
ECSE-626 Project: An Adaptive Color-Based Particle Filter

Fabian Kaelin
McGill University
Montreal, Canada

fabian.kaelin@mail.mcgill.ca

Abstract

The goal of this project was to discuss and implement
a paper that deals with a problem in computer vision. The
paper that was chosen presents a method for target tracking
in video sequences. More specifically, Nummiaro et. al [2]
present a particle filter that uses a simple linear dynamical
model and a likelihood model based on color-histograms.
The algorithm is adaptive in the sense that the target model
is updated over time to make it more reliable and robust
against changes in illumination or scale. Since the paper
that presented the algorithm has already been written, this
report will focus on the implementation. The limitations and
weaknesses are discussed. The results obtained from the
implementation are compared to the results in the paper.
Finally some ideas that extend the paper are presented.

1. Introduction
The motivation for choosing this paper is to get an in-

tuition behind the mathematics of sequential Monte Carlo
methods. At the same time this report might serve other
people that are learning about particle filters as an example
of how particle filters can be applied. Since this work is
done in the scope of a project for a course, there was a limit
in complexity in the paper if we wanted to avoid simpliy-
ing the original idea. The paper that was chosen was ideal
because only few additional assumptions or modifications
were necessary to reproduce the proposed approach.

Since the idea is not to just replicate the original paper,
this report will go into more detail about the actual imple-
mentation. At the same time this allows us to point out the
weaknesses of the paper and present some ideas about how
it could be extended or improved. We will start off by in-
troducing the models used and by explaining the additional
assumptions that apply for this implementation. Next the
particle filter is presented and the individual steps are de-
scribed in more detail. The implementation is then tested
on a video and the performance is compared to the results
that the authors of the original paper presented. Finally a

number of possible ideas are proposed that extend the scope
of the original paper.

2. Models
We have to find a representation for how the target moves

and we have to define a method for calculating the likeli-
hood of a target state given an observation frame.

2.1. Dynamical Model

Before we can define the dynamics we have to define a
target model

s = {x, y, x̂, ŷ,Hx, Hy, â} (1)

where (x,y) specify the location, (x̂,ŷ) the velocity,
(Hx,Hy) the size and â a scaling change. Note that in the
original paper they used an ellipse, whereas we use a rect-
angle for simplicity. We can define a dynamical model that
predicts the state of a potential target state at the next time
step.

st+1 = A ∗ st + wt (2)

where A is a deterministic component of the model and
wt a multivariate gaussian. At this point we assume that
the model moves with constant velocity (x̂,ŷ) and â simply
changes the scale of (Hx,Hy). This not a very sophisticated
model could be extended to include more features like the
acceleration.

2.2. Likelihood Model

If we have a predicted state sp of where the target could
be in the next frame, we would like to calculate the likeli-
hood that sp is actually at this location given the the next
frame. This is done using the color histogram of the target
rectangle. We use 8×8×8 bins in the RGB space and denote
h(vi) as the function that assigns the color values of pixel
vi to the corresponding bins. To increase the reliability of
the distribution, we assign pixels that are further away from
the center a smaller weight based on the weighting function

k(ri) =
{

1− r2i ri ≤ 1
0 otherwise

(3)

where ri = ||vi−c||
b is the normalized distance from the

target center c = (x, y) to the actual pixel vi that we are
evaluating when computing the histogram and b a normal-
izing constant (e.g. b =

√
H2

x +H2
y). Because we want

a probability distribution (independence of the size of the
rectangle), we normalize the color distribution by a factor f

f =
I∑

i=1

1
k(ri)

(4)

where I is the number of pixels in the rectangle. Finally
the color distribution can be written as ps = {p(u)

s }u=1...8

where

p(u)
s = f

I∑
i=1

k(ri)δ[h(vi)− u] (5)

that allows to compare the similarity of the states. A
popular measure to do that is the Bhattacharyya coefficient,
which is defined as

ρ[p, q] =
8∑

u=1

√
p(u)q(u) (6)

for two discrete distributions p and q. ρ is 1 if p and q are
identical and decreases the more different they are. Finally
we define a distance d between two distributions (and two
states for that matter) as the Bhattacharyya distance.

d =
√

1− ρ[p, q] (7)

We will use this measure to determine the likelihood of a
proposed target state given a new observation frame.

3. Particle Filter
Now we have defined the models needed to conceptu-

alize a particle filter based on color historgrams. In this
section we will first give an outline of the different steps ex-
ecuted during the algorithm. Then each of those steps will
be explained in detail.

We want to track a target in a video sequence, therefore
we have a target state Xt at time t. If we denote our obser-
vation frames as Zt = {z1,, zt}, the goal of our particle
filter is to find the posterior distribution p(xt, |Zt) for every
new frame zt that we observe. As in all sequential Montre
Carlo methods, we approximate the posterior distribution
by a set of particles S = {(s(n), π(n))|n = 1.....N}. Ev-
ery particle s(n) is represented by the defined parameters
{x, y, x̂, ŷ,Hx, Hy, â} and has weight π(n) associated with
it. This is a probability distribution, therefore the weights
must satisfy

N∑
n=1

π(n) = 1 (8)

Consequently, the best approximation for the posterior at
each time step is the mean state of all our particles

E(S) =
N∑

n=1

π(n)s(n) (9)

Note that at this point we assume that we have a target that
we want to track, and we denote the the color distribution
of the target as q. In the section ’Initialization’ we will talk
about different ways we can define or find the original target
X0.

Now we have all the background to formulate the steps
of the algorithm that we will use iteratively at each time
step.

1. Resampling the particles to avoid degeneracy

2. Propagate each particles according to our dynamical
model

3. Update the weight π(n) of each particle according to our
likelihood model

4. Estimate the posterior state p(xt, |Zt) of the target
given the new frame zt

5. Adapt the target’s color distribution q to increase relia-
bility and robustness

3.1. Resampling

In our set of particles, we will have undoubtably have
samples that move in the wrong direction. Since the Bhat-
tacharyya distance to the target will be big, the weight π(n)

of those particles will become small. After a few iterations
those particles will not contain any information about the
target location and the particle set will contain many par-
ticles with weight close to 0 and a few particles with high
weights. Because those few particles are not enough to de-
tect the movement of the target we will loose track fairly
quickly. This phenomena is called particle degeneracy. In
order to avoid this effect we will resample our particles for
time step t from our particle set at time t − 1 with replace-
ment. Our new particle set likely contains multiple copies
of particles with high weights whereas particles with low
weights are likely to be discarded form the set. This can
be done by selecting particles according to their weights.
Figure 1 illustrates this nicely.

3.2. Propagate Particles

The particles are described by the parameters (1). Every
particle is propagated using the dynamical model defined
in (2). Because in the resampling step we eliminate par-
ticles that have low weights, the set tends to be grouped
around our target (or rather what we believe to be our tar-
get). In figure 2 we can see a particle set around a face.

Figure 1. Resampling illustration from [1]. The particles with
higher weights (bigger circles) are chosen with a higher proba-
bilty, but the total number of samples stays the same

The deterministic component of the dynamical model A as-
sumes a constant velocity, therefore it is up to the gaussian
component wt to capture small changes in velocity or scale.
Choosing proper covariance values is crucial and difficult.
In an erratic setting where the target often changes direc-
tion and speed - e.g. in case of an ant - we will need big
covariance values. But consequently the particles will be
spread in a wider area and the danger of loosing the target
increases. In case of face tracking, the movement is a lit-

Figure 2. Example of a particle set tracking a face, the green rect-
angles are the particles and the red rectangle is their posterior
(mean state)

tle more predictable, the covariance values are smaller. The
particle set will be more compact and the chance of loosing
track is lower. At the same time this makes the algorithm
less robust in case of sudden unexpected movement - e.g.
somebody running or somebody tripping.

In general, a possibility would be to learn covariance val-
ues from labeled video sequences. But at this point the co-
variance values are determined experimentally in this im-
plementation. The authors of [2] don’t mention their ap-
proach.

Of course the number of particles in the set N is crucial
as well. More particles means higher chances of capturing
the target but at the same time this directly influences the
computation performance. One hundred particles have been
found sufficient for this implementation.

3.3. Update Step

Now we have a set of propagated particles where each
particle represents a hypothetical state of the target and a
new observation - the next frame of the video. The goal
is determine the likelihood of each particle given the new
frame. First the color distribution is calculated using (5).
Next the Bhattacharyya distance (7) is computed, which
leaves us with a measure of similarity to the target q for
every particle in our set. The distance is used to update the
weights

π(n) =
1

(
√

2πσ)
e−

d2

2σ2 =
1

(
√

2πσ)
e−

(1−ρ[p
s(n) ,q])

2σ2 (10)

Finally, to satisfy (8), the weights are normalized by

π(n) =
π(n)∑N
i=1 π

(i)
(11)

Figure 3. A simple normal gaussian to illustrate the effect σ has
on the weight of the particles

In figure 3 you can see that the bigger the Bhattacharyya
distance, the lower the weight. The choice of the standard
deviation σ of this gaussian has a big influence, in this im-
plementation a value of 0.1 has been found to work well.
A big standard deviation (e.g.1) leads to higher weights for
particles with big distances. This leads to a particle set that
is wider spread which is a little more robust to track the
target but at the same time increases the danger of particle
degeneracy. On the other hand, a too small standard devia-
tion (e.g. 0.01) leads to a very compact particle set because
a few particle will have high weights and will therefore be
resampled. As with small covariance values for the dynam-
ical model, this increases the danger of loosing ’sight’ of
the target. The choice of σ can be seen as a compromise
between the danger of loosing the target because of parti-
cle degeneracy and the danger of loosing the target because
our particle set is too compact. Nummiaro et. al [2] don’t
discuss this issue.

One of the main advantages of particle filters is their abil-
ity to detect multimodal distributions. This is very helpful
because it allow the filter to consider multiple hypothesis in
case it is not sure where the target is moving. E.g. when
tracking a face, if a second face passes by close by, the par-
ticles will cover both faces until it has to choose one. Figure

7 illustrates on such example, where the particles ’detected’
an arm - which is similarly colored like a face - and the filter
stays with both ’hypothesis’ for a while, but soon the arm
particle filters have been discarded.

Figure 4. Example of a multimodal particle set tracking a face, but
also caught onto an arm

3.4. Estimate

At this point the particles have been propagated and all
their weights have been updated. The new posterior E(St)
is computed as the mean state of all the particles (9). The
intuition behind is simple - since the weight of a particle is
a similarity measure, the weighted sum should approximate
the target state the best. This is easy to do, but as the parti-
cle set can maintain multiple hypothesis - represented by a
multimodal distribution - the mean state is possibly mean-
ingless. The section ’Target Update’ will deal with how to
handle this problem. In figure 5 this step is nicely illus-
trated.

3.5. Target Update

The object that is being tracked will change in appear-
ance over time, therefore it is important that we adapt the
target model over time. The target model is represented by
the color distribution q. The posterior E(St+1) at time step
t + 1 reflects this change, therefore we can slowly adapt
our target color distribution to reflect the possible changes
in illumination conditions, rotation and viewing angle. We
define a factor α that determines how the color distribution
of the posterior p(n)

E(St+1)
influences the previous target dis-

tribution. Over time the target model will have ’forgotten’
its original distribution - which of course is a problem at the

Figure 5. Illustration from [1]. After updating the weights, the
mean state is computed

same time. It is hard to directly measure the impact, but a
value of 0.1 seems to return reasonable results. For each bin
u we compute

q
(u)
t+1 = (1− α)q(u)

t + αp
(n)
E(St+1)

(12)

Another problem has already been described in the section
’Estimate’. In case the particle set is distributed over multi-
ple hypothesis, the mean state will be useless. There are two
consequences to that. First it is evident that this approach
has to choose one of the hypothesis. In the best case all but
one eliminate themselves, but if not the algorithm should ac-
tively remove outliers to ensure that the filter ’concentrates’
on on hypothesis. Secondly, if we expect our target to be
not represented properly, the target update should not be ex-
ecuted. To this end we can calculate the likelihood πE(St+1)

of our posterior E(St+1) state (using (7),(10)). Finally, the
target is only updated if πE(St+1) ≥ πthres, where πthres

is a predefined threshold, otherwise we assume the target is
lost or occluded and we hope to ’redetect’ it the future.

4. Initialization
The particle filter has been described, but it was always

assumed that the original target was known. But how can
the target object and the particle set be initialized? In this
implementation, the simplest of all was good enough: Af-
ter a video has been loaded, the user can select its target
by drawing a rectangle on the first frame. Four parame-
ters (1) can be extracted from this input, {x, y,Hx, Hy}.
Next, original particles are created by sampling the remain-
ing parameters {x̂, ŷ, â} uniformly from a reasonable inter-
val. This step is repeated N times, and after the first prop-
agation of the particle set they will be nicely spread around
the original target.

Nummiaro et. al propose different methods. If one has
an initial color distribution - e.g. from a face - but no tar-
get state, one could for example place immovable particles
around areas where people are expected to enter the scene
- e.g. doors and the border of the frame. The weight of

these particles trigger the tracking process once a face is
detected. Another, more sophisticated method, would be to
employ object detection algorithms to find potential target
states.

5. Experiments
The proposed algorithm has been implemented in Mat-

lab. It is not a charm to work with video files in Matlab
and a lot of time has been wasted trying to get reasonable
video sequences. Every different experiment needs tweak-
ing of the parameters wt and σ - so it is fair to say that the
implementation is not ready to be sold commercially. The
code has not been optimized, on a dual-core 2Ghz in OS X
manages to process about two frames per second. Note that
the performance greatly depends on size of the rectangles
of the particles - the bigger the target the slower the particle
filter. The number of particles N influences performance
as well, where 100 particles proved to be enough in all ex-
periments. In figure 6 you can see how the filter manages
to track a face in fairly cluttered environment. Additionally
there were plenty of changes in direction. The borders of the
frame proved to be tricky since the movement of the parti-
cles have to be stopped in order not to disappear, but the
filter stays on the target throughout. In the video one can
notice a couple of sudden jumps which result from multiple
hypothesis which usually push the mean state in the direc-
tion of an arm. But overall the tracking was very successful
over all 211 frames.

Figure 7 illustrates how the particle filter handles multi-
ple hypothesis. A face is tracked that passes right in front
of another face in frame 29. The face is first moving to the
right (frame 19), and after passing the face starts moving
back to the left. In frame 54 we can see that the particle
filter maintains two hypothesis and the posterior is midway
between the two faces. Gradually the particle filter is con-
vinced that his target is the left face (frame 57,59). In frame
62 the posterior is fully on target again. This experiment
shows that the proposed algorithm is robust even in pres-
ence of two very similar objects. When comparing these
results to the results in the paper, we find that the perfor-
mance in the domains tested is very similar.

6. Suggested Extensions
Following a selection of modifications and extensions

that could improve the performance of the particle filter and
were not mentioned in the original paper. Time constraints
unfortunately prevented the transition from theory to prac-
tice.

6.1. Likelihood Model

The current likelihood model is based on color his-
tograms. While this seems robust against deformations, ro-

tation and partial occlusion of the target, it completely ig-
nores other features like the shape. It would be interest-
ing to see how the filter would perform if the likelihood
would be based on mutual information as defined by Viola
and Wells [3] instead. This would probably mean that we
would loose much of the robustness, but in a controlled en-
vironment where we have more guarantees about the shape
and color of the target it could prove useful.

6.2. Focus Factor Θ

Lets assume a target is moving in one direction at a con-
stant speed. The particles with parameters (x̂,ŷ) similar
to the actual velocity of the target will be assigned higher
weights. Those same particles are more likely to be re-
sampled, which leads to a particle set that ’moves’ in that
direction. When the target changes directions or speed -
lets assume that it is moving slower, the particle set will
at first continue at the original speed and the propagated
particle set will be ahead of the target. In the update step,
higher weights will be assigned to particles that moved not
too far (be that because of a slower velocity (x̂,ŷ) or ’lucky’
gaussian noise wt). This in turn will lead to a posterior
(9) which is based on different particles (the slower ones)
than at the last time step (the faster ones). In the esti-
mation step we can detect this change of ’focus’ between
the old weights Π = {π(1),π(N)} and the new weights
Π = {π(1),, π(N)} by calculating a focus factor Θ

Θ =
N∑

n=1

(π(n) − π(n))2 (13)

A big focus factor Θ indicates a change of the target state
parameters (1) that wasn’t anticipated by our dynamical
model. This changes we are trying to capture with the co-
variance values of the dynamical model wt and resampling.
But the proposed focus factor Θ gives us a mean to detect
such changes. If we are able to find a threshold Θthres that
separates the expected noise in Θ due to the stochastic na-
ture of the particle filter, we can define a new mechanism
that triggers as long as

Θ ≥ Θthres (14)

If that is the case there are different methods to react. We
could temporarily increase the number of particles in our
set to Nthres > N to make the algorithm more robust.
Another possible measure would be to change the gaussian
component of the dynamical model to wthres

t > wt (2) to
increase the spread of the particle set. Similarly one could
also change the standard deviation to σthres > σ which
would lead to higher weights for particles with a high Bhat-
tacharyya distance (7) which in turn would lead to wider
variety when resampling the particles. Of course all three

Figure 6. Face tracking with cluttered background and directions and velocity changes - frames 13, 40, 69, 89, 140, 156 (from top left to
bottom right)

Figure 7. Multiple hypothesis: tracking a face - frames 19, 29, 54, 57, 59, 62 (from top left to bottom right)

measures can be combined. The argument for this exten-
sion has been made using the velocity parameters but is of
course valid for all parameters.

References
[1] E. Maggio and A. Cavallaro. Hybrid particle filter and

mean shift tracker with adaptive transition model. Acoustics,
Speech, and Signal Processing, 2:221– 224, 2005. 3, 4

[2] K. Nummiaro, E. Koller-Meier, and L. V. Gool. An adap-
tive color-based particle filter. Image and Vision Computing,
21:99–110, 2003. 1, 3

[3] P. V. William and M. W. Iii. Alignment by maximization of
mutual information. International Journal of Computer Vi-
sion, 24(2):137154, 1997. 5

