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Abstract

Probabilistic Relational Models (PRMs) are a type of directed graphical model used in the
setting of statistical relational learning. PRMs are an extension to Bayesian networks, a popular
model which assumes independence between observations. A PRM aims to exploit the logical
structure that is often present between observations. We present two approximate inference meth-
ods for PRMs. First, we propose an algorithm based on Gibbs sampling that makes use of the
relational structure for fast and scalable inference. We then consider PRMs with reference uncer-
tainty, which are models that contain uncertainty about the relational structure itself. We propose
an inference method based on a Metropolis-Hasting algorithm which depends on a sparse data
structure that decreases the model complexity. Finally we present a software framework called
ProbReM that can be used to model and perform inference on PRMs.
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Abrégé

Les modèles probabiliste relationel (MPRs) sont un type de modèle graphique utilisés dans le
cadre de l’apprentissage relationnelle. Les MPR sont une extension des réseaux Bayésiens, soit
un modèle aprécié qui suppose l’indépendance entre les observations. Un MPR vise à exploiter la
structure logique qui est souvent présente entre les observations. Nous présentons deux méthodes
d’inférence approximative pour les MPR. Premièrement, nous proposons un algorithme basé sur
l’échantillonnage de Gibbs qui fait usage de la structure relationnelle pour l’inférence rapide et
évolutif. Nous considérons ensuite les MPR à l’incertitude de référence, qui sont des modèles
qui contiennent des incertitudes au sujet de la structure relationnelle elle-même. Nous proposons
une méthode d’inférence basée sur un algorithme de Metropolis-Hasting, qui repose sur une
structure de données éparses qui diminue la complexité du modèle. Enfin, nous présentons un
logiciel appelé ProbReM qui peut être utilisé pour modeler et faire de l’inférence sur les MPR.
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Chapter 1

Introduction

Researchers in machine learning and related areas propose tools that aim to accurately represent
some domain in the real world. Often, the goal is to teach a computer to make inference, but
in order to do that the machine has to have some form of understanding of what it is asked to
reason about. A computer’s representation of the domain knowledge is referred to as a model,
which can be learned in a manner similar to how we humans learn, by observing samples and
trying to incorporate these observations into a knowledge base. This knowledge base is then
used to make inferences about unobserved events or to predict outcomes of future events. One
observation often consists of a vector of data points, where each data point corresponds to a
measured variable. For example, the observations for a text classification system could consist
of a corpus of emails, each represented by a vector of words found in the emails. In the setting
of a computer vision system that aims to recognize objects in images, one observation could be
a vector of pixels making up one image.

A large number of statistical frameworks that are able to learn mathematical models from
data have been proposed by researchers. The model definition, as well as the learning and the
inference algorithms vary wildly depending on which approach is being used and the type of
inference the model is designed to make. However one central and very common assumption in
many frameworks is that the observations are independent of one another. For example, in the
case of the text classification system this independence assumption could mean that the words
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in one email contain no information about the words of a reply to that email. Or, in the com-
puter vision model, that the pixel values for one image are independent of the pixel values in
the next image of a video sequence. Often, and including for the two examples given above, the
observations are obviously not independent. However, in many cases, this assumption leads to a
mathematically elegant model that can be implemented. In fact, it is often required because infer-
ence would become intractable otherwise. As useful as the independence assumption can be, one
consequence is that we are not making use of the potentially valuable information about the rela-
tional structure between observations. For example, imagine an email classification system that
routes messages to the appropriate recipient within an institution. A traditional method would
consider the email text as one independent observation. In contrast, a relational approach could
also exploit information about the subject, sender and organizational structure of the institution.

The field of statistical relational learning (SRL) aims to make use of as much of this relational
information as possible while still offering concise mathematical models and tractable inference
algorithms. SRL has emerged as a separate area of research in the last decade, synthesizing
previous research on artificial intelligence and related fields like inductive logic programming.
A number of SRL frameworks have been proposed in recent years, most of which draw heavily
from previous work on graphical models and first order logic. In this thesis we focus on a specific
directed graphical model used in the setting of relational learning, Probabilistic Relational Mod-
els (PRM). PRMs are an extension to Bayesian networks, a popular directed graphical model
which is based on the independence between observations.

The thesis is structured as follows. Chapter 2 gives a brief introduction to the concepts
on which our work builds on. This includes the basic laws of probability motivating Bayesian
methods, a description of the types of graphical models and an intuitive introduction to Markov
Chain Monte Carlo methods. The reader is expected to have been exposed to these subjects
before. In Chapter 3 we introduce the Probabilistic Relational Model, a type of graphical model
which is the basis of all original work presented in this thesis. In Chapter 4 we present a novel
approximate inference method for PRMs. We leverage the special relational structure of the
model in order to design an efficient algorithm. The experiments show that the algorithm is fast
and that it scales well with the size of the model. We then proceed to consider a more complex
model, called reference uncertainty. This model is appropriate in situations when the relational
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structure, which we leveraged in Chapter 4, is itself uncertain. We propose a second, more
involved, inference algorithm that depends on additional novel data structures that we describe
in detail in Chapter 5. In Chapter 6 we present a software framework called ProbReM which
is used to model PRMs. It implements the inference methods presented in Chapters 4 and 5 as
well as other algorithms. It is available as open source. Finally, in Chapter 7 we offer a brief
conclusion and we discuss avenues for future work.

We point out that the inference algorithm in Chapter 4 has been published in the proceedings
of the Asian Conference on Machine Learning [KP10]. The author of this thesis is also the
primary author of the paper. The coauthor, his supervisor, provided valuable input. The open
source software presented in Chapter 6 was implemented by the author in its entirety.
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Chapter 2

Background

In this chapter we provide a brief review of the concepts necessary for this thesis. It is by no
means comprehensive and the reader is assumed to have some knowledge of probability, graph
theory and inference algorithms. For a complete introduction, the reader is referred to [KF09]. In
Section 2.1 we review the basic laws of probability that will be necessary to define the notion of
a graphical model introduced in Section 2.2. Finally, in Section 2.3, we describe the idea behind
Markov Chain Monte Carlo methods on which we heavily depend for the inference algorithms
introduced in Chapters 4 and 5.

2.1 Probability

For the purpose of the algorithms presented in this thesis, we consider discrete random variables.
We denote by V(X) the finite domain of the variable X . The probability of an event x ∈ V(X)

is non-negative, P (X = x) ≥ 0, and the probabilities of all events sum to one,
∑

xi∈V(X) P (X =

xi) = 1.

For a set of random variables Xi, i = 1, 2, .., n, the joint probability distribution is defined
to be the distribution over all variables P (X1, .., Xn). In the case of discrete variables, a joint
probability distribution can be represented in the form of a probability table. An example of a
joint probability P (X, Y ) table for two binary variables X , Y can be found in Table 2.1.
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X0Y 0 X0Y 1 X1Y 0 X1Y 1

0.2 0.1 0.3 0.4

X0 X1

Y 0Z0 0.3 0.7

Y 0Z1 0.8 0.2

Y 1Z0 0.9 0.1

Y 1Z1 0.4 0.6

Table 2.1: Examples of discrete probability distributions in a tabular representation. On the left
is the joint distribution P (X, Y ), on the right the conditional distribution P (X | Y, Z). All
variables are binary.

A conditional probability distribution (CPD) defines a distribution over variable(s) condi-
tioned on other variables. The distribution P (X | Y ) specifies a distribution over X for each
possible value of Y . The CPD P (X | Y, Z) in Table 2.1 is an example conditional distribution
where X ,Y ,Z are all binary variables.

In general, the conditional probability is defined as

P (X = x | Y = y) =
P (X = x, Y = y)

P (Y = y)
(2.1.1)

The notation used in this thesis is the following. The columns are used for the distributions
and the rows are used for conditional assignments. Thus the entries in each row sum to 1. When
there are no conditional assignments, the first row is the distribution. This representation is
convenient as in the upcoming chapters we will deal with a lot of conditional distributions over
just one variable, but which are conditioned on multiple variables.

In general, we observe a subset of the variables (called the evidence variablesE ⊂ {X1, .., Xn}),
and the goal is to find the conditional distribution over the unobserved variables (called the event

variables Y = {X1, .., Xn}\E). This type of distribution, P (Y | E), is referred to as a query,
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which we can express in terms of the joint distribution as

P (Y | E) =
P (Y,E)

P (E)
=

P (Y,E)∑
Y P (Y,E)

If two random variables X ,Y are independent, their joint probability can be factorized as
P (X, Y ) = P (X) ∗ P (Y ). Naturally, using Equation(2.1.1), we have P (X | Y ) = P (X) in
this case. This extends to the notion of conditional independence, i.e. X and Y are independent
given Z, denoted X ⊥⊥ Y | Z, if and only if:

P (X, Y | Z) = P (X | Z) ∗ P (Y | Z) (2.1.2)

Combining the previously described concepts, we arrive at the central probability law used
in this thesis, Bayes rule:

P (X | Y ) =
P (Y | X)P (X)

P (Y )
(2.1.3)

Bayes rule allows us to write a conditional probability in terms of the likelihood P (Y | X),
which is a function of X , and the prior P (X). Using the law of total probability, by summing
over all possible values thatX can take, the denominator becomes P (Y ) =

∑
x∈V(X) P (Y | X =

x)P (X = x). Thus the expression for P (Y ) does not depend on X . As stated above, often we
are interested in finding a conditional distribution over unobserved variables given the evidence
variables. Because P (Y ) is constant but usually hard to compute, the proportional notation can
be used to indicate if P (Y ), also called the evidence, is not of importance:

P (X | Y ) ∝ P (Y | X)P (X) (2.1.4)

Equation (2.1.3) is the central probability law used in Bayesian methods for machine learn-
ing. We will make use of the proportional form of Bayes rule extensively when presenting the
inference algorithms in Chapters 4 and 5. But first, we will discuss how the probability laws
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described in this section can be applied to graphical models.

2.2 Graphical models

In machine learning, graphical models have become very popular tools for reducing computa-
tional complexity by applying the Bayesian paradigm. A model is a computer’s representation of
the domain that we aim to analyze. We denote by θ the parameters that fully describe the model.
The parameters can be defined by hand, but it is common to learn θ from a training dataset.
Learning model parameters is sometimes a goal in and of itself. More often though, we aim to
do inference with the learned model. A question that the model can answer is referred to as a
query. A query usually consists of information that we know is true (the evidence), and we ask
an inference algorithm to find an explanation for an event that we are interested in. For exam-
ple, common queries are to infer the value of missing or unobserved data points; or to predict
future values. The type of answers vary as well. We might be interested in the most probable
explanation, which is called the maximum likelihood estimate (MLE). But more often we are in-
terested in the maximum a posteriori (MAP) estimate, which is the probability distribution over
all possible explanations given the evidence and the prior. This distribution is called the posterior

distribution, a term we encounter often as the focus of this thesis are MAP estimates.

The Bayesian rule, Equation (2.1.1), is commonly used to answer queries. In general we can
write a simple query as

P (θ | x) =
P (x | θ)× P (θ)

P (x)

To find the posterior distribution P (θ | x) over the model parameters θ given the data x,
Bayes rule allows us to write the posterior as an expression of the likelihood of the data given
the parameters P (x | θ), the prior for the parameters P (θ) and the normalizing constant P (x),
which is the probability of the data (the evidence). Often, as the evidence does not depend on the
model parameter θ, it is not necessary to compute it exactly and we use the proportional form in
Equation ( 2.1.4). Computing the normalizing constant is difficult as it requires integrating over
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all model parameters, P (x) =
∑

θP(x | θ)×P(θ).

Graphical models are based on a representation that captures conditional independence as-
sumptions between certain model parameters. These independencies enable us, using Equation
(2.1.1), to factorize the joint probability distribution over the full model. The benefit of a fac-
torized joint distribution is that it is represented in a memory-efficient way and makes inference
computationally cheaper. In fact, often it would be intractable to make inferences with a non-
factorized joint density. There are two main approaches to graphical models; directed graphical
models, described in Section 2.2.1, and undirected models (Section 2.2.2). For an excellent and
complete introduction to probabilistic graphical models, the reader is referred to [KF09].

2.2.1 Directed models

We begin by introducing the well known Bayesian network, which is the foundation of our work
in the relational domain. Assume we have a set of variables X1,..,Xn for which we define a joint
probability distribution P (X1, .., Xn). Each Xi is associated with a conditional distribution,
sometimes called a local distribution, P (Xi | pa(Xi)). The parents pa(Xi) ⊂ {X1, .., Xn}
specify that the parameters of Xi depend on Xj ∈ pa(Xi). The distribution can be represented
via a directed graph as follows. Each Xi is represented by a vertex in the graph, and a directed
edge from Xj to Xi indicates that Xj is a parent of Xi. For example, the local distribution of Z
on the left in Figure 2.2 is P (Z | X). If a vertex does not have any parents, the local distribution
is unconditioned (e.g. P (X)).

Using the law of conditional probability (Equation 2.1.2), it is easy to show that the joint
distribution of X1,..,Xn can then be factorized:

P (X1, ..., Xn) =
∏
Xi

P (Xi | pa(Xi))

Figure 2.1 depicts a simple Bayesian network that models the success of a student that de-
pends on the teaching ability of his teacher as well as the students intelligence. The success
variable has two parents, and the conditional distribution is P (s | i, t).
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Intelligence Teacher

Success

Figure 2.1: A simple Bayesian network modelling the success of a student that depends on the
teaching ability of his teacher as well as the student’s intelligence

The process of inference in a directed graphical model can be seen as a flow of influence
through the graph. In general, the values of some vertices have been observed as evidence and
we seek to find the posterior distribution over a set of vertices in which we are interested (which
we call event vertices).

Not every vertex in the graph will inform the posterior; there are six constellations of ob-
served and unobserved variables that fully describe the conditions for when variables are de-
pendent. The top three cases in Figure 2.2 display the cases where the influence flows between
vertices X and Y , i.e. the vertices are not independent. The special case on the right is known
as v-structure, which is the cause of much trouble in designing efficient inference algorithms.
Observing Z renders X and Y dependent; an effect also known as ‘explaining away’. If we have
not observed whether a student is successful, the teacher’s teaching ability is independent of the
students’ intelligence. But if a student is known to be successful, observing a low intelligence
indicates that the teacher is proficient.

The Bayes-Ball algorithm, originally introduced by Pearl [Pea88], uses these rules to deter-
mine the subgraph of the full network that will inform the posterior distribution. We say that this
subgraph is, given the evidence, d-separated from the full network. In Section 3.5.2 we describe
in detail the algorithm for determining this graph that is implemented in our software.

To compute the posterior distribution, one has the choice between exact and approximative
algorithms. Variable elimination is an exact method that sums (and thus eliminates) over all
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X

X
X

Y

Y

Y

Z

Z
Z

X

X
X

Y

Y

Y

Z

Z
Z

Figure 2.2: Top three cases: X and Y are dependent conditioned on Z. Bottom three cases:
X and Y are independent. An observed node is shaded, unobserved nodes are transparent. All
statements are conditioned on the observed variables.

variables that are not evidence or event variables. Performance strongly depends on the ordering
of the variables that need to be integrated out and the structure of the network itself. Exact
inference is computationally expensive, and in the Bayesian networks community, it is often
replaced by approximate inference methods, which can handle large models much better. Belief
propagation is an approach in which messages are passed between the vertices of an auxiliary
graph until they ‘agree’ on a solution. Another approach is the use of Markov Chain Monte Carlo
methods which will be described in Section 2.3.

2.2.2 Undirected models

Undirected graphical models are a related type of model, in which the edges in the graphical
representation are not directed, thus making the dependencies between variables bidirectional.
These approaches are commonly known as Markov Networks or Markov Random Fields [KSS80].
The joint density cannot be factorized using Equation ( 2.1.2); instead, the graph is partitioned
up into a set of cliques C. The joint density is represented as
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P (X1, ..., Xn) =
1

Z

∏
c∈C

Φc(Xc),

where Φc is a potential associated with clique c and Xc ⊂ {X1, ..., Xn} is the set of vertices
in the clique. The normalizing constant Z is called the partition function and guarantees that the
joint density is a valid probability distribution.

2.3 Markov Chain Monte Carlo

Originally introduced in the context of particle physics in the 1940s, Monte Carlo methods have
become widely used in many fields, including machine learning. Here, we will introduce Markov

Chain Monte Carlo (MCMC), an approximate inference method for graphical models. A Markov

chain is a random process consisting of a collection of states with fixed probabilities of moving
between any two given states. Additionally, such a process has the Markov property, i.e. the
conditional probability distribution of future states depends only on the current state. A transition

model (also called transition kernel) specifies the probability of moving from one state to another
for all possible state pairs. A random walk on a Markov chain is a process that starts at an initial
state, and then at each step the transition model chooses a new state. The Markov chain is
constructed in such a way that a random walk is guaranteed to reach an equilibrium distribution,
which means that there is steady probability for being in any particular state. The chain is said
to have converged at this point. The reader is referred to [GGRS96] for a rigorous mathematical
definition of these concepts.

In the case of a directed graphical model, an MCMC algorithm performs a random walk over
the state space, designed so that the visited states allow us to infer an answer to the query at
hand. One state of the Markov chain is associated with an assignment to all variables in the
model. One step of the random walk is therefore equivalent to assigning a new value to the
variables that do not have the same value as in the previous step. Collecting the assignment
to each variable for every step of the random walk will result in a vector of values for each
variable of the model. From the collected data points we can compute a density estimate of the
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underlying probability density. If the chain has converged, the density estimate is equivalent to
the equilibrium distribution and, as the Markov chain was constructed for that purpose, to the
posterior distribution of the query.

It turns out that it is straightforward to design a Markov chain which we can use to answer
queries to the graphical model. Often, constructing a Markov chain that theoretically converges
to the correct posterior distribution is not the hard part.

First, there is the problem of monitoring convergence which is guaranteed only in the limit.
One reason for slow convergence can be that the state space is traversed inefficiently. For exam-
ple, if a step of the random walk only changes one of many model variables, the chain has to take
many steps until it has visited all states enough times for us to be confident that we have reached
the equilibrium distribution. The initial state can be another reason for slow convergence, even
though theoretically the starting point of the random walk does not matter. Yet another situation
that leads to slow convergence is when it is computationally expensive to sample a next state from
the transition model. There is no deterministic method for determining convergence. However,
various convergence diagnostics have been proposed to help decide when a chain has converged.
The period of the random walk until we reached convergence is called burn-in period. We are not
collecting samples from the random walk during burn-in as they are not drawn from the posterior
distribution (i.e. the equilibrium distribution).

Second, once the chain is burned-in and we are collecting samples from the desired posterior
distribution, we have to decide how many samples need to be collected. The density estimate that
is constructed from the collected samples should be a good approximation of the real posterior
distribution. Once again, there are only diagnostic metrics that are at our disposal to decide
how many samples to collect. Due to the randomness of algorithm, every inference run for the
same query will yield a different result. This is in fact an advantage because it allows us to
execute multiple random walks and ‘by comparing the convergence between chains’ improve
our confidence in the results.

We make use of two Markov chains in this thesis. In Chapter 4 we propose a chain that
uses the Gibbs distribution as transition model, and in Chapter 5 we describe a chain based on a
Metropolis Hastings algorithm.
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Chapter 3

Probabilistic relational models

In this chapter we discuss the Directed Acyclic Entity-Relationship (DAPER) model in detail.
Originally introduced by Heckerman et al. [HMK04], the DAPER model is semantically equiv-
alent to the Probabilistic Relational Model (PRM).

In Section 2.2.1 we described Bayesian networks, which capture the conditional independen-
cies between a set of variables. One instantiation of this set, which is a vector of data points,
corresponds to one observation in the data. If we consider that observations are independent, a
common assumption as discussed in the introduction, there are tractable inference algorithms for
queries. Another limitation of Bayesian networks is that the length of one observation vector is
fixed beforehand, thus it is not possible to model domains where we might have observations
of varying vector length. For example in the case of the Bayesian network in Figure 2.1 that
models the success of a student, instead of one teacher, the student might have a varying number
of teachers that all influence her success.

A PRM is the extension of Bayesian networks for relational domains. The independence
assumption is weakened by introducing probabilistic dependencies between data points or vari-
ables in different observations. Variables are considered to be instantiations of a variable class,
and the probabilistic dependencies are defined between variable classes rather than on the level
of instantiations. A PRM model is defined by a relational structure consisting of classes and at-
tributes (Section 3.1), on top of which a probabilistic structure defines the dependencies between
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State

Donation

Category

Income

ContributorRecipient

Democratic

Democratic

Democratic

Amount

Figure 3.1: The DAPER model for the political contributions domain. The constraints C of the
dependencies are not displayed for simplicity

elements of the relational structure (Section 3.2). Inference in PRMs is challenging, the most
common approach is to transform the problem to that of inference in a traditional Bayesian net-
work. This process is called ‘unrolling’ a ground Bayesian network (Section 3.5.2) and involves
an auxiliary aggregation step described in Section 3.3. The problem of parameter learning from
data is described in Section 3.4. Finally, in Section 3.5 we introduce the basic ideas behind doing
inference and how the existing approaches tackle this challenge.

3.1 Relational structure

In database design, the entity-relationship model is a representation of the structure of a data
set, and the DAPER framework (which is the basis of our work) is very closely related to this
model. It consists of a set of entities E ∈ E , where E represents a class of objects, a set of
relationships R ∈ R, where R links a set of entity classes R(E1, ..., En) and a set of attributes

A ∈ A, where each attribute A is associated with a class X ∈ X ≡ E ∪ R. We denote A(X)

as the set of attributes associated with X . A DAPER model can be represented graphically by
using rectangles to represent entities, diamonds to represent relations and ellipses to represent
attributes; we use dashed lines to connect entities to relationships and attributes. An example



3.2. PROBABILISTIC STRUCTURE 15

(which we discuss in detail later) is shown in Figure 3.1.

Every entity E ∈ E and every relationship R ∈ R contains a set of objects that are instantia-
tions of that specific class; we refer to these sets as entity sets and relationship sets respectively.
We denote by σER the set that contains all objects in our data set (also called the skeleton), by
σE and σR the sets of all entity objects and all relation objects, and by σER(X) the set of objects
in X ∈ X . Every object x ∈ σER(X) is associated with a set of attributes A(x). We use x.A
to denote an attribute of object x and X.A to denote an attribute class associated with class X .
Each x.A ∈ A(σER) has a domain V(A) of possible values. Finally, an instance of an entity-
relationship model, IERA, consists of a skeleton σER where for each x ∈ σER and A ∈ A(x),
x.A is assigned a valid value in V(A).

Making the connection to a relational database, a table corresponds to an entity or relationship
class X ∈ E ∪ R and the rows of the table to the skeleton objects σER(X). The columns of the
table are the set of attributes X.A ∈ A(X) where the entry in row x and column A is denoted
x.A. The relational structure is defined by the foreign keys of the relationship class tables, which
are the set of linked entities R(E1, ..., En).

Example 1. In the political system of the United States, money is an important factor. Recipients

of political contributions are required by law to report details about each donation they receive.

The domain is suitable for modelling using PRMs. Fig. 3.1 contains an example model. The set

of entities is E = {Recipient ,Contributor , State} and the set of relationships R contains the

relationship Donation. The linked entities of Donation are R(Recipient ,Contributor , State)

and every donation object d ∈ σR(Donation) has a attribute object d.Amount .

3.2 Probabilistic structure

All attributes A ∈ A(E ∪R) are random variables that can depend on each other. Recall that the
probabilistic structure defines a set of parents for each attribute object x.A, denoted pa(X.A).
A conditional probability distribution is defined for each attribute X.A ∈ A(X ). This local
distribution class - P (X.A | pa(X.A)) - is shared by every object of that attribute class x.A ∈
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A(σER(X)). Graphically, probabilistic dependencies among the attributes A(X ) are specified
by solid arrows.

Finally, given an entity-relationship model with probabilistic dependencies and a skeleton
σER, a DAPER model D defines a joint probability distribution:

P (IERA | D, σER) =
∏

x.A∈A(σER)

P (x.A | pa(x.A))

=
∏

X∈E∪R

∏
x∈σER(X)

∏
A∈A(x)

P (x.A | pa(x.A)) (3.2.1)

Example 2. In the political contribution domain there is a probabilistic dependency between the

a = Amount attribute of the Donation relationship and the cat = Category attribute associated

with the Contributor entity. Similar dependencies exist for demrec = Recipient .Democratic,

demstate = State.Democratic and inc = State.Income. Thus the shared local distribution of

the amount is P (a | cat , demrec, demstate , inc).

3.3 Constraints and aggregation

When a probabilistic dependency is not intra-class, i.e. the parent and child attribute are not
within the same entity or relationship class, then it is the relational structure that defines which
attribute objects are “connected”. Friedman et al. [FGKP99] define a slot chain, which specifies
the parents of a given child attribute object. In the context of relational databases, this leads to an
expression in terms of the primary keys of the entity/relationship classes that connect the parent
and child attribute. In the context of a DAPER model, Heckerman et al. [HMK04] associate
a constraint CAB with each dependency. The notion of a constraint is a generalization of what
[FGKP99] refers to as slot chain, and can be seen as a first-order expression that defines a subset
of σER(X.A)×σER(Y.B) for which the probabilistic dependency is active. Note that a constraint
is more expressive than a slot chain as there can be multiple paths connecting two attributes; a
slot chain is limited to one path.
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Example 3. The constraint CAmount,Category will activate the dependency only between Contributor

objects for which the Donation object is intended (contributor [Category ] = contributor [Amount ]).

It is possible for an attribute instance x.A to have multiple parents for a given dependency.
The local distribution is shared among all objects of attribute X.A; i.e. there is only one param-
eter for a given parent attribute. However, this renders the conditional probability for an object
with multiple parents ill-defined. Aggregation [ZP96] is an approach to this problem based on
the idea that the value of the child node can be computed as a function of the values of the parent
nodes, whose computation does not require knowing the number of parents in advance. If the
constraint CAB of a dependency X.A ← Y.B applied to x.A returns a multiset {y.B}, then the
function γ : {y.B} → y.Bγ returns a single-valued summary of the multiset. γ({y.B}) can be
any function that does not depend on the actual number of elements in the set, e.g. the average,
mean, mode, min, max, logical “and” (for binary variables) etc.

In Section 5.2 we introduce Expectation Aggregation, a novel approach to aggregation. We
calculate an expected conditional probability distribution which depends on the distributions of
the parent objects themselves, rather than their value. With this approach, the local distribution
of an attribute object x.A is always well defined.

3.4 Learning

In general, neither the local distributions nor the actual probabilistic dependencies are readily
available. In a fixed world there is no uncertainty about the relational skeleton. If all variables
have been observed, i.e. there are no latent variables and no missing data, the parameters can be
learned using a simple maximum likelihood estimation (MLE). The likelihood of the PRM model
is the probability of data given the model parameters D as function of D, denoted by L(D, σER |
IERA) = P (IERA | D, σER). By maximizing the likelihood we compute the parameters that best
explain the data according to our model. The likelihood function is equivalent to Eq. 3.2.1, thus
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the MLE is conveniently computed using the log likelihood

l(D, σER | IERA) = logP (IERA | D, σER) (3.4.1)

=
∑

X∈E∪R

∑
x∈σER(X)

∑
A∈A(x)

logP (x.A | pa(x.A)) (3.4.2)

Alternatively, one could also employ Bayesian parameter learning. A prior is associated with
each parameter, which avoids overfitting and also smooths irregularities in the training data. We
refer the reader to [GT07, page 164] for more details.

If there are missing data and/or latent variables, we need to make use of an expectation
maximization (EM) algorithm to learn the parameters of the missing data. EM is a hard problem
in large relational domains. In Chapter 5 we present an inference method for a specific kind
of missing data called reference uncertainty. It applies when the constraint of a probabilistic
dependency is unknown, and thus all child attribute objects depend on all parent attribute objects.
One of the advantages of our approach is that the learning of the parameters remains unchanged
because we incorporate the uncertainty into the probabilistic model itself. If the probabilistic
structure is not known, learning a model becomes a very challenging problem. In addition to
having to learn which attributes depend on each other, the constraints of the dependencies would
have to be learned as well.

The software package that we will present in Chapter 6 is using the MLE method. It is worth
noting that the MLE method is very easy to implement using a relational database, because the
number of objects with a certain configuration can usually be computed with a single database
query. We further restrict the complexity of the problem by considering only discrete variables.
However, it would be easy to extend the software for other cases.

3.5 Inference

Like in Bayesian networks, probabilistic inference in PRMs can be viewed as a process by which
influence flows through the network. But instead of constraining that flow to be between the ran-
dom variables of one instance, like in Bayesian networks, PRMs allow flow between interrelated
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objects as well. In this section we describe how inference can be done in PRMs. First we will
define what a query is in Section 3.5.1. Most previous approaches to query answering make use
of the concept of a ground Bayesian network, described in Section 3.5.2. However, this is not
the case for all previous work; we briefly describe other approaches in Section 3.5.3.

3.5.1 Querying

Given a modelD, a query Q = (Y,E) is defined by a set of event variables Y ⊆ A(σER) and a set
of evidence variables E ⊆ A(σER). The set of all classes in the query is Q〈X 〉 = Y〈X 〉 ∪ E〈X 〉
and the sets of all objects of a class X ∈ Q〈X 〉 in the event and the evidence are denoted,
respectively, by Y(X) and E(X). Finally, Y(X.A) designates the set {x.A} ⊆ Y(X) associated
with the same attribute class X.A. The goal is to infer the posterior P (Y | E).

Example 4. In the political contribution domain, we might be interested in predicting the po-

litical affiliation of a recipient based on the information about the donations, the contributors

and the state information. The query Q would consist of Y = {Recipient .Democratici}, where

i references the Recipient object of a specific politician and the evidence E would contain all

information about the donations, the contributors and the states.

3.5.2 Ground Bayesian networks

An unrolling process can be used to generate a “ground” Bayesian network. A node is created
for every attribute instance of every object x.A ∈ A(σER). Then an arc is added to every pair
x.A and y.B, y.B ∈ A(σER), if X.A ∈ pa(Y.B) and if x.A and y.B satisfy the constraint CAB.
The resulting directed acyclic graph (DAG) is called the ground Bayesian network (GBN).

A query can be answered in a Bayesian network by taking into account only the subgraph
that contains all event nodes and is d-separated from the full GBN given the evidence nodes. The
d-separated ground Bayesian network generated by the unrolling process for query Q should
therefore satisfy
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(GBNd-sep ⊥⊥ GBNfull) | E, (3.5.1)

where GBNfull refers to the ground Bayes net induced by the full model. In the following we
refer to GBNd-sep simply as ground Bayesian network.

For traditional BNs there exist algorithms for determining d-separation - e.g. Bayes-Ball,
proposed by [Sha98] and described in detail by [KF09, page 75]. When using PRMs, the struc-
ture of the GBN is stored in a first-order representation rather than explicitly, therefore a different
approach is needed. We will describe a recursive algorithm, similar to the First-order Bayes-ball
algorithm by [MTB10], that constructs a partial ground Bayesian network on an ‘as needed’ ba-
sis. The algorithm follows directly from the principles of d-separation and does not introduce
any novel ideas, but to our knowledge it has not been described in detail in the literature so
far. Starting off with the set of event variables Y, the parents and children are iteratively loaded
subject to the rules that open/break a probabilistic path in the graph according to Fig. 2.2.

Algorithm 1 implements this approach. The GBN initialized on line 5 has three vertex types:
event, latent and evidence vertices. The queue on line 6 is a dictionary whose “pop()” method
returns a vector v of vertices of the same attribute class. Thus, instead of inserting vertices
individually, we load all attribute objects of the same attribute class with just one call, because
the data is stored in a relational database. In lines 7-10, all event variables are added to theGBN ;
the goal is to find a posterior distribution over these variables.

On line 6 of Algorithm 2, if p is not in the evidence E, the parents and children of p will also
inform the posterior. For the children however, line 14 of Algorithm 1, if v is in the evidence
E, the children will not inform the posterior and therefore can be ignored. Eventually, either the
evidence variables E will break all paths, at which point the partial GBN will be d-separated; or
all attribute objects have been added and inference has to be done on the complete GBN. As the
probabilistic dependencies are usually between attributes of different classes, the structure of the
resulting GBN depends on the relational model. Examples of resulting GBNs can be found in
Figure 3.2. Finally, the GBN induced by a query Q will consist of the evidence nodes in E whose
values are fixed to the observed values; all other nodes S = A(GBN)\{E} are not observed and
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Algorithm 1 Unrolling the GBN
1: Input:
2: Y : Set of event attribute objects
3: E : Set of evidence attribute objects
4:
5: Initialize empty GBN
6: Initialize Queue
7: for y ∈ Y do
8: GBN.event← GBN.event ∪ y
9: Queue.put(y)

10: end for
11: while Queue 6= ∅ do
12: v← Queue.pop()
13: Add Parents(v)
14: if v /∈ E then
15: Add Children(v)
16: end if
17: end while

Algorithm 2 Add Parents(v)

1: for dep ∈ {Dep | v Is Child} do
2: Parents(v)← QueryDatabase()
3: for p ∈ Parents(v) do
4: if p /∈ GBN then
5: if p /∈ E then
6: GBN.latent← GBN.latent ∪ p
7: Queue← Queue ∪ p
8: else
9: GBN.evidence← GBN.evidence ∪ p

10: end if
11: end if
12: GBN.edges← GBN.edges ∪ ‘p→ v‘
13: end for
14: end for
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Algorithm 3 Add Children(v)

1: for dep ∈ {Dep | v Is Parent} do
2: Children(v)← QueryDatabase()
3: for c ∈ Children(v) do
4: if c /∈ GBN then
5: if c /∈ E then
6: GBN.latent← GBN.latent ∪ c
7: else
8: GBN.evidence← GBN.evidence ∪ c
9: end if

10: Queue← Queue ∪ c
11: end if
12: GBN.edges← GBN.edges ∪ ‘v→ c‘
13: end for
14: end for

therefore must be inferred.

3.5.3 Related work

In directed models such as PRMs, much of the existing work involves constructing a ground

Bayesian network (GBN) and performing inference in this model. This is similar to translating
first-order formulae into propositional ones; hence, it is easy to see that the network generated can
be very large, making inference very expensive. Recent work (e.g. Milch et al., 2008, Kisynski
& Poole, 2009) has proposed algorithms for exact inference in lifted (i.e. non-grounded) models
using aggregation. In this case, aggregation is used to avoid creating the ground Bayesian net-
work for as long as possible. Structured variable elimination introduced by Pfeffer et al. [PK00]
is an extension of the original variable elimination method [ZP96] to the relational domain.

In the setting of undirected models, Taskar et al. extended Markov Networks to the relational
domains by introducing the Relational Markov Network [TAK02]. Another related approach
that was recently introduced is Markov Logic [RD06], presented by Richardson and Domingos.
Markov Logic aims to combine Markov Networks with first-order logic, allowing inference over
first-order formulae. Undirected models such as Markov Logic or Relational Markov Networks
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(a) A simple 1:n (A-C) and n:1 (A-D) relation-
ship

(b) A m:n relationship

(c) Two linked relationships (C-A-D) (d) A larger GBN based on a more complex
query

Figure 3.2: The structure of the resulting ground Bayesian network for different probabilistic
relationships
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have the advantage that influence can flow in both directions; the drawback is increased complex-
ity during learning and inference. We refer the reader to [GT07] for a deeper treatise of these
topics.
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Chapter 4

Approximate inference

In large domains, exact inference quickly becomes intractable and approximate inference is nec-
essary. In this section we describe an approximate inference method for a fixed world scenario.
That is, it is assumed that there is no uncertainty about the relational structure, and that there
is a well defined DAPER model and that the parameters are already known and fixed. Given a
query, we first construct the ground Bayesian network as described in Section 3.5.2. Then we
use a Gibbs sampling method for approximate inference that makes use of the inherent structure
induced by the relational skeleton in order to increase efficiency. We call this algorithm Lazy
Aggregation Block Gibbs (LABG).

We proceed as follows: In Section 4.1 we derive the Gibbs sampling distribution for the GBN,
in Section 4.2 we describe the LABG algorithm that makes efficient use of transition kernels and
in Section 4.3 we present results on both artificial and real datasets.

4.1 Gibbs distribution for the ground Bayesian network

The underlying independence assumptions in Bayesian networks make Gibbs sampling a natural
choice. It is well known that in a Bayesian network, samples from the proposal distribution for
a variable Xi can be computed based only on the assignment of x(−i) to the Markov blanket of
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Xi [Pea88]; as a result, samples can be repeatedly drawn for all variables, generating in the end
true samples from the desired conditional distribution (see section 2.3). We now describe how to
leverage the structure of the GBN to reduce the computational complexity.

All sampling nodes in the GBN are associated with attribute objects x.Ai ∈ S and all x.Ai ∈
S(X.A) for some X ∈ S〈X 〉 share the same local distribution P (X.A | pa(X.A)). Each x.Ai
can have a varying number of parents and children, therefore the full conditional distribution is
Pφ(x.Ai | x.A(−i)), where x.A(−i) is an assignment to A(σER) \ {x.Ai}.

Let C = x.Ai ∪ Children(x.Ai); then:

Pφ(x.Ai | x.A(−i)) =
P (x.Ai, x.A(−i))∑
x.Ai

P (x.Ai, x.A(−i))
(4.1.1)

=

∏
x.A∈A(σER) P (x.A | pa(x.A))∑

x.Ai

∏
x.A∈A(σER) P (x.A | pa(x.A))

=

∏
x.A∈C P (x.A | pa(x.A))

∏
x.A/∈C P (x.A | pa(x.A))∑

x.Ai

∏
x.A∈C P (x.A | pa(x.A))

∏
x.A/∈C P (x.A | pa(x.A))

∝ P (x.Ai | pa(x.Ai))
∏

y.B∈Children(x.Ai)

P (y.B | pa(y.B))

The contribution of each child y.B is therefore the likelihoodL(x.Ai | y.B,pa(y.B)\{x.Ai}).
As x.Ai is in pa(y.B) for each y.B, the influence is flowing ‘upwards’ without the need for ag-
gregation. Furthermore, if pa(y.B)\{x.Ai} 6= ∅ (e.g. y.B has other parents besides x.Ai) there
will also be influence flowing through the resulting V-structure. The other contribution to Pφ is
the factor P (x.Ai | pa(x.Ai)) which is influence flowing ‘downwards’, in aggregated form if
necessary.

In general, if the number of parent attribute classes of any x.A is smaller than the number of
parent attribute objects, there is at least one parent attribute class for which aggregation has to be
performed, because the shared local distribution constrains each parent to be single-valued. On
the other hand, influence from child to parent is not aggregated since the above equation contains
a product of the likelihoods of all children nodes.
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4.2 Block sampling algorithm

This observation allows for “lazy” computation of aggregations. Algorithm 4 presents our ap-
proach. The sampling nodes S are partitioned into blocks, where each block contains all attribute
objects of the same attribute class X.A. Then an attribute class is randomly selected with prob-
ability proportional to the size of its block to ensure that each attribute object is equally likely
to be sampled. After selecting a sampling attribute class, only attribute objects of that type will
be sampled in that step. In the LazyAggregation() step we precompute all aggregation values
of parent attributes for which two attribute objects x.Ai, x.Aj ∈ S(X.A) are conditionally inde-
pendent. This is the case for all parent attributes pa(X.A) since (x.Ai ⊥⊥ x.Aj) | pa(X.A) as
well as for the parents pa(Y.B)\X.A of the children attribute objects y.B except for X.A itself.
In this case, because x.Ai and x.Aj would not be mutually independent given a common child
attribute object, the aggregation is computed in the Aggregation() step.

Algorithm 4 generates a Gibbs trajectory guaranteed to converge to P (S | E) if the PRM
model satisfies the standard constraints defined by [Get00]. The desired marginal posterior P (Y |
E) can be found by summing over the latent variables S\{Y} since Y ⊆ S.

4.3 Experiments

The algorithm we presented only samples new values for a subset of all sampling variables during
a Gibbs step. In order to compare convergence and performance properties, we compare LABG
against two other samplers. The Lazy Aggregation Standard Gibbs (LASG) sampler makes use
of the GBN structure when computing aggregate values, but samples all inference variables in S.
We also use a traditional Gibbs sampler that does not make use of the GBN structure and thus
recomputes aggregations redundantly.
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Algorithm 4 Lazy Aggregation Block Gibbs (LABG)
Input:
Query Q = (Y,E)
Number of samples N

S← Unroll GBN for Q
Pφ← Compute Full Conditional for x.A ∈ S
s(0)← Sample initial state
for t = 1 to N do
s(t)← s(t−1)

X.A← Select attribute class in A(S)
LazyAggregation(X.A) , if necessary
for all x.A ∈ S(X.A) do

Aggregation(x.A) , if necessary
s(t)〈x.A〉 ← Sample Pφ(x.A)

end for
end for
P (S | E)← Density Estimate of {s(0),...,s(N)}
P (Y | E)←Marginalize S\{Y} from P (S | E)
return P (Y | E)
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A0 A1

0.29 0.71

D0 D1

A0 0.34 0.66

A1 0.6 0.4

C0 C1

A0 0.27 0.73

A1 0.42 0.58

B0 B1

A0 0.59 0.41

A1 0.31 0.69

Table 4.1: The local distributions for P (A.a), P (D.a | A.a), P (C.a | A.a), P (B.a | A.a)

4.3.1 Artificial dataset

To illustrate the computational performance of our algorithm, we use an artificial data set whose
associated relational and probabilistic model are depicted in Fig. 4.1; the local distributions are
given in Table 4.1. The set of entities and relationship classes are E = {A,B,C,D} and R =

{AB,AC,AD} respectively and all attribute classes are Bernoulli distributed. The model is
designed to cover the set of possible basic configurations, namely one 1:n relationship (A→ C),
one n:1 relationship (A → D) and one m:n relationship (A → B). The constraint C for all
dependencies is the traditional slot chain, e.g. A.a[A] = A.a[AB], B.a[AB] = B.a[B] for the
dependency A.a→ B.a. Where necessary, the aggregation function used is the average. We are
assessing the quality of the posterior (besides checking the convergence) by performing a simple
classification query P (A.a | B.A,C.A,D.A) for 19 query variables of attribute class A.a. The
unrolled GBN is of moderate size with 19 sampling nodes and a total of 526 nodes. Figure 4.2
shows the cumulative mean of the LABG algorithm. Convergence was fast; we used a burn-in of
100 samples and then collected 200 samples from three parallel Gibbs trajectories. This proved
sufficient to classify 17 out of the 19 variables correctly using a simple MAP estimate.

The model presented above allows a meaningful comparison of the proposed inference meth-
ods both in terms of convergence as well as performance. The query selected to ensure that the
structure of the GBN is the same for all experiments performs inference on one attribute object
Y = {A.a1} given all attribute objects E = {C.ai}. The structure induced by the 1:n dependency
(A → C) is Naive Bayes since the nodes of class C can only have one parent which is already
in the event set. Every child node of class D of the n:1 dependency (A→ D) can have multiple
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D C

A

AD AC

D.a C.a

A.a

AB

B

B.a

Tuesday, June 8, 2010

Figure 4.1: A DAPER model based on the artificial dataset

Figure 4.2: Inference on 19 A.a attribute objects shows solid convergence
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Table size

A 100

B 50

C 2000

D 500

AB 200

Table size

A 500

B 10

C 10000

D 50

AB 1000

Table 4.2: A small and a large instance of artificial datasets generated using the same local
distributions (Table 4.1)

parents in A, and since neither A or D are in the evidence, all loaded nodes of type A and D will
be sampling nodes. Hence, the lazy construction of the GBN will also load all the children nodes
C of the A nodes that have already been loaded as parents of D. The same recursive mechanism
loads nodes of type B as well. The resulting GBN will quickly grow in size and it will contain
many children of type B and D with multiple parents in A. This type of query is well suited for
the proposed Lazy Aggregation method.

To assess the convergence properties, three parallel Gibbs trajectories were run for both
LABG and LASG. As the LABG algorithm samples only the variables of one randomly selected
attribute class during one Gibbs step, the auto-covariance of the posterior samples is larger than
when using LASG. This in turn leads to a slower traversal of the posterior probability mass be-
cause only one variable is sampled at each step. Hence, the LABG algorithm needs more samples
to approximate the posterior. These effects are illustrated in Figures 4.3 and 4.4: LABG needs
around 700 samples for convergence whereas LASG converges after around 400 samples. LASG
also displays a lower inter-chain variance, because it is more ‘guided’ than LABG. These effects
can be seen in Figure 4.5, which shows two chains respectively of LABG and LASG.

The Lazy Aggregation algorithm makes use of the GBN structure while the Block Gibbs
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Figure 4.3: Convergence plot of three parallel chains for the Lazy Aggregation Block Gibbs
sampler

Figure 4.4: Convergence plot of three parallel chains for the Lazy Aggregation Standard Gibbs
sampler
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Figure 4.5: Comparison of convergence between the LABG (Block Gibbs) and LASG (Standard
Gibbs) samplers. Note that the limit of the y-axis has been changed to allow greater detail in the
plot

algorithm is a compromise in regards to convergence speed and precision. Both mechanisms
are increasing the computational efficiency of the LABG algorithm (Figure 4.6): the former by
minimizing the number of aggregations that need to be computed, and the latter by sampling
fewer variables. This tradeoff seems to pay off, as LABG is about three times faster than LASG,
but convergence only takes roughly twice as many samples. Furthermore, Lazy Aggregation

seems to have a greater effect when the size of the GBN increases, which confirms that we avoid
more computation if we have more nodes that share the same children. We conclude that the
proposed algorithm scales well with larger queries or when increasing the data set.

Thus the compromise between speed and accuracy is flexible and the algorithm can be
adapted depending on the precision needed for the inferential goals.
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Figure 4.6: For both the big and small artificial dataset, a comparison of the average time needed
to compute one Gibbs step for the three discussed Gibbs samplers.

4.3.2 Political contributions

In the United States, running a political campaign to be elected into Congress is an expensive
endeavour. The amount of money at the disposal of a candidate is an important factor in a
successful campaign. Recognizing this influence and the problems that come with it - corrupt
lobbying, vested corporate interests - the recipient of a political contribution is required by law
to report the donation. As a consequence of the recent trend towards government transparency
and data digitalization, this data is now publicly available for bulk download1 .

In order to model the data with a PRM, we considered a subset of the data, consisting of
the federal contributions for the cycle 2007-2008. The recipients are either individuals running
for Congress (House or Senate), Political Action Committees (PACs) or presidential candidates
(Barack Obama, John McCain). To ensure statistical relevance, only recipients who received
more than 1000 contributions are included in the model. The political affiliation of candidates
for Congress is easily available. PACs on the other hand usually redistribute their donations to

1http://www.transparencydata.com/

http://www.transparencydata.com/
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candidates of both parties, which makes it harder to determine their affiliation. Each contributor
is associated with a name, the US state where the donation was made, and an industry category
(e.g. Oil & Gas, Gun Rights, Retired). The size of the dataset and the cardinality of the attributes
are displayed in Table 4.3. We augmented the data with information about the contributor state: a
binary variable indicating the income level (above or below the US average) and a binary variable
for the political affiliation of the state based on the outcome of the previous presidential election.

Class Size

Recipient 430

State 50

Donation ∼ 2300000

Contributor ∼ 2300000

Attribute Cardinality

Category 115

Recipient.Democratic 2

Amount 6

Income 2

State.Democratic 2

Table 4.3: The number of objects in the entities and relationships of the PRM and the cardinality
of the attributes

The query from Example 4 attempts to predict the political affiliation based on the donation,
contributor and state information. As mentioned above, there is no clear ground truth available
for PACs. To examine the quality of the model, we split the data about the individual recipients
in a training and test set. The test set contains 30 democratic and 30 republican individual
candidates for Congress, randomly selected; the model is trained using the contributions for the
remaining 370 recipients. To compute the accuracy of the learned PRM, the proposed inference
method (Algorithm 4) is run for each recipient in the test set. The structure of the GBN is
different for each query. The number of nodes in a specific GBN depends on the number of
contributions the recipient has received. The size of the resulting GBNs and the performance of
the algorithm is presented in Table 4.4.
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Figure 4.7: The model making use of the information about the state of the contributor is per-
forming better (80%) than the bare model only making use of the industry category of the con-
tributor (74%)

GBN Size (nodes)

Min 2045

Max 23201

Average 4482

Running Time (s)

Average Min Max

Unrolling GBN 235 209 303

Gibbs Sampling 4.8 2.8 13.3

Table 4.4: Statistics about the size of the GBNs and the running time of the algorithm

Fig. 4.7 shows the accuracy of the augmented model compared to a simplified model that
did not make use of the additional information about the State. The inclusion of the additional
information increases the quality of the model. Among the 12 recipients that were classified in-
correctly, nine are Democrats and three are Republicans. To gain more insight into the results, we
also examine the log-likelihood information. Specifically, we are interested in the log-likelihood
of the individual recipients, which can be computed from the Markov blanket of the recipient



4.3. EXPERIMENTS 37

Figure 4.8: A scatter plot of the size of the Markov blanket and the log likelihood of the recipient.
The red and blue colours indicate republican and democratic affiliations respectively. A circle
means the recipient has been correctly classified whereas a diamond indicates a misclassification.

object. As the number of nodes in the Markov blanket depends on the number of donations a
recipient receives, the log-likelihood values of the individual recipients cannot be compared di-
rectly. Fig. 4.8 illustrates this correlation; we note that most misclassifications are found in the
top-left region where the log-likelihood is high and the number of donations low. By “normaliz-
ing” the log-likelihood by the number of nodes in the Markov blanket, we obtain scaled values for
each recipient, which are more directly comparable. In Fig. 4.9 the model’s struggle with demo-
cratic recipients becomes apparent; even though the mean is almost the same (dem = −2.57,
rep = −2.58), the variance of the scaled likelihood is larger (dem = 0.041, rep = 0.015) for the
democratic recipients. We conclude that the pattern of contributions of democratic recipients is
more complex to model than for republican contributions.
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Figure 4.9: The ratio between the log-likelihood and the size of the Markov blanket allow for a
direct comparison of recipients. The mean of the democratic and republican recipients is similar,
but the democratic recipients display a higher variance.



39

Chapter 5

Reference uncertainty

When the relational structure is given, learning and inference in such models is quite straight-
forward. However, in real data (e.g. analysis of publication corpuses, social networks, or video
information) the relational structure may not be known precisely ahead of time. Two types of
uncertainty in the relational structure may arise. Reference uncertainty means that the objects
of a relationship class may be uncertain. For example, when receiving a paper for blind review,
one does not know the author of the paper (and may attempt to infer it from the paper title or
abstract). Identity uncertainty refers to the fact that some data items may correspond to a single
object, or multiple objects may actually be one and the same. This type of aliasing happens,
for instance, when two authors have the same last name and initial, but they are indeed distinct
people.

In this chapter, we focus on reference uncertainty in Probabilistic Relational Models, and
propose a way to model it, which is flexible, has very clear semantics and leads to efficient ap-
proximate inference. We build on top of the DAPER model described in chapter 3. The DAPER
model is augmented with binary “exist” variables, which can be constrained to capture known
structure in the domain (e.g. a paper cannot have an arbitrary number of authors). These variables
allow us to still use a traditional model, even in the presence of reference uncertainty. This is in
contrast with the previous approach of Pasula & Russell [PR01], who modify the probabilistic
model structure in order to capture the relational uncertainty; we discuss their previous work in
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section 5.1.

The rest of the chapter is organized as follows. We provide new definitions for the concepts
of a constraint and aggregation in Section 5.2. In Section 5.3 we describe an augmented version
of a DAPER model which captures reference uncertainty. Most importantly, this type of model
allows for an efficient Metropolis-Hastings algorithm, which we will describe in Section 5.4. In
Section 5.5 we present experiments with the proposed model on a student-professor domain, we
show that the model is more expressive than that proposed by Pasula et al., and that inference
can be done efficiently.

5.1 Previous work

Our work is based on a previous approach by Pasula & Russell [PR01]. They present a student-
professor model that depicts an academic dataset in which the success of a student depends on the
the fame of a professor. The constraint specifies that the success of a given student only depends
on the fame of the professor(s) that advise(s) him or her. In addition, the fame of a professor is
also a parent attribute of the funding of the professor (the DAPER version of that model is shown
in Figure 5.3). All attributes are binary variables. They introduce a reference attribute vref ,
which models the possible edges for an uncertain dependency. The CPD of vref.S1 is defined as
P (S.advisor | P1.$$, .., Pn.$$), as seen in Figure 5.1. This distribution depends on the objects
in the relational skeleton σER. Thus, the reference attribute is mixing the relational structure with
the probabilistic structure. However, one of the goals for defining relational probability models
is the separation of these structures. Without it, inference quickly becomes intractable. For this
reason, Pasula et al. are forced to constrain the admissible CPDs to a family of distribution with
certain structural properties. In addition, the model is restricted to uncertain relationships of type
n:1 (a student is advised by only one professor). We propose a different representation which
generalizes the approach by Pasula & Russell, while at the same time adhering to the original
design choices for relational probability models.
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p1.f p2.f p3.fs1.s

p1.$ p2.$ p3.$

refs1

Figure 5.1: The student-professor model with reference uncertainty as proposed by [PR01]

5.2 Expectation aggregation

In the traditional definition of a PRM [Get00], every vertex vx.A of the GBN is associated with
an attributeX.A and they all share the same conditional probability distribution (CPD), P (X.A |
pa(X.A)). Thus it is possible, e.g. if a dependency leads through a relationship of type 1:n,
that the constraint CAB for vx.A returns multiple parent vertices for a particular attribute Y.B ∈
pa(X.A). In section 3.3 we introduced the concepts of constraints and aggregation.

Here we propose a more general approach. When unrolling the network, the CPD for vx.A
is augmented with a set of binary ‘exist’ variables. For every possible parent vertex, vy.B for
y.B ∈ pa(X.A), we associate one ‘exist’ variable ey.B. Its value is set to 1 if there is an edge
between vx.A and vy.B. The CPD of vx.A is given by P (x.A | {ey.B}, {y.B}).

The CPD of a vertex defines a probability distribution over V(x.A) for every possible as-
signment of {ey.B}, {y.B}. Clearly, if only one eiy.B is 1 (all other e(−i)y.B set to 0) for each
Y.B ∈ pa(X.A), then there is a ‘valid’ assignment and the conditional distribution for vx.A
is equivalent to corresponding assignment in P (X.A | pa(X.A)). If more than one ‘exist’ vari-
able per parent is set to 1, aggregation is necessary. We propose a novel aggregation method
called expectation aggregation which is based on the probability of the parent values rather than
on the values themselves.

We define the conditional distributions for parent assignments which require aggregation as
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a linear combination of the shared distribution P (X.A | pa(X.A)). First, consider the simple
case where X.A has only one parent attribute (|pa(X.A)| = 1). Assuming Y.B = pa(X.A),
the CPD of vertex vx.A has 2 ∗ |σER(X)| conditional variables. For each possible conditional
assignment with multiple ‘exist’ variables set to 1, we define the conditional distribution to be:

P (x.A | {ey.B}, {y.B}) =

∑
{ei|ei∈{ey.B},ei=1} P (X.A | Y.B = y.Bi)∑

X.A

∑
{ei|ei∈{ey.B},ei=1} P (X.A | Y.B = y.Bi)

(5.2.1)

e1 e2 e3 P.f1 P.f2 P.f3 s=0 s=1

0 0 1 x x 0 0.8 0.2

0 0 1 x x 1 0.3 0.7

..................... ..................... . .

0 1 0 x 0 0 0.8 0.2

0 1 0 x 1 0 0.3 0.7

..................... ..................... . .

1 0 1 0 x 1 0.55 0.45

..................... ..................... . .

P( S1.s | { ei }, { Pi.f } )  =

f s=0 s=1

0 0.8 0.2

1 0.3 0.7

P( S.s |  P.f)  =

Figure 5.2: The CPD of the S1.sucess vertex in the GBN. Only a few representative rows are
displayed. A x indicates that the conditional distribution is the same independent of that value.
The distribution for the last row (S1 is co-advised by P1 and P3) is computed using Equation
(5.2.1)

In Figure 5.2, the CPD of S1.sucess gives a simple example. The last row defines the distri-
bution over the success of S1 given that he is co-advised by P1 and P3. P1 is famous while P3 is
not. Using Equation (5.2.1), we can compute these probabilities as [0.8+0.3

1.1+0.9
,0.2+0.7
1.1+0.9

].

In the case of two parent attributes pa(X.A) = {Y.B, Z.C}, both parent attributes could
require aggregation. Every possible assignment of the parents vertices is considered by the
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cartesian product of the sets of ‘exist’ variables associated with each parent. The conditional
distribution P (x.A | {ey.B}, {ez.C}, {y.B}, {z.C}) is defined as:

∑
(ei,ej)∈{{ey.B}×{ez.C}|ei,ej=1} P (X.A | Y.B = y.Bi, Z.C = z.Cj)∑

X.A

∑
(ei,ej)∈{{ey.B}×{ez.C}|ei,ej=1} P (X.A | Y.B = y.Bi, , Z.C = z.Cj)

(5.2.2)

Similarly, for n parent attributes, Equation (5.2.2) generalizes to an n-ary cartesian product.
In general, assuming binary attributes, the CPD of a vertex will have 22∗

∑
Y.B∈pa(X.A) |σER(Y.B)|

possible assignments to the conditioning variables. Clearly, this representation would not scale
if it required the CPD to be stored in memory or on disk. However, this is not necessary because
the conditional probability can be computed as a linear combination of the simple shared CPD.
Further, we can exploit the sparsity of the ‘exist’ variables by only storing the edges that actually
exist.

Conceptually, a constraint CAB is equivalent to an assignment to all ‘exist’ variables for a
dependency. This assignment is introduced as part of the evidence E for a given query Q. If
the world is stationary and there is no uncertainty, we are assured that ‘exist’ variables are never
sampled. Finally we point out that the expectation aggregation method eliminates the need for
specifying aggregators, because the CPDs of the GBN vertices are guaranteed to always be well
defined.

5.3 DAPER model with reference uncertainty

In the context of a DAPER model D, reference uncertainty means that the objects σER(Ru) of
a relationship Ru ∈ R are uncertain. It is important to realize that uncertainty refers to the
existence of an object x ∈ σER(Ru), not to the probabilistic attributes A(Ru). If the constraint
CAB of a dependency depends on Ru, the existence of each possible edge between the parents
vertices {vy.B} and the child vertex vx.A is uncertain. Naturally, the notion of ‘exist’ variables
introduced in Section 5.2 can be easily used to model this situation. We append a binaryRu.exist

variable to the set of attributes A(Ru) and we consider an edge to be active if Ru.exist = 1.
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However, note that the ‘exist’ variables do not necessarily correspond to the Ru.exist attribute.
The difference is that the ‘exist’ variables are auxiliary variables representing a possible edge
in the GBN. If the constraint of a dependency is introduced as evidence, thus defining which
edges are active, it is possible that the constraint depends on multiple relationship classes (i.e.
a slotchain of length 2 or more in traditional PRMs). The Ru.exist on the other hand is part
of the probabilistic model, with a set of parents pa(Ru.exist). It still determines the existence
of an edge, but in a probabilistic manner and conditioned only on the Ru.exist attribute of the
uncertain relationship.

Student Prof

success fame

funding

advises
?

exist

c

$ e=0 e=1

0 0.8 0.2

1 0.4 0.6

P( a.e |  P.$)  =

Figure 5.3: The student-professor model with reference uncertainty.

To introduce our approach, we use the student-professor model previously introduced by
Pasula et al. Figure 5.3 displays the DAPER version of the model, the relationship advises is
now uncertain and the exist attribute of an advises object depends on the funding of the professor
associated with the advises object. The state space of this model would grow exponentially with
the number of professors, as every possible assignment to the exist variables has to be considered.
To render this approach tractable, we introduce a deterministic binary constraint c which enforces
certain structural properties. Specifically, c = 1 is always part of the evidence for every query for
which we run inference. The deterministic CPD P (c|{exist}) assigns a probability of 1 to every
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‘allowed’ assignment to the exist variables and a probability of 0 to all others. The unrolled GBN
for the student-professor model in figure 5.4 illustrates the simplest of all possible constraints. It
enforces a n:1 relationship, so that every student is advised by exactly one professor. In general,
we introduce a hyper parameter k, where k is the maximal number of exist vertices that are
allowed to be equal to 1. We denote as n:k the type of the uncertain relationship. This represents
a fixed parameter approach that allows us to set k such that the state space is still tractable for
inference. Naturally, both the exist vertices as well as the constraint c are integrated into the full
joint probability distribution of the model.

p1.f p2.f p3.fs1.s

p1.$ p2.$ p3.$

cs1

e3
s1

e2
s1

e1
s1

e1
s1 e2

s1 e3
s1 c=0 c=1

1 0 0 0 1

0 1 0 0 1

0 0 1 0 1

otherwiseotherwiseotherwise 1 0

P( cs1 |  e1
s1, e1

s1, e1
s1 )  =

Figure 5.4: An example GBN for the student-professor model. The constraint enforces a n:1
relationship, every student is advised by only one professor.

It is important to point out that it is not necessary to store the value of all exist variables.
The domain is very sparse, so there are at most k exist vertices set to 1 at any given point. This
observation allows us to store only the k references necessary to fully describe the state space.
In the next section we describe an MCMC algorithm which allows efficient inference in this
domain.
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5.4 Metropolis-Hastings algorithm

To infer the posterior probability distribution P (Y | E) given a query Q = (Y,E), we resort to
an approximate inference method as the state space is very large. A MCMC algorithm generates
samples from a Markov chain whose stationary distribution is equivalent to the desired posterior
distribution, as described in section 2.3. As described in Section 4.1, in Gibbs sampling the value
for each vertex is sampled from its full conditional distribution Pφ. Let C = vx.A∪Children(vx.A)

and v(−i)x.A = GBN \ vx.A. We denote the full conditional as

Pφ(vx.A | v(−i)x.A ) =
P (vx.A,v

(−i)
x.A )∑

vx.A
P (vx.A,v

(−i)
x.A )

=
∏

v∈GBN P (v|pa(v))∑
vx.A

∏
v∈GBN P (v|pa(v))

=
∏

v∈C P (·|·)
∏

v/∈C P (·|·)∑
vx.A

∏
v∈C P (·|·)

∏
v/∈C P (·|·) ∝ P (vx.A | pa(vx.A))

∏
c∈Children(vx.A) P (c | pa(c)) (5.4.1)

The full conditional of a vertex vx.A only depends on the parents, the children and the chil-
dren’s parents. Thus this transition kernel is local and efficient to compute for all attributes except
the exist variables. Let {vcexist} = {v1exist, .., vnexist} be the set of all exist variables associated
with constraint c. First we note, using Equation (5.4.1), that the full conditional for one exist
vertex,

Pφ(vexist | v(−i)exist) ∝ P (vexist | pa(vexist))P (c | {vcexist})

depends on the deterministic constraint c. As c is a deterministic or-gate, the Markov chain is
thus reducible and the chain would stay in the initial state forever. This could be avoided by
using a transition kernel that block-samples all exist attributes in one step:

Pφ({vcexist} | GBN \ {vcexist}) ∝ P (c | {vcexist})
∏

ve∈{vcexist}

P (ve | pa(ve))

This expression however depends on the value of all exist variables and their parents. Even
with the sparse representation offered by the hyperparameter k, all exist variables need to be
evaluated as their parent assignments cannot be sparsely represented. Clearly, Gibbs sampling is
intractable for the exist attributes.
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Metropolis-Hastings (M-H) offers a transition kernel that relies on a distribution Q(x′ | x)

for proposing a new state x′. The new state is then accepted with probability

α(x′ | x) =
PIERA(x′)Q(x | x′)
PIERA(x)Q(x′ | x)

We introduce the M-H step for exist vertices. The distribution Q({v′exist} | Z), where Z

will be described below, will propose a new assignment to {vexist}. We denote {vchexist} as the
set containing all exist variables that have changed their value and v′x.A the vertex whose exist
variables were affected. The acceptance probability will simplify to the following form:

α(x′ | x) =

P (v′x.A | pa(v′x.A))
∏

v′e∈{vchexist}

P (v′e | pa(v′e))Q({vexist} | Z)

P (vx.A | pa(vx.A))
∏

ve∈{vchexist}

P (ve | pa(ve))Q({v′exist} | Z)
(5.4.2)

As the hyperparameter k limits the number of active exist vertices, the product contains at
most 2k factors. For example, the α for the example in Fig. 5.4, if the reference changes from vje

to vie, is then

α(x′ | x) =
P (S1.s | Pi.f)P (vie = 1 | Pi.$)P (vje = 0 | Pj.$)Q({vexist} | Z)

P (S1.s | Pj.f)P (vie = 0 | Pi.$)P (vje = 1 | Pj.$)Q({v′exist} | Z)

The proposal Q allows us to combine the relational skeleton and the probabilistic structure
in a clean way. Q depends on Z, and we can choose Z to include constraints that depend on the
relational skeleton. For example, we could use the CPD of the reference attribute introduced by
Pasula et al. as a proposal for our sampler. We can still maintain the desired separation between
the relational structure of the data and the probabilistic dependencies because Q is not part of the
joint distribution of the model. In the experiments in Sec. 5.5 we will introduce other examples
of proposal distributions.

One might be under the impression that the network structure changes during inference,
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which could have consequences on the convergence guarantees of the MCMC algorithm. But as
the vertices in the GBN are conceptually dependent on all possible parent vertices (through the
‘exist’ variables described in section 5.2), the network is always well defined and our algorithm
can efficiently exploit the sparsity of the domain.

5.5 Experiments

To test the proposed algorithm, we perform a set of experiments based on the model in Figure 5.3
introduced by Pasula et al. First we show that the proposed inference method converges to
the correct posterior. The GBN (Figure 5.4) consists of three professors and one student. The
hyperparameter is fixed to k = 1, meaning that a student is only advised by one professor. The
goal is to infer the posterior probability of the success of the student given the information about
the professors (funding,fame). We use a uniform proposal distribution. At each M-H step, the
advisor of the student is uniformly chosen among the professors. Figure 5.5 shows that the
posterior converges to the correct posterior value. As expected, the number of samples needed
for convergence grows linearly with the number of professors.

This experiment very closely resembles the model introduced by Pasula et al. However, in
our model, the existence of an advisor relationship depends on the funding of a professor and
this dependency is part of the probabilistic structure (and thus the full joint distribution). In order
to make the two models equivalent, we would have to choose a uniform prior distribution on the
exist attribute; it would have no parents and would thus cancel in Equation (5.4.2). Additionally,
we would choose our proposal Q(X|Z) to be equivalent to the CPD of their reference attribute.
But as the dependency on the relational structure would be in the Z, the probabilistic model
is still well defined and we do not have to introduce restrictions on the CPDs of the model in
order to make inference tractable. Hence, our model provides a generalization of Pasula et al’s
approach.

In the second experiment, we extend the previous model by setting the hyperparameter to
k = 3 and by increasing the number of professors to 20. The query remains the same, but the
student is now co-advised by three professors. We choose a two-step proposal distribution. First
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Figure 5.5: Convergence plot for 5 MCMC chains of the GBN in Figure 5.4, the horizontal line
represents the exact posterior probability

Figure 5.6: Convergence plot with the hyperparameter fixed to k = 3. Even though the data is
generated from the same underlying distributions, the chance of success of a student is higher
because he can be co-advised by 3 professors
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a reference is uniformly chosen among the k references, then it is replaced with a uniformly
chosen professor. As before, Q cancels out when calculating α. In Figure 5.6 we can see that
convergence is still very clear; due to the larger state space convergence is somewhat slower.
We consider two convergence diagnostics to monitor the convergence of our algorithm. The
autocorrelation by [GGRS96] displayed on top of Figure 5.7 provides a normalized estimate that
quantifies to what extend the chains have mixed in l steps. We note that the dependence on
previous samples decreases quickly for both the success as well as the exist variables, although
the latter display a slightly higher autocorrelation. Despite the oscillation, it seems that the
proposed MCMC algorithm is traversing the state space efficiently. This is confirmed by the
Gelman-Rubin diagnostic by [GGRS96], displayed in Figure 5.8, which measures the level of
disagreement between chains. The closer the value is to 1, the higher the agreement.

Figure 5.7: Autocorrelation for lag 1 through 50.
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Figure 5.8: Gelman-Rubin convergence diagnostic, [GGRS96]

5.6 Related work

The problem we addressed is part of the broader category of link mining. [GD05] identifies
several sub-types of link mining, including link prediction (which is our task) and gives examples
of practical applications of such algorithms. [XD05] propose a reconciliation model for citation
analysis that addresses both reference and identity uncertainty. It is based on constructing a
dependency graph, whose edges are weighted by similarities between the vertices they tie. An
iterative graph algorithm is used for inference. The model we propose would apply to the same
type of task but its semantics are better defined.

Comparatively more work has been devoted to identity uncertainty (also known as entity
matching). [SLD05] present a probabilistic, constraint-based approach; while the use of con-
straints is somewhat similar to our approach, their algorithm is more expensive in terms of com-
putation cost. [BG07] propose a “collective” entity resolution scheme, where several articles
(and their link information) are used together to figure out which objects correspond to the same
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entity. This is essentially an inference problem that could be solved in our model; hence, we plan
to extend our work to address such problems in the future.
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Chapter 6

Software

In this chapter we present a framework called ProbReM. This software was implemented as part
of this thesis, and from the start it was designed to be general, modular and easy to extend. It
available as open source package on http://cs.mcgill.ca/˜fkaeli/probrem/. As
this project combined scientific computing, complex data structures and relational databases, we
used python as our programming language of choice. The straightforward nature of python itself
allowed for fast prototyping, while the packages numpy [O+09], scipy [JOP01] offer efficient
scientific libraries and matplotlib [Hun07] is convenient for visualization.

The ProbReM framework allows the specification of a Directed Acyclic Probabilistic Entity
Relationship (DAPER) model in an XML format. At the moment, only discrete variables are
supported. The local distributions, i.e. the conditional probability distributions, can either be
specified by hand or can be learned from data using a maximum likelihood estimate (MLE).
Given a fully specified model, inference can be run using the MCMC algorithms presented in
this thesis. Figure 6.1 shows an overview of the framework and the algorithms involved. Note
that at this point, an expectation maximization (EM) algorithm for latent variables or missing
data has not been implemented yet.

This chapter is organized as follows: Section 6.1 provides an overview of the modeling
workflow when creating new models. In Section 6.2 we describe how the political domain
model used in Chapter 4 can be implemented using ProbReM.

http://cs.mcgill.ca/~fkaeli/probrem/
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Figure 6.1: Overview of the framework structure

6.1 Modelling workflow

The illustration in Figure 6.1 shows the structure between the ProbReM packages and modules.
In this section we will go through the process of designing a new model which we call PRMex-

ample. The different steps have also been separated, as best as possible, in the design of the
software package. This separation guarantees well defined interfaces which allow for easy in-
tegration of future extensions or additions. For example, the unrolling of the ground Bayesian
network should not depend on the type of relational database used. Similarly, the representation
of a conditional probability distribution should be independent of a given inference algorithm.

A ProbReM project is a python script which specifies a valid PRM, defines a data interface
(the connection to a relational database) and configures the algorithms that will be used. For
example, if the local distributions of the model have to be learned from data the script must
define a module which implements a CPDLearner. The script must also configure the inference
engine, which comprises the choice of inference algorithm (e.g. one of the MCMC algorithm
described in the previous chapters). The directory ./ is defined to be the home directory of a
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ProbReM project.

Data

The data itself is stored in a separate relational database, and ProbReM accesses the data using
a data.datainterface which makes the choice of database irrelevant (theoretically). Currently
ProbReM supports the SQLite format which is implemented in data.sqliteinterface.SQLiteDI.
All SQL databases have a very similar flavour, so the extension to other SQL formats is straight
forward but untested. Assuming the data is stored in the database file ./data/database.sqlite, a
data interface specification is defined in XML and saved in the file ./DIexample.xml.

<?xml version="1.0" ?>

<DataInterface name="DIexample">

<Crossvalidation folds=’1’>

<Dataset type=’SQLite’ path=’./data/database.sqlite’/>

</Crossvalidation>

</DataInterface>

This is a simple example where just one data source is specified. It is also possible test the
model using cross validation by specifying multiple data sources, in which case the data has
to be split up on the database level. Otherwise the different folds would have to be accessed
by querying one database which decreases the performance. The documentation of the XML
parser for the data interface xml prm.parser.DataInterfaceParser contains the specifications for
the tags.

The ground Bayesian Network (GBN) is a generic data structure (a graph) that contains the
data necessary to answer a given query. The GBN is stored in propositional form, as opposed
to the first-order representation of the PRM; thus, only the subgraph which d-separates the full
graph given the query is loaded. The network.groundBN module implements this data structure.
The inference engine loads the GBN using the method inference.engine.unrollGBN().

PRM specification

The PRM model itself is also specified in XML and saved in a file, for example ./PRMexam-

ple.xml.
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<?xml version="1.0" ?>

<PRM name="PRMexample" datainterface="./DIexample.xml" >

<RelationalSchema>

<Entities>

<Entity name="A">

<Attribute name="Aa" type="Binary"/>

</Entity>

<Entity name="B">

<Attribute name="Ba" type="Integer" description="1,20"/>

</Entity>

[......]

</Entities>

<Relationships>

<Relationship name="AB" foreign="A.pk,B.pk" type="1:n">

<Attribute name="ABa" type="Binary"/>

</Relationship>

[......]

</Relationships>

</RelationalSchema>

<DependencyStructure>

<Dependency name="Aa Ba" child="A.Aa" parent="B.Ba" constraints="A.pk=B.pk" />

[......]

</DependencyStructure>

<LocalDistributions>

<LocalDistribution attribute=’A.Aa’ file=’./localdistributions/Da Aa.xml’/>

<LocalDistribution attribute=’B.Ba’ file=’./localdistributions/Ba Aa.xml’/>

<LocalDistribution attribute=’AB.ABa’ file=’./localdistributions/Ca Aa.xml’/>

</LocalDistributions>

</PRM>

For a list of all possible tags as well as attributes, please see the documentation of the
XML parser xml prm.parser.PRMparser used by ProbReM. The PRM is defined by the rela-
tional structure <RelationalSchema>, the probabilistic structure (<DependencyStructure>) and
the model parameters (<LocalDistributions>; the conditional probability distributions of the at-
tributes). If not all local distributions have been defined by the model they will have to be learned
from data in order for the specification to be complete. Additionally, there is the functionality to
save the local distributions to disk and load them for the next execution of the model.
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Algorithms

Usually the local conditional probability distributions (CPDs) are learned from data. ProbReM
uses a Maximum Likelihood estimate (MLE) which is implemented in CPDTabularLearner.
Currently only tabular CPDs are supported, prm.localdistribution.CPDTabular. In the future it
might be necessary to implement alternative representations, for example decision trees. The
learner instance can be configured to save the distributions to a file, the necessary files will be
created automatically and the parser loads the distributions from disk if a corresponding file is
available.

So far, all inference methods in ProbReM are based on Markov Chain Monte Carlo methods.
They have been thoroughly described in Chapters 4 and 5. MCMC algorithms in practice require
a lot of fiddling around with parameters, e.g. burn in, number of samples collected, proposal
distribution, convergence diagnostics. Depending on the type of query, different algorithms with
different parameters are necessary. For this reason a ProbReM project has to allow a flexible
configuration of the inference method. More complex models may also require custom proposal
distributions. The inference module offers the framework for MCMC inference; please refer to
the documentation for details.

ProbReM Project

Given all the building blocks described so far, a simple python script is used to configure a
ProbReM project:

probremI = Probrem()

’’’ PRM ’’’

prmSpec = "PRMexample.xml"

probremI.prmI = config.loadPRM(prmSpec)

’’’ DATA INTERFACE ’’’

diSpec = probremI.prmI.datainterface

#diSpec = "DIexample.xml"

probremI.diI = config.loadDI(diSpec)

#configure datainterface with the prm instance

probremI.diI.configure(probremI.prmI)
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Next, the local distributions are learned from data. If the probabilistic structure and the
data do not change, the CPDs can be loaded from disk the next time the PRMexample model is
instantiated.

’’’ LEARNERS ’’’

#we load a cpd learner to learn the CPDs for our attributes

probremI.learnersI[’ourCPDlearner’] = config.loadLearner(’CPDTabularLearner’)

#we configure the learner to use the prm and data interface we instantiated

probremI.learnersI[’ourCPDlearner’].configure(probremI.prmI,probremI.diI,learnCPDs=False)

probremI.learnersI[’ourCPDlearner’].learnCPDsFull(saveDistributions=True,forceLearning=True)

After the model parameters are defined the inference method can be configured. The param-
eters are used by the engine to optimize inference, e.g. by precomputing the likelihood functions
in the case of a Gibbs sampler.

’’’ INFERENCE ENGINE ’’’

probremI.inferenceI = config.loadInference(’MCMC’)

#we configure the engine to use the prm and data interface we instantiated

probremI.inferenceI.configure(probremI.prmI,probremI.diI)

Assuming that the script is saved in ./probremExample.py, the model can now be used for
queries by creating another script ./queryExample.py which imports the model specification. A
very simple example is given below:

from probremExample import *

# creating a query

exQuery = Query(event,evidence)

probremI.inferenceI.infer(exQuery)

# display the cumulative mean to test the convergence

posterior.cumulativeMean()

6.2 Example model

In Chapter 4 we presented results for a Gibbs inference algorithm using data of political cam-
paign contributions. In this section we provide instructions on how to create a ProbReM project
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to make inference in this domain. For a detailed description of the model attributes, the relational
structure and the probabilistic dependencies, please see section 4.3.2.

The data

As discussed in section 4.3.2, the data was obtained from Transparency Data. The data had to
be preprocessed and stored in a format that is supported by ProbReM. This step is not part of
the framework. In this case for example, we excluded recipients that do not have the minimum
number of contributions and to discretize the amount (we chose 20 bins). We stored the data in
a SQLite database ‘./data/policont.sqlite’ based on the following schema:

-- ENTITIES

DROP TABLE IF EXISTS Recipient;

CREATE TABLE Recipient

(

recipient id INTEGER PRIMARY KEY,

political id INTEGER NOT NULL,

recipient democratic INTEGER,

recipient name CHAR(255) NOT NULL

);

DROP TABLE IF EXISTS Contributer;

CREATE TABLE Contributer

(

contributer id INTEGER PRIMARY KEY,

industry INTEGER

);

DROP TABLE IF EXISTS Political;

CREATE TABLE Political

(

political id INTEGER PRIMARY KEY,

state name CHAR(255) NOT NULL,

income INTEGER,

democratic INTEGER

);

-- RELATIONSHIPS

DROP TABLE IF EXISTS donation;

CREATE TABLE donation

(

donation id INTEGER PRIMARY KEY,

recipient id INTEGER NOT NULL,

contributer id INTEGER NOT NULL,

http://www.transparencydata.com
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contributer political id INTEGER NOT NULL,

amount INTEGER NOT NULL,

FOREIGN KEY (recipient id) REFERENCES Recipient(recipient id),

FOREIGN KEY (contributer id) REFERENCES Contributer(contributer id),

FOREIGN KEY (contributer political id) REFERENCES Political(political id)

);

Data interface specification

The specification file for the data interface, ./poliContDI.xml, is straightforward. For this model
we created different SQlite databases for the test and training set. Then the model parameters
were learned using the training database and the same PRM model was loaded with test database
for inference. In this simple training/test setting it is easier to do this by hand, i.e. by setting
the path first to the training set, and then change it to the test set once the model is learned and
parameters can be loaded from disk. Thus the number of folds is just 1 in this case.

<?xml version="1.0"?>

<DataInterface name="PoliContDI">

<Crossvalidation folds=’1’>

<Dataset type=’SQLite’ path=’./data/policont.sqlite’/>

</Crossvalidation>

</DataInterface>

PRM specification

The PRM specification file ‘./poliContPRM.xml’ must use the same names as the database
schema above.

<?xml version="1.0"?>

<PRM name="PoliContPRM" datainterface="poliContDI.xml" >

<RelationalSchema>

<Entities>

<Entity name="Recipient">

<Attribute name="recipient democratic" type="Binary"/>

</Entity>

<Entity name="Contributer">

<Attribute name="industry" type="Integer" description="1,115"/>

</Entity>
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<Entity name="Political">

<Attribute name="democratic" type="Binary"/>

<Attribute name="income" type="Binary"/>

</Entity>

</Entities>

<Relationships>

<Relationship name="donation" foreign="Recipient.pk,Contributer.pk">

<Attribute name="donation id" pk=’1’ type="NotProbabilistic"/>

<Attribute name="amount" type="Integer" description="1,20"/>

</Relationship>

</Relationships>

</RelationalSchema>

<DependencyStructure>

<Dependency name="political dem amount" parent="Political.democratic" child="donation.amount"

constraint="Political.political id=donation.contributer political id"/>

<Dependency name="income amount" parent="Political.income" child="donation.amount"

constraint="Political.political id=donation.contributer political id"/>

<Dependency name="recipient dem amount" parent="Recipient.recipient democratic"

child="donation.amount" constraint="Recipient.recipient id=donation.recipient id"/>

<Dependency name="industry amount" parent="Contributer.industry" child="donation.amount"

constraint="donation.contributer id=Contributer.contributer id"/>

</DependencyStructure>

<LocalDistributions>

<LocalDistribution attribute=’Political.democratic’

file=’./localdistributions/democratic.xml’/>

<LocalDistribution attribute=’Political.income’

file=’./localdistributions/income.xml’/>

<LocalDistribution attribute=’Contributer.industry’

file=’./localdistributions/industry.xml’/>

<LocalDistribution attribute=’Recipient.recipient democratic’

file=’./localdistributions/recipient democratic.xml’/>

<LocalDistribution attribute=’donation.amount’

file=’./localdistributions/amount recipient democraticcontributer id.xml’/>

</LocalDistributions>

</PRM>

ProbReM Project

The python script ‘./poliCont.py’ initializes a ProbReM project:

import sys

# interactive iPython console is used to interact with a probrem project

from IPython.Shell import IPShellEmbed

ipshell = IPShellEmbed()
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# add the relative or absolute path to the ’Probrem/src’ folder

sys.path.append("../../src")

#sys.path.append("/Users/xxxx/Documents/Projects/Probrem/src")

from probrem import Probrem

from ui import config

’’’

the ProbReM instance

’’’

probremI = Probrem()

’’’ PRM ’’’

prmSpec = "poliContPRM.xml"

probremI.prmI = config.loadPRM(prmSpec)

’’’ DATA INTERFACE ’’’

diSpec = probremI.prmI.datainterface

#diSpec = "poliContDI.xml"

probremI.diI = config.loadDI(diSpec)

# Configure data interface with the prm instance

probremI.diI.configure(probremI.prmI)

’’’ LEARNERS ’’’

# Load a cpd learner to learn the CPDs for our attributes

probremI.learnersI[’ourCPDlearner’] = config.loadLearner(’CPDTabularLearner’)

# Configure the learner to use the prm and data interface we instantiated

probremI.learnersI[’ourCPDlearner’].configure(probremI.prmI,probremI.diI,learnCPDs=False)

# For ease of use

ourCPDlearner = probremI.learnersI[’ourCPDlearner’]

# Learn all conditional probability distributions from data and save them to disk

ourCPDlearner.learnCPDsFull(saveDistributions=True,forceLearning=False)

’’’ INFERENCE ENGINE ’’’

#we load an inference engine

probremI.inferenceI = config.loadInference(’MCMC’)

#we configure the engine to use the prm and data interface we instantiated

probremI.inferenceI.configure(probremI.prmI,probremI.diI)

# for ease of use

mcmcInference = probremI.inferenceI

# uncomment if you want to interact with the model at this point

# ipshell()
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Using the ProbReM project

We create a separate script for using the poliCont ProbReM project, e.g. ‘./poliContTesting.py’.
Now we can interact with the model, for example the following code will display all model
attributes and their CPDs.

# Load the ProbReM instance

import poliCont

for a in poliCont.probremI.prmI.attributes.values():

print ’%s, probabilistic=%s, Pa=%s’%(a.fullname,a.probabilistic,[pa.name for pa in a.parents])

if a.probabilistic:

print a.CPD.cpdMatrix

To infer the political affiliation of Rahm Emanuel for example, create the following query.

# Load the ProbReM instance

import poliCont

from inference.query import Query, createQvar,ObjsVariable

from inference import posterior

recipient = "Rahm Emanuel (D)"

rec_pk = static_data.recipients[recipient] # a dictionary mapping politians to their primary key

objs = ObjsVariable(’incl’, rec_pk)

event = [ createQvar(’Recipient.recipient_democratic’,objs)]

objsAll = ObjsVariable(’excl’, [])

evidence = [ createQvar(’donation.amount’,objsAll,None),

createQvar(’Contributor.industry’,objsAll,None),

createQvar(’Political.democratic’,objsAll,None),

createQvar(’Political.income’,objsAll,None)]

query = Query(event,evidence)

# Runs one chain using the current settings in ‘inference.mcmc‘

poliCont.probremI.inferenceI.infer(query)

# Check the convergence using the cumulative mean
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posterior.cumulativeMean()

# Print the mean of the posterior distribution

print posterior.mean()[0]

# The log likelihood of Rahm Emanuel

loglik = poliCont.probremI.inferenceI.GBN.logLikelihood()

# The size of the GBN required for inference on Rahm Emanuel

sizeGBN = len(poliCont.probremI.inferenceI.GBN)

# Interactive iPython session for further analysis

poliCont.ipshell()

All convergence diagnostic plots in this thesis have been created using methods that are built
into ProbReM. Most of these methods automatically create visualizations of the output. For a
complete overview and documentation, please see the inference.mcmc.posterior module. It is
recommended to work in an interactive environment, for example ipython, as models can be
loaded and changed on the fly, inference can be interrupted to monitored convergence, and the
workflow can be saved to a file for later duplication of the results.
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Chapter 7

Conclusion and Future Work

In this thesis, we have presented two inference algorithms for Probabilistic Relational Models. In
Chapter 4 we introduced an inference method based on Gibbs sampling which makes use of the
relational structure of the ground Bayesian network to find an efficient sampling order. We have
shown that this algorithm is fast and scalable on both artificial and real data. In Chapter 5 we
proposed a new approach to model reference uncertainty in PRMs. Expectation aggregation is a
novel method to handle aggregation, which removes the need for specifying aggregation methods
and provides an intuitive interpretation for the constraints of the probabilistic dependencies. An
Metropolis-Hastings algorithm allows for an efficient inference algorithm that exploits the spar-
sity of the domain. In Chapter 6 we describe ProbReM, an open source framework for modeling
PRMs which implements the proposed algorithms.

The next step will be to validate the algorithms more extensively. In experiments on large
data sets with a rich relational structure, we have to show that the presented algorithms continue
to display high accuracy in terms of inference and that they scale well, i.e. that the speed of
convergence remains acceptable. To accurately model a richer relational structure of the data,
the use of hidden variables would allow the specification of more expressive models. Real world
data is often continuous, but currently only discrete probabilities are implemented. The software
framework needs to be extended to support both hidden and continuous variables.

This thesis leads to a couple of interesting ideas for future work. Most importantly, we
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plan to apply the proposed approach for reference uncertainty in Chapter 5 to citation analysis,
which is one of the applications of link mining methods [LKM+07]. We expect our algorithm
to perform well on this sort of task because it benefits directly from the typical sparsity of link
mining domains. Furthermore, with minor changes to the model definition we are able to extend
our inference method to identity uncertainty, another form of relational uncertainty in which two
objects in the relational skeleton could point to the same real world object. A separate issue,
only marginally discussed in this thesis, is the problem of feature selection. So far, we assume
that all variables are valuable components of the model. Our approach to reference uncertainty,
combined with expectation aggregation, gives us a new way of assigning greater impact to some
variables. Little work has been done on feature selection in the setting of relational data, which
makes this field interesting for future research.
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