decentralized coordination or load balanc-
ing [16, 4].

The problem of detecting such conditions by means
of evaluating global predicates of a distributed computa-
tion is not trivial and has received a considerable amount of
attention [3, 8, 9, 14]. Global predicates are evaluated over
global states, which are essentially unions of local states of
all processors.

Several approaches for evaluating of global predicates
are known. For stable global predicates, i.e., predicates that
do not become false once they are true, the global snapshot
algorithm by Chandy and Lamport [6] is used. Another re-
search direction exploits the structure of a global predicate
to identify the global states for which it might be true [11].
The major drawback of these methods is that they either ap-
ply to small classes of predicates or are predicate-specific.

On the other hand, evaluating non-specific global

∗From 01/01/2003 at Zuse Institute Berlin (ZIB), Takustr. 7, D-14195
Berlin, Germany. This work has been done during the Post-Doctoral re-
search studies at Hewlett-Packard Laboratories, Palo Alto, USA.

predicates is NP-hard, as shown in [7]. For such predi-
cates, or if the structure of the predicate is not known a
priori, the most general approach is taken - enumeration
of all global states. Cooper, Marzullo and Neiger propose
in [8, 14] off-line algorithms for predicates Possibly(Φ)
and Definitely(Φ) based on the enumeration of all global
states. The predicate Possibly(Φ) holds if the system could
have passed through a global state satisfying the predicate
Φ. Definitely(Φ) holds if the system definitively passed
through a global state with Φ being true.

The algorithms in [8, 14] are not memory-efficient: it
is possible that an exponential number of global states must
be hold simultaneously in the memory of the machine eval-
uating the global predicates. If the distributed computation
is memory intensive, e.g. in the case of image processing
or database applications, already few global states might
exceed the memory capacity of the enumerating system.
In [12], an attempt is made to design a memory-efficient
enumeration algorithm. However, the authors do not take
into account memory and time requirements for reverse ex-
ecution of events implicit in their approach. The necessity
of reverse execution of events occurring in the distributed
computation is likely for memory-efficient global state enu-
meration algorithms, as discussed in Section 3.

Our contributions in this paper are the following:

• We propose a new algorithm for enumeration of global
states of a distributed computation based on the frame-
work of Reverse Search by Avis and Fukuda [2]. This
off-line algorithm is memory-efficient, parallelizable
[5] and thus well suitable for debugging of memory-
intensive distributed computations.

• We investigate the space and time cost of reverse ex-
ecution of events for global state enumeration and
use the results to parameterize the enumeration time
against the memory usage of our algorithm.

• We show how to evaluate in a memory-efficient way
the predicate Definitely(Φ) using our technique (the
evaluation of Possibly(Φ) in a memory-efficient way
is trivial by our approach).



5
1

4
1

3
1

2
1

1
1 eeeee

5
2

4
2

3
2

2
2

1
2 eeeee

1p

2p

00Σ
10Σ 01Σ

11Σ 02Σ
12Σ21Σ 03Σ

13Σ22Σ 04Σ31Σ
23Σ32Σ 14Σ41Σ

33Σ42Σ 24Σ
34Σ43Σ

44Σ 35Σ53Σ
54Σ 45Σ

55Σ

Figure 1. A distributed computation and its lattice of global
states

1.1 Definitions

We assume that the reader is familiar with the definitions
of a distributed computation, a run R, local history of a
process pi, global history of a distributed computation, and
a consistent cut [3, 6].

For a process pi, 1 ≤ i ≤ n, and an integer k ≥ 0
let σk

i denote the local state of a process immediately af-
ter having executed event ek

i . The local state of a process
may include information such as the values of local vari-
ables and the sequences of messages sent and received.
The global state of a distributed computation is an n-tuple
Σ = (σ1, . . . , σn) of local states of all processes together
with the messages still in the communication channels, see
[15]. It is not hard to see that a run R = e1e2 . . . results
in a sequence of global states Σ0Σ1Σ2 . . ., where Σ0 is the
initial global state. Each global state Σi of the run R is
obtained from the previous state Σi−1 by some process ex-
ecuting the single event ei. We say that Σi−1 leads to Σi

in R. The set of all consistent global states of a computa-
tion along with the leads-to relation defines a lattice L. Let
Σk1,...,kn be a shorthand for the global state (σk1

1 , . . . , σkn
n )

and let ` = k1 + . . . + kn be its level. Figure 1 shows such
a lattice together with the original distributed computation.

As a nonstandard definition, we say that for a global
state (σ1, . . . , σn), its signature is the tuple (k1, . . . , kn)
of subscripts of the recently executed events ek1

1 , . . . , ekn
n

leading to the local states σ1, . . . , σn. The signature of the
initial global state is (0, . . . , 0).

2 The Reverse Search Method

In this section we describe briefly elements of the Reverse
Search method by Avis and Fukuda [2]. Assume that we
are given a graph G whose vertices are the objects to be
enumerated. In our case the objects are global states and
G is the lattice L. We could possibly enumerate the ver-
tices of G by applying the depth-search first algorithm to
G. The critical problem of this approach is the requirement
of storing all vertices of G at the same time in memory; for
Reverse Search, we are required to store only one vertex of
G in the computer memory at a time.

We need to define a rooted spanning tree of G. Let
v∗ be a distinguished vertex of G (which later will be the
root of the tree); in our case it is the initial global state. The
spanning tree of G is implicitly defined via a local search
function f : V (G)\{v∗} −→ V (G) (where V (G) denotes
the vertex set of G). For every v ∈ V (G)\{v∗} the pair
(v, f(v)) must be an edge in G. Furthermore, for every
v ∈ V (G)\{v∗} there is a finite folding f(f(. . . f(v) . . .))
which yields v∗. Intuitively, every application of the func-
tion f brings us closer to the distinguished vertex v∗. It is
not hard to see that for each v ∈ V (G)\{v∗} the function
f defines a unique path from v to v∗. The union of these
paths (regarded as sets of directed edges) define the (di-
rected) spanning tree of G we are looking for. This graph
is called the trace graph or simply the trace of the local
search function f . Note that the trace graph is completely
determined by f .

Now an execution of an algorithm based on Reverse
Search resembles an execution of the depth-first search on
the trace graph of f . For a particular problem instance, the
graph G is specified be the following:

• An integer δ which bounds from above the maximum
degree of a vertex of G.

• An adjacency oracle Adj explained below.

For an integer i ∈ {1, . . . , δ} and a vertex v ∈ V (G) the
adjacency oracle Adj(v, i) gives the i-th neighbor of v in G

or null. The function Adj is exhaustive and injective, that is
if i goes from 1 to δ, then we obtain all neighbors of v in G

and each of them exactly once; see [2] for the complete de-
scription. The following procedure ReverseSearch2 taken
from [2] states in detail how G is traversed.

procedure ReverseSearch2(Adj,δ,v∗,f );
(* j: neighbor counter *)
v := v∗; j := 0;
visit vertex v∗;
repeat

while j < δ do
j := j + 1;
if f(Adj(v, j)) = v then

(* reverse traverse *)



v :=Adj(v, j); j := 0;
visit vertex v;

endif
endwhile;
if v 6= v∗ then

(* forward traverse *)
w := v; v := f(v); j := 0;
repeat j := j + 1

until Adj(v, j) = w (* restore j *)
endif

until v = v∗ and j = δ.

3 Reverse Execution of an Event

Computing a global state Σ from its direct predecessor Σ′

in L is straightforward: we let a (certain) process execute
its next event. Thus, having all global states of level ` in
the memory of the enumerating machine, we can obtain all
global states of level ` + 1. This property is used in the
algorithms described in [8, 14]. However, the number of
global states of a single level can be exponential in n, and
this is also a reason why the above-cited algorithms are not
memory-efficient.

For memory-efficient enumeration algorithms, we
may assume that at least one global state Σ is kept in
the memory: the currently visited one. To derive another
global state Σ′′ which is not a descendant of Σ in L we
could reverse execute the last event on one of the processes
pi, 1 ≤ i ≤ n, obtaining a global state Σ′ which leads to Σ.
By possibly repeating this step (for different i’s), we can
reach a predecessor of Σ′′ in L, and then compute Σ′′ in
an obvious way. If a reverse execution is not possible, we
can still use the initial state Σ0 as the predecessor of Σ′′;
however this might be very time-consuming.

This indicates that memory-efficient global state enu-
meration algorithms are likely to use reverse execution of
events. Indeed, our algorithm from Section 4 assumes such
a mechanism: given a global state Σ, the computation of
a (certain) global state Σ′ which leads to Σ is part of the
approach.

Reverse execution is a well established concept used
in debugging, fault-tolerant computing, human-computer
interaction and speculative computation [10, 13, 17]. Im-
plementations include both hardware and software ap-
proaches. In this paper we assume a software-based im-
plementation of reverse execution.

3.1 Reverse execution with time versus space
trade-off

In this section we discuss a reverse execution approach and
describe how to parameterize the trade-off between its ex-
ecution time and the memory requirements.

Assume that P is a path in a lattice L corresponding
to a distributed computation, such that each global state on
P leads to the next one. Given a node (global state) Σ in
P , we want to obtain its predecessor Σ′. As mentioned, the
only difference between both global states is that in Σ′ one
of the processes pj , say, has not yet executed its next event

e
kj

j . Thus, given Σ, the goal is to “set back in time” pj to

the state before its execution of e
kj

j .

Obviously the method with the highest memory usage
is to store all global states on the path P and then retrieve
the required global state from the memory or other storage
as necessary. Note that we can store the path in a “differ-
ential” way, i.e. for the above-mentioned global states Σ′

and Σ we store for Σ only the local state of the processor
pj after the execution of the event e

kj

j . The local states of
all other processes are respectively identical in Σ′ and Σ.
Still, if Σ is the last global state in P and has the signature
(k1, . . . , kn), then we must store ki local states of the pro-
cessor pi, for each i = 1, . . . , n, in total ` = k1 + . . . + kn.

To decrease memory usage, we can store only some
local states of each process. Let q > 0 be an integer which
determines that for each process we store every q-th local
state only (beginning with the initial one). For q = 1, the
retrieval of Σ′ from Σ is the same as above. However, for
q > 1, we retrieve the stored local state of pj with index
b

kj−1

q
c from the memory and “load” this state into pj . Sub-

sequently, we recompute the local states of this process just
until the event ekj

j by executing its program code. Since the
messages received by pj are considered as a part of its local
state [3], we assume that we store for each process pi every
message sent to this process (together with the index of the
sender and the event number causing this message). Thus,
we can retrieve them from the local state of pj in Σ, if they
should be necessary for executing the code of this process.

3.2 Space and time requirements

Assume that R is an upper bound on the time to retrieve a
local state (from memory or storage) and to “load” it into
a process pi, 1 ≤ i ≤ n. Furthermore, we write E for an
upper bound on the time needed by a process to execute an
event. For q > 1, in order to compute Σ′ from Σ a process
pj must execute at most q − 1 events after retrieval of its
last stored local state. Therefore, the time for computation
of Σ′ from Σ is at most

R + E(q − 1). (1)

Let S be the maximum storage size of a local state of
a single process. It is not hard to see that if the level of the
last global state Σ in the path P is ` = k1 + . . . + kn, then
the total storage needed for P is at most

S
`

q
. (2)



4 Enumeration of Global States

Our goal is to enumerate all (consistent) global states of a
distributed computation by traversing the lattice L of global
states. In this section we describe how to achieve this by ap-
plying the procedure ReverseSearch2 from Section 2. We
need to specify several problem-dependent elements used
by the Reverse Search method. The main challenge of this
task is to find efficient implementations of these elements,
especially of the local search function f .

In the following, we consider L as a (directed) graph,
where the nodes are global states and (Σi, Σj) is an edge,
if Σi leads to Σj . Observe that this graph is connected.

4.1 Problem-dependent elements of the Re-
verse Search

For the Reverse Search method to be applied, we need to
specify the following problem-dependent elements:

• A local search function f and its implementation,

• An adjacency oracle Adj and its implementation,

• A distinguished vertex v∗ , the root of the trace graph,

• The maximum out-degree of a global state in the lat-
tice L.

For technical reasons, we also provide the following ele-
ment:

• An implementation of the test f(Adj(v, j)) = v in the
reverse traverse step which does not use f nor Adj.

All three the local search function, the adjacency oracle and
the test f(Adj(v, j)) = v are discussed below. As a distin-
guished vertex v∗ we set the initial global state of the com-
putation. Finally, the maximum degree in the lattice is the
number of processes n, as a global state can lead to another
global state due to an execution of an event on one of them.

4.2 The Adjacency Oracle Adj

For a given global state Σ and an integer j, 1 ≤ j ≤ n, we
define Adj(Σ, j) as follows. If there exists a global state Σ′

such that Σ leads to Σ′ due to an execution of the next event
on the process j, then Adj(Σ, j) is Σ′; otherwise Adj(Σ, j)
is null. It is not hard to see that Adj indeed determines the
lattice L of the distributed computation.

As for the implementation, we assume that the current
global state Σ is ”loaded” on the n processes p1, . . . , pn.
The value of Adj(Σ, j) is computed as follows. First we
test, whether the process pj is waiting for a message and

00Σ
10Σ 01Σ

11Σ 02Σ
12Σ21Σ 03Σ

13Σ22Σ 04Σ31Σ
23Σ32Σ 14Σ41Σ

33Σ42Σ 24Σ
34Σ43Σ

44Σ 35Σ53Σ
54Σ 45Σ

55Σ

Figure 2. A trace induced by the local search f in the lattice
shown in Figure 1

cannot execute the next event. If this is the case, then
Adj(Σ, j) returns null. Otherwise, we let pj execute the
next event. As a consequence the new global state becomes
exactly Adj(Σ, j).

Note that our definition of Adj implies that its values
are only the “outgoing” global states in respect to the first
argument of Adj (i.e. global states with level one higher
than the argument). However, it is not hard to see that the
correctness of the Reverse Search method is not influenced
by this fact.

4.3 The local search function f

A possible and quite natural realization of a local search
function is the following one. For a global state Σ of level
` we define f(Σ) to be the global state of level `− 1 which
leads to Σ and has lexicographically smallest signature.
Figure 2 shows the trace of the local search for the lattice
from Figure 1.

The question is how to implement f , since the compu-
tation of f(Σ) from Σ is a ”time-reversed” execution of an
event of one of the processes. We propose two approaches.
The first one is very memory-efficient and can be used for
both the execution of f in the test f(Adj(v, j)) = v and
the execution of f in the forward traverse step. However, it
has a large computational overhead. The second approach
works only for the forward traverse case, but it allows us to
trade the computational time at a cost of additional memory
usage.

Both approaches assume the case that the current
global state - the argument of f - is ”loaded” on the n pro-
cesses p1, . . . pn.



4.3.1 Universal implementation of f

The following implementation has small memory usage -
in the order of memory requirement of one global state.
On the other hand, its computational overhead is large. It
can be applied both for the reverse traverse and the forward
traverse cases.

Let (k1, . . . , kn) be the signature of the current global
state Σ. We want to find the smallest j, 1 ≤ j ≤ n, such
that the global state with signature (k1, . . . , kj − 1, . . .) ex-
ists. Starting with j = 1, we attempt to compute the local
state σ

kj−1

j of the process pj after the event e
kj−1

j as fol-
lows. First we save the current local state of the process pj .
Then we initialize pj with its initial local state and let the

process pj replay all those among the events e1
j . . . , e

kj−1

j ,
which did not occur “after” the global state with signature
(k1, . . . , kj − 1, . . .). More precisely, if pj requires a mes-
sage m for replaying an event, m must be sent by a process
pi due to an event ek

i with k ≤ ki for 1 ≤ i ≤ n, i 6= j. If

pj cannot reach the local state σ
kj−1

j , then there is no global
state with signature (k1, . . . , kj−1, . . .) (or (kj−1, . . .) for
j = 1). In this case we restore the local state of the process
pj and repeat the local state computation for j+1, j+2, . . .,
until success. Because we are testing the existence global
states with lexicographically increasing signatures, the first
found global state will be the correct value of f(Σ). Note
that we have as a result the global state f(Σ), not only its
signature.

4.3.2 Implementation of f with parameter-
ized running time

For the current global state Σ let P (Σ) be the (reversed)
unique path induced by the local search function f on the
lattice L of the distributed computation. We maintain an or-
dered list of signatures of the global states on P (Σ) in the
following way. Each time when the reverse traverse step
of the algorithm takes place (i.e. the test f(Adj(v, j)) = v

is successful), we store the signature of the newly deter-
mined global state in the list. Since the signatures have
very small memory usage compared to global states, the ad-
ditional memory requirement for the list can be neglected.

Furthermore, we apply the technique from Section 3
and store a subset of the local states of each process on
the path P (Σ). The size of the subset is controlled by the
parameter q defined there.

Now it is not hard to see that if Σ is the currently
visited global state, then f(Σ) is the before-last element of
P (Σ). Thus, given the information in our signature list and
the stored local states, we can compute f(Σ) as described
in Section 3. The maximum computation time for f is then
given by (1), and the maximum memory usage for P (Σ)
by (2).

Note that this approach cannot be used for the test

f(Adj(v, j)) = v in the reverse traverse step, since
Adj(Σ, j) is not in P (Σ). Thus, the implementation of f

presented here can be only used in conjunction with the im-
plementation of the test f(Adj(v, j)) = v described in the
next section.

4.4 Implementation of the test
f(Adj(v, j)) = v

We first describe the conditions under which the test
f(Adj(v, j)) = v is true, and turn then our attention to
its implementation.

Assume that the current global state Σ has the signa-
ture (k1, . . . , kn). For an integer j, 1 ≤ j ≤ n, the global
state Adj(Σ, j) (if exists) has the signature (k1, . . . , kj +
1, kj+1, . . .) (or (k1 + 1, k2, . . .) for j = 1). By the def-
inition of f either j = 1 and so f(Adj(Σ, j)) = Σ,
or for j > 1 we find f(Adj(Σ, j)) by successively test-
ing the existence of the global states with the signatures
(k1−1, k2, . . . , kj +1, . . .), (k1, k2−1, k3, . . . , kj +1, . . .)
till (k1, . . . , kj , . . .), respectively. Thus, the test returns
true if Adj(Σ, j) exists and j = 1 or f(Adj(Σ, j)) has the
signature (k1, . . . , kj , . . .) (the last inspected).

In the actual implementation, we first check whether
Adj(Σ, j) exists as described in Section 4.2; if not, the
test fails. Otherwise the test is immediately successful
in case j = 1. For j > 1, we have to check succes-
sively the existence of the global states with signatures
(k1−1, k2, . . . , kj +1, . . .) until (k1, . . . , kj−1−1, kj , . . .)
by attempting to recompute these global states. If one of
them exists, the test fails. Otherwise it is true since then
f(Adj(Σ, j)) has the signature (k1, . . . , kj , . . .). We re-
compute each of these global states by the technique de-
scribed in Section 3. This approach can be applied since
only one of the processes pi, 1 ≤ i < j, needs to re-execute
its computation. We use for this aim the data of the local
states stored for the computation of f from Section 4.3.2.

In the worst case, we need to compute n − 1 global
states, and each computation needs at most the time spec-
ified by (1). Together with the upper bound E on the time
required to execute Adj, the whole test needs no longer than

E + (n − 1)(R + E(q − 1)). (3)

4.5 Optimizing the forward traverse part of
Reverse Search

By taking a closer look at the Reverse Search method we
notice that for restoring the value of j (in the forward tra-
verse part) the adjacency oracle Adj does not need to com-
pute a new global state Adj(Σ, j) since only the signature
of Adj(Σ, j) is needed. The computation of such a sig-
nature is trivial, since if a global state Σ has signature
(k1, . . . , kn), then Adj(Σ, j) has signature (k1, . . . , kj +



1, . . . , kn). We can then rewrite the forward traverse part
of the procedure ReverseSearch2 from Section 2 as follows.
Let Adjsig(Σ, j) be a function which computes only the
signature of Adj(Σ, j).

if v 6= v∗ then
(* forward traverse *)
w := signature of v;
v := f(v); j := 0;
repeat j := j + 1
until Adjsig(v, j) = w (* restore j *)

endif

By this change, the time for restoring the value of j

becomes constant.

4.6 Analysis of running time

In this section we bound from above the running time of the
evaluation algorithm for the case of the solution with pa-
rameterized running time, i.e. if the implementations from
Section 4.3.2 and Section 4.4 are used. If the implemen-
tation from Section 4.3.1 is used, no bound of the running
time can be given, since then the execution time of f de-
pends strongly on global state taken as f ’s argument.

We apply Theorem 2.4 from [2] by putting the sym-
bols from [2] into the context of this paper:

• t(Adj), the execution time for Adj is at most E (Sec-
tion 4.2),

• δ, the maximum (out-)degree in the lattice L is n,

• tR(Adj, f), the worst-case time for the test
f(Adj(v, j)) = v is given by (3),

• t(f), the worst-case time for f is given by (1),

• tF (Adj, f), the time needed to restore j is constant
(Section 4.5),

• |L| is the total number of global states in the lattice.

Theorem [2, Theorem 2.4]. The time complexity of
ReverseSearch2 is

O((t(Adj) + δtR(Adj, f) + t(f) + tF (Adj, f))|L|).

Using notation from Section 3 and assuming that E, R and
q are non-constant, we have then:

Corollary 1. Suppose that the implementations from Sec-
tion 4.3.2 and from Section 4.4 is used. Then the running
time of the enumeration of all global states is

O(n2(Eq + R)|L|),

and the memory requirement of the algorithm is at most

S(n +
`max

q
),

where `max is the maximum level in the lattice.

5 Memory-Efficient Detection of Defi-
nitely(Φ)

As noted in the introduction, the algorithms given in [8] for
detecting of Possibly(Φ) and Definitely(Φ) are not memory-
efficient. In worst case, each algorithm holds in memory all
global states of a single level of L. This number is expo-
nential in n.

We can apply our memory-efficient algorithm for de-
tecting of Possibly(Φ) in a straightforward way: just enu-
merate all global states until Φ applies or the enumeration
terminates.

For the detection of Definitely(Φ) some more effort
is needed. Assume that we remove from the lattice L all
global states for which Φ applies, obtaining a graph L′. The
idea is to run our enumeration algorithm on L′ instead of
L. Note that Definitely(Φ) does not hold exactly if there is
a path from the initial state to a terminal global state in L′.
Thus, our enumeration will reach a terminal state exactly
in this case. Since we traverse L′ in a depth-first search
manner, the case that Definitely(Φ) is not true is detected
relatively fast. On the other hand, we might have to eval-
uate almost all global states to reach the conclusion that
Definitely(Φ) is true.

We need only slight changes of f and Adj to enumer-
ate the global states of L′ instead of L. At each computa-
tion of Adj we evaluate Φ for the new created global state;
if Φ applies, we simply return null. The local search f is
modified in an analogous way.

6 Conclusions

The only known way of detecting non-specific global pred-
icates is the enumeration of global states. Although such
an enumeration might generate a huge number of global
states to be tested, a real obstacle of this approach is the
anticipated memory usage of the enumerating system.

We addressed this problem by designing a memory-
efficient enumeration algorithm. The algorithm can be
also used to evaluate the predicates Possibly(Φ) and Def-
initely(Φ) introduced in [8, 14]. We argued that every
memory-efficient algorithm is likely to use reverse execu-
tion and discussed the time/space trade-off of this tech-
nique in our context. As a consequence, we could param-
eterize the memory usage of our algorithm versus its run-
ning time. Worst-case bounds on both quantities have been
derived.



The disadvantage of our approach is the need for in-
strumentation of user executable and a likely large enumer-
ation time. However, our technique allows parallelization
of the enumeration to a stronger degree than the original
computation, which provides a partial remedy to the last
problem.

7 Acknowledgments

The first author would like to thank Professor Friedemann
Mattern, ETH Zurich, for valuable suggestions.

References

[1] A. Andrzejak and K. Fukuda, Optimization over
k-set polytopes and efficient k-set enumeration,
Proc. 6th International Workshop on Algorithms and
Data Structures (WADS’99), LNCS 1663, Vancouver,
Canada, 1999, 1–12.

[2] D. Avis and K. Fukuda, Reverse search for enumera-
tion. Disc. Applied Math., 65, 1994, 21–46.

[3] Ö. Babaoǧlu and K. Marzullo, Consistent global
states of distributed systems: Fundamental concepts
and mechanisms, in S. J. Mullender (Ed.), Distributed
Systems, (New York: Addison Wesley, 1994) 55–96.

[4] Ö. Babaoǧlu and M. Raynal, Specification and Ver-
ification of Behavioral Patterns in Distributed Com-
putations, Proc. of Fourth IFIP Working Conference
on Dependable Computing for Critical Applications,
San Diego, USA, 1994.

[5] A. Brüngger, A. Marzetta, K. Fukuda, and J. Niev-
ergelt, The parallel search bench zram and its appli-
cations, Annals of Operations Research, 90, 1999,
45–65.

[6] K. M. Chandy and L. Lamport, Distributed Snap-
shots: Determining Global States of Distributed Sys-
tems, ACM Transactions on Computer Systems, 3(1),
1985, 63–75.

[7] C. Chase and V. K. Garg, Detection of Global Pred-
icates: Techniques and their Limitations, Distributed
Computing, 11(4), 1998, 191-201.

[8] R. Cooper and K. Marzullo, Consistent detection
of global predicates, Proc. ACM/ONR Workshop
on Parallel and Distributed Debugging, Santa Cruz,
USA, 1991, 163–173.

[9] C. Diehl, C. Jard, and J. X. Rampon, Reachabil-
ity analysis on distributed executions, in J.-P. Jouan-
naud, M.-C. Gaudel (Ed.) Proc. TAP-SOFT, LNCS
668 (New York: Springer-Verlag, 1993) 629–643.

[10] M. Frumkin, R. Hood, L. Lopez, Trace-Driven
Debugging of Message Passing Programs, Proc.
IPPS/SPDP’98, Orlando, USA, 1998, 753-762.

[11] V. K. Garg and B. Waldecker, Detection of strong un-
stable predicates in distributed programs, IEEE Trans.
on Parallel and Distributed Systems, 7(12), 1996,
1323–1333.

[12] R. Jégou, R. Medina, and L. Nourine, Linear space
algorithm for on-line detection of global predicates,
Proc. STRICT ’95, Berlin, Germany, 1995, 175–189.

[13] T. J. LeBlanc and J. M. Mellor-Crummey, Debugging
parallel programs with Instant Replay, IEEE Transac-
tions on Computers, C-36(4), 1987, 471–482.

[14] K. Marzullo and G. Neiger, Detection of global
state predicates, Proc. 5th International Workshop on
Distributed Algorithms (WDAG-91), Delphi, Greece,
1991, 254–272.

[15] F. Mattern, Virtual Time and Global States of
Distributed Systems, Proc. International Workshop
on Parallel and Distributed Algorithms, Chateu de
Bonas, France, 1988, 215–226.

[16] N. Mittal and V. K. Garg, Debugging distributed pro-
grams using controlled re-execution, Proc. Sympo-
sium on Principles of Distributed Computing, 2000,
239–248.

[17] R. Sosič, History Cache: Hardware Support for Re-
verse Execution, Computer Architecture News, 22(5),
1994, 11–12.


