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Abstract—The goal of this semester project was to implement
and test a fair gossip protocol. The proposed approach is a push-
based algorithm with a mechanism that adapts the workload
according to the benefit received. At the same time the algorithm
should guarantee reliability and stability. In order to be able to
efficiently test the protocol, the Peersim framework was used for
the implementation.

I. INTRODUCTION

Up to now, fairness was not a main concern when designing
gossip protocols. The algorithm presented in Figure 1 rep-
resents a classic push-based gossip algorithm at first glance.
But there is one notable difference, namely lines 15 to 17.
The algorithm disposes over a method that determines if a
received message is interesting to the peer or not. The basic
idea which makes the algorithm proposed in this project fairer
is the following: after a predefined number of rounds, what
we call a phase hereafter, the peer decides according to his
benefit whether it wants to decrease, or has to increase, its
own workload. If one peer profits more from the system,
e.g. receives more messages of interest than another peer, the
former peer’s share of the total workload should also be bigger.
The main challenge is that the total workload should stay
constant, otherwise the reliability of the network cannot be
guaranteed. In other words, if one peer decreases its workload,
other peers have to compensate the ’missing’ workload. In the
next section, the algorithm will be explained in more detail.

II. FAIR GOSSIP

Now we present a generic version of a fair gossip algorithm
for selective event dissemination based on a push-based and
cycle-driven gossip algorithm as shown in Figure 1. Our fair
gossip algorithm (Fig. 2, p.3) is composed of three procedures:

• An application procedure which is triggered at the be-
ginning of every round.

• An adaptation procedure which is triggered at the begin-
ning of every adaption phase.

• A receive procedure which is triggered whenever the peer
receives a gossip message.

Basically, the application procedure is the one that gossips
information and, most importantly, changes the workload of

1: Initialization:
2: delivered ← {}
3: events ← {}

4: upon TIMER(t time units) at process pi do
5: Neighbors ← SELECTPARTICIPANTS(F )
6: gossip-msg.events←SELECTEVENTS(N in events)
7: for all p ∈ Neighbors do
8: P2PSEND(p, gossip-msg)
9: end for

10: end upon

11: upon RECEIVE(gossip-msg) do
12: for all e ∈ gossip-msg.events do
13: if e #∈ delivered then
14: events ← events ∪ {e}
15: if ISINTERESTED(e) then
16: DELIVER(e)
17: delivered ← delivered ∪ {e}
18: end if
19: end if
20: end for
21: end upon

Fig. 1. A basic push gossip-dissemination algorithm

the peer. The adaptation procedure determines the benefit
of the peer in the last phase and decides how the peer
should change its workload. The receive procedure handles
the incoming message and delivers the event if deemed to be
interesting to the peer.

A. Definitions

Definition 2.1 (Fanout): Each peer disseminates its mes-
sages to a number of peers, hereafter we refer to this value
as the fanout. In the proposed fair algorithm, this fanout is
variable.

Definition 2.2 (Phase): A phase is a predefined number of
rounds. After each phase an adaption phase is started, and from
the end of the adpaption phase until the end of the phase, the
algorithm can be considered as fair.
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Definition 2.3 (Adaption Phase): The length of the adap-
tion phase is composed of the defined R rounds plus
R′ rounds needed to compensate all Redistributions that
couldn’t be applied in round R.

Definition 2.4 (Distribution): When a peer has changed its
own fanout F during an adaption phase, other peers need to
compensate this change by adapting their own fanout F . This
operation is called Distribution.

Definition 2.5 (Redistribution): Every peer has to try to
apply the Distributions it has received from other peers
during the round before. If a peer is not able to do this, e.g.
exceeds its fanout limits while trying to apply this value, the
peer has to pass this compensation on to other peers. This
operation is called Redistribution.

Definition 2.6 (Compensation): The Compensation value
of peer is composed from the Distribution value and the
Redistribution value. It is the final compensation which will
be passed on to other peers.

B. Problem Statement or Challenges

Challenge 1: To guarantee the reliability and stability of the
network, the global fanout needs to be constant outside of an
adaption phase (

∑
i Fpi = Fglobal = F optimal

global =
∑

i Finit).
Challenge 2: By allowing single peers to change their

fanout during an apaption phase, we accept small flucuations
of the globalfanout (

∑
i Fpi % F optimal

global ) that could have
an effect on the reliability and stability of the network.
Minimizing the average change of fanout in one round
minimizes those fluctuations, thus increases the reliability, and
at the same time minimizes the number of Redistributions,
thus increases the stability.

Challenge 3: At the end of an adaption phase the network
can be considered as fair and it should stay fair for as long as
possible. Therefore, the length of the total adaption phase
Rtotal = R + R′ should be minimized.

C. Generic Algorithm
The algorithm proposed in Figure 2 is a generic version

of a push-based and fair gossip protocol. All decisions a
peer makes are local. The main challenges resulting from fact
that the peers only send information but never request any is
deciding on how to calculate the changes in fanout for the
different peers and how to bring other peers to compensate
those changes.

1) application procedure: At the beginning of every round
the peer is forced to try to apply the compensations
it has received from other peers. This is mandatory
because receiving a compensation means that another
peer has changed its fanout and this change needs to be
compensated to keep the global fanout Fglobal constant.
If an adaption phase is in progress, then the peer tries to
change its own fanout according to the benefit. Finally
the peer calculates the compensation it has to pass on to
the other peers and sends this compensation, embedded
into a normal gossip.message.

2) adaptation procedure: At the beginning of a new
adaption phase, all peers calculate the benefit from the
last phase. Then, based on the benefit and the fanout,
they determine by how much they have to decrease
or increase their fanout. Finally, they distribute this
value over the length of the adaption phase to make
the adaption phase as smooth as possible.

3) receive procedure: All the gossip.messages received
contain a compensation value and the actual content
of the messages, called events. The peer extracts the
compensation value which it will then try to apply in
the next application procedure. Finally the peer verifies
if the events that the message contained are interesting
or not. If this is the case, it delivers the event (e.g.
to another application) and increments the variable that
counts the number of interesting events received.

Some explanations to the generic algorithm in Figure 2:
• Line 9,16,17 : A peer first tries to compensate the β it

has accumulated during the last round. If this fails, e.g. β
is not zero after the applying it, there are two scenarios.
Ouside an adaption phase, the remaining β has to be
redistributed. During an adpation phase, there is a second
chance to compensate the β, that is when the application
of αr enables the peer to further compensate its β (line
18).

• Line 20-24 : During an adaption phase, when a peer
changes its fanout F , the question is at what point to
affect the new fanout F . There are two possiblities, either
before or after sending the gossip−msg. In order to min-
imize the average compensation value (compensate/F ),
we maximize the number of peers to send the message to.
So in case the new fanout is smaller than the old fanout,
we affect the fanout after the message has been sent and
vice versa.

• Line 18 : The final compensation value compensate =
−αr + β is the sum of what the peer needs to distribute
after applying an αr to his fanout F , and what the peer
needs to redistribute, e.g. the rest of the β that couldn’t
by applied. The different signs result from the fact that
αr needs to be distributed and β needs to redistributed.
Let us say a peer has αr = −3 and β = 2 at line 18. This
peer needs to distribute a value of −αr = 3 (because it
changed its fanout F by -3) and to redistribute a value
of β = 2 (because it couldn’t change its fanout F by 2)
among the other peers. In this case we can conclude that
compensate = 5, the new fanout is F = Fmax and that
β = 5+(Fmax−Fold) at the beginning of the application
procedure.

• Line 12,19 : As soon as β has been added to the
compensation value, it has been redistributed and needs
to be reset β = 0.

• Line 39 : All the gossip messages that a peer receives in
between to rounds contain a gossip-msg.β. This value is
accumulated in the variable β = β + gossip-msg.β, which
will be applied or redistributed during the next application
procedure.
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1: Initialization:
2: delivered = events ← {}
3: dP−1 = dP = 0
4: gossip-msg.adaptF = αr = 0
5: F = Finit

6: β = 0

7: upon TIMER(t time units) at process pi do
8: Fold = F
9: β = APPLYBETA(β)

10: if currentRound > R then
11: compensate = β
12: β = 0
13: SENDMSG(F , gossip-msg, compensate)
14: else
15: αr = α[currentRound]
16: αr = APPLYALPHA(αr)
17: β = APPLYBETA(β)
18: compensate = −αr + β
19: β = 0
20: if F < Fold then
21: SENDMSG(Fold, gossip-msg, compensate)
22: else
23: SENDMSG(F , gossip-msg, compensate)
24: end if
25: currentRound = currentRound + 1
26: end if
27: end upon
28: upon TIMER(T rounds) do
29: currentRound = 1
30: if dP > 0 then
31: ∆B = (dP -dP−1)/dP+1

32: αP+1 = TOTALALPHA(∆B,F )
33: dP−1 = dP

34: dP = 0
35: αP+1[] = DISTRIBUTIONOFALPHA(αP+1)
36: end if
37: end upon
38: upon RECEIVE(gossip-msg) do
39: β = β + gossip-msg.β
40: for all e ∈ gossip-msg.events do
41: if e #∈ delivered then
42: events ← events ∪ {e}
43: if ISINTERESTED(e) then
44: DELIVER(e)
45: delivered ← delivered ∪ {e}
46: dP = dP + 1
47: end if
48: end if
49: end for
50: end upon

Fig. 2. fair-gossip algorithm, generic

D. Modulating the distribution: APPLYALPHA(αr), Figure 3
An αr represents the change of fanout a peer wants to

execute. The peer is not forced the actually perform those

changes. But as soon as a peer applied a certain αr to its own
Fanout F , other peers have to compensate this αr in order to
keep the global fanout Fglobal constant. For those peers, this
αr has become a β.
So in case the application of a specific αr would exceed the
Fmin or Fmax limits, it is a question of algorithm design what
to do with the ∆αr that couldn’t be applied. One way would
be to just discard ∆αr. Another way would be to redistribute
this ∆αr over the remaining αP+1[] of this adaption phase.
The protocol would be fairer because a peer’s effort to reach
its prospected fanout F + αP+1 is more consequent. Imagine
a case where in one round a peer has to crop its αr, but in
the next round, the application of β would have allowed the
resulting ∆αr from before : the discarded ∆αr was ’lost’.

1: function APPLYALPHA(αr)
2: Ftemp = F + αr

3: if Ftemp #∈ [Fmin..Fmax] then
4: if Ftemp > Fmax then
5: αr = Fmax − F
6: ∆αr = Ftemp − Fmax

7: F = Fmax

8: end if
9: if Ftemp < Fmin then

10: αr = Fmin − F
11: ∆αr = Fmin − Ftemp

12: F = Fmin

13: end if
14: else
15: F = Ftemp

16: end if
17: {Process ∆αr , e.g. discard, redistribute over remaining

αP+1[]}
18: return αr

Fig. 3. fair-gossip algorithm, application of alphar

E. How to apply the distribution: APPLYBETA(β) , Figure 4
The β is the accumulated value all gossip-msg.β received in

between two rounds. The peer has to either apply β or pass it
on the other peers. If Ftemp = F +β #∈ [Fmin..Fmax], the new
value of β is the ∆β = Ftemp−Fmax or ∆β = Ftemp−Fmin,
because the rest still needs to applied. The rest of the β that
couldn’t be applied has to be redistributed.

F. SENDMSG(f , gossip-msg, c) , Figure 5
The compensation value c is passed on to f neighbors by

distributing c over the gossip-mesg.β for each neighbor. At
this time, no other method has been proposed.

G. TOTALALPHA(∆B,F )
The return value αP+1 is the fanout increase a peer wants

to execute during the next adaption phase. αP+1 is calculated
as a function of the fanout F and the benefit ∆B, the realtive
change of interesting messages. The prospected fanout after
the adaption process is F = F + αP+1.
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1: function APPLYBETA( β)
2: Ftemp = F + β
3: if Ftemp #∈ [Fmin..Fmax] then
4: if Ftemp > Fmax then
5: β = Ftemp − Fmax

6: F = Fmax

7: end if
8: if Ftemp < Fmin then
9: β = temp− Fmin

10: F = Fmin

11: end if
12: else
13: F = Ftemp

14: β = 0
15: end if
16: return β

Fig. 4. fair-gossip algorithm, application of β

1: function SENDMSG(f , gossip-msg, c)
2: Neighbors ← SELECTPEER(f )
3: gossip-msg.events←SELECTEVENTS(N in events)
4: for all p ∈ Neighbors do
5: if c = 0 then
6: gossip-msg.β = 0 for all f neighbors
7: else if |c| > f then
8: gossip-msg.β = c/(f − 1) for (f − 1) neighbors
9: gossip-msg.β = c mod (f − 1) for the last neigh-

bor
10: else if |c| ≤ f then
11: gossip-msg.β = c/|c| for |c| neighbors
12: gossip-msg.β = 0 for the f − c other neighbors
13: end if
14: P2PSEND(p, gossip-msg)
15: end for
16: return

Fig. 5. fair-gossip algorithm, send gossip messages

1) Cumulative method, Figure 6: The prospected fanout is
Fprospected = Fold + (∆B · Finit). There is a memory effect
because Fold is used to calculate Fprospected. Because of the
strong influence of the last adaption phase on the current one,
this is called the cumulative adaption method.

2) Relative method, Figure 7: The prospected fanout is
Fprospected = Finit + (∆B · Finit). The peer calculates
its Fprospected without considering Fold. But to determine
αP+1, it still takes into consideration Fold by setting αP+1 =
Fprospected − Fold. Because of the softer influence of the last
adaption phase on the current one, this is called the relative
adaption method.

3) Memoryless method, Figure 8: At the beginning of each
adaption phase, the fanout F of every peer is reset to the
initial fanout Finit. This means the network has no memory
about the benefit of a peer. Imagine two peers, one with F =
Fmin and the other with F = Fmax at the end of the last

1: function TOTALALPHA(∆B,F )
2: if ∆B ≥ 0 then
3: αP+1 = (∆B · Finit)
4: else
5: αP+1 = +∆B · Finit,
6: end if
7: return αP+1

Fig. 6. fair-gossip algorithm, αP+1 cumulative

1: function TOTALALPHA(∆B,F )
2: if ∆B ≥ 0 then
3: αP+1 = ((1 + ∆B) · Finit) − F
4: else
5: αP+1 = +(1 + ∆B) · Finit, − F
6: end if
7: return αP+1

Fig. 7. fair-gossip algorithm, αP+1 relative

adaption phase. At the beginning of the next adaption phase
they both have the same benefit ∆B, so therefore they both
have the exact same chance to reach their prospected fanout
Fprospected = ∆B · Finit.

H. DISTRIBUTIONOFALPHA(αP+1)

When a peer calculated its αP+1 at the beginning of an
adaption phase, it has to distribute this value over an array of
the length of the adaption phase. The adaption is done in little
steps to avoid too brisk fluctuations of the global fanout, e.g.
if a lot of peers would decrease their fanout in one round by
a significant value, the network would loose its reliable.
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1: function TOTALALPHA(∆B,F )
2: F = Finit

3: if ∆B ≥ 0 then
4: αP+1 = (∆B · Finit)
5: else
6: αP+1 = +∆B · Finit,
7: end if
8: return αP+1

Fig. 8. fair-gossip algorithm, αP+1 memoryless

1) Modulo method, Figure 9: This simple distribution
method is designed for an adaption phase of Rinit rounds
by dividing the αP+1 in Rinit − 1 parts, and the rest - e.g.
the modulo - is stored in αP+1[R].

1: function DISTRIBUTIONOFALPHA(αP+1)
2: if |αP+1| > Rinit then
3: R = Rinit

4: αP+1[] = newArray[R]
5: for all i = 1 < R do
6: αP+1[i] = αP+1/(R− 1)
7: i = i + 1
8: end for
9: αP+1[R] = αP+1 mod (R− 1)

10: else
11: R = 1
12: αP+1[] = newArray[R]
13: αP+1[R] = αP+1

14: end if
15: return αP+1[]

Fig. 9. fair-gossip algorithm, αP+1[] modulo

2) Decreasing method, Figure 10: Given Rinit, the idea of
the decreasing distribution is to adapt as much as possible of
αP+1 at the beginning of the adaption phase in order to give
the network more time to get adjusted. By letting the peers
adapt a big percentage of their αP+1 in the first round, it is
ensured that there won’t be any big fluctuations towards the
end of the adaption phase, e.g. the average αr will decrease
as well.

3) Constant method, Figure 11: A somewhat different
approach is the constant distribution. Contrary to the methods
before, the idea is not to limit the number of rounds of the ad-

1: function DISTRIBUTIONOFALPHA(αP+1)
2: R = Rinit

3: αP+1[] = newArray[R]
4: αP+1[R] = αP+1

5: for all i = 1 < R do
6: αP+1[i] = +αP+1 · pi,
7: αP+1[R] = αP+1[R]− αP+1[i]
8: i = i + 1
9: end for {pi > pi+1 ,

∑R−1

i=1
pi < 1}

10: return αP+1[]

Fig. 10. fair-gossip algorithm, αP+1[] decreasing

pation phase R. The goal is to keep the average αr constantly
low, therefore keep the number of necessary redistributions to
a minimum. On the other hand there is no guarantee about the
length adaption process, as all peers can have a different R.

1: function DISTRIBUTIONOFALPHA(αP+1)
2: R = |αP+1|
3: αP+1[] = newArray[R]
4: for all i = 1 < R do
5: αP+1[i] = αP+1/|αP+1|
6: i = i + 1
7: end for
8: return αP+1[]

Fig. 11. fair-gossip algorithm, αP+1[] constant

III. IMPLEMENTATION

The goal of this project was to implement a push-based and
fair gossip algorithm. Since the idea of fair gossiping is still
in its early stages, the framework for the implementation of
the protocol needed to be high level and fast. Peersim offers
just that.

A. Peersim : The Simulator
The Peersim framework can be used to simulate P2P

protocols. It is written entirely in Java. It disposes of a cycle-
driven engine and is able to simulate up to one million peers.
There is no transport layer or concurrency handling, all peers
are instances of a class Node and they can communicate with
each other by just accessing the other peer’s instance. On top
of the nodes are the protocol instances. In some sequential
order every node executes its protocols, during which those can
perform calculations or call methods of other peers protocols
for example. Additionally, there are the control protocols
which run at the beginning or the end of each cycle. By using
a control instance you can access the network, e.g. compute
statistics, add or remove peers or create events.

B. Fair Gossip Implemenation
The fair gossip protocol presented in this project is a

combination of two protocols, the network layer protocol and
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the fair gossip protocol itself. There are several controls used
for the simulation, e.g. a timer which manages the rounds and
the length of the adaption phase, an observer which computes
statistics about the current state of the network and a control
to insert messages into the network. Finally there are some
utilities that simplify the handling of the big amount of data
collected.

1) Simplifying assumptions: At this point, the fair gossip
protocol is designed to test and experiment with the adaption
phase. Therefore, the following simplifying assumption has
been made. The benefit ∆B is not calculated by sending
messages and evaluating their interest (even though there
is a functionality to send messages over the network), but
rather by just choosing a random benefit based on predefined
distribution. So far, it has been tested with a uniform, a
constant, a bernoulli and a gaussian distribution.

2) Protocols:
a) RandomProtocol: This protocol simulates a simpli-

fied network layer. It bypasses the graph-based functionality
of peersim but instead offers a fast way to create a random
number neighbors for a peer. All nodes can have a different
fanout F . We suppose that the neighbors are selected randomly
among the population of the whole network and the list of
neighbors is updated every round.

b) FairGossip: This is the main protocol which simulates
the actual adaption phase. It is this protocol which determines
the prospected fanout, distributes the αP+1, tries to compen-
sate β and sends the messages over the network.

3) Controls:
a) Timer: The timer manages the rounds of the phase,

e.g. increments the currentRound after each simulation cycle
and resets it after the length of one phase.

b) Observer: After each simulation the observer com-
putes statistics about the current state of the network and
stores them in a file. The collected data includes the average,
variance, maximum, minimum and the sum of the fanout F ,
the benefit ∆B, the distribution αr, the redistribution β, etc.
of each peer.

c) ValueDumper: Peersim offers this control to dump
one specific value into a file. This is used to compute the
distribution of the peers among the fanout F by dumping the
fanout F of each peer and in every round.

4) Utilities:
a) GNUPlot: With the significant amount of data col-

lected during the simulation, the work necessary to display
the results becomes painful. To simplify this task, the observer
uses an instance of GNUPlot to generate a plot file.

5) Additional functionality: It exists the possibility to in-
troduce messages into the network by using the control
InitializeMessages. The observer collects relevant data
about the dissemination of the messages and plots statistics
like the number of infected peers, the number of newly
infected peers, the number of messages sent and the number of
duplicated messages per round. In the future, this mechanism
could be used to simulate the calculation of the benefit based

on a real ISINTERESTED(e) method.
In order to test under which configuration there is an atomic
broadcast, the python script fdplot.py executes a number of
experiments with different random seeds, fanouts and ’infect
for x rounds’ values. The resulting datafile can be transformed
in a 3d plot showing the percentages of an atomic broadcast
for each configuration.
One of the most important criterion to evaluate the fair gossip
protocol is the distribution of how many peers have a certain
fanout, the ’Fanout/Peers’ plot. The control V alueDumper
stores the fanout F of each peer in every round. In a next
step, a new data file is computed by counting the number of
peers who have the same fanout F in one round. Therefore
there are as many plots as there have been cycles during the
experiment which show the evolution of how the peers are
distributed over the fanout.

IV. EVALUATION

During the implementation of such a high level algorithm
as proposed, there are a lot of design choices that have an
influence on the performance. In order to evaluate different
strategies and test cases, we need to define criteria which can
be used to judge the performance.

A. Evaluation Metrics

1) ’Fanout/Peers’ plot : For every round of our adaption
process, we can count how many peers have the same
fanout. So on the x-axis of the resulting plot is the fanout
range [Fmin, Fmax] and on the y-axis the number of
peers with a certain fanout. In the end there are R + R′

graphs that indicate the evolution of the distribution of
the fanout over the peers.

2) Global fanout Fglobal : Small fluctuations of the global
fanout

∑
i Fpi = Fglobal % F optimal

global =
∑

i Finit cannot
be avoided.
• There are no problems with the reliability if∑

i Fpi > F optimal
global .

• But if the global fanout drops
∑

i Fpi < F optimal
global ,

we loose reliability.
The global αglobal

r =
∑

i αi
r is directly linked to Fglobal.

Minimizing αglobal
r in one round signifies minimizing

the fluctuations of the global fanout Fglobal and the num-
ber of redistributions. The graphs display the average
fanout Faverage and average αaverage

r rather than the
global fanout Fglobal or αglobal

r .
3) Deviation of the prospected fanout Fprospected :

The difference between the fanout F after an adap-
tion phase and the prospected fanout Fprospected is the
Deviation = |F−Fprospected|. It determines how close
the peers came to reaching the fanouts that they wanted.

4) Number of redistributions: An elevated number of
redistributions in one round towards the end of the
adaption phase is likely to enlarge R′. In general, we
would like to keep the number of redistributions to a
minimum.
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5) Length of the adaption phase : We want the protocol
to be fair, reliable and stable for as long as possi-
ble. Therefore, the length of the total adaption phase
Rtotal = R + R′ needs to be minimized.

B. Test cases
The next step is to compose an algorithm, from the different

options proposed in the generic form, which satisfies all
evaluation metrics. The challenge is to find a good trade-off
between the length of the adaption phase on one side, and
αglobal

r , Fglobal and the number of redistributions on the other
side.
All tests simulate a network of 100’000 peers, each of which
starts with fanout Finit = Foptimal = 11. The boundaries for
the fanout are set to Fmin = 1 and Fmax = 21. All of those
evaluation metrics should be satisfied when applied to different
scenarios. The following scenarios have been considered.

1) Constant ∆B Distribution: The benefit of all nodes
is the same. As a consequence, all peers should have
to same fanout at the end of the adaption phase as at
the beginning Fnew = Fold because all compensations
cancel each other out. That all peers loose interest at
the same time is an extreme event but useful to test the
robustness of the protocol.

2) Uniform ∆B Distribution: The benefit of each node
is uniformly distributed over the interval [-range,range].
Thus the expectation value for ∆B is zero. We expect
the peers to be distributed uniformly among the fanout
interval [(1− range) · Finit,(1 + range) · Finit]

3) Bernoulli ∆B Distribution: There are two possible val-
ues a and b for ∆B and each node’s benefit corresponds
to one of those two values with the same probability. The
result we expect in the ’Fanout/Peers’ plot are two peaks
that are situated at (1 + a) · Finit and (1 + b) · Finit.

4) Gaussian(0,σ) ∆B Distribution: As with all the other
distributions, we expect the peers to be normally dis-
tributed over the fanout range with a mean equals to
Finit and a standard deviation similar to σ in appear-
ance.

C. Cumulative vs. Relative vs. Memoryless
To evaluate the different results between the cumulative, the

relative and the memoryless way to calculate the new αP+1 at
the beginning of an adaption phase, we consider the following
scenario. There are three adaption phases in serie, at the
beginning of each the peers generate a new ∆B using the
same distribtion. For the ∆B distribution, we apply a Bernoulli
variable with the two values [-0.3,0.3] and then we compare
the resulting ’Fanout/Peers’ plots for the constant method to
distribute αP+1 among αr[]. In Figure 12 (p. 8) you can see
the results of the simulations. The graph is expected to yield
two peaks, one for the peers who want to increase their fanout
by 30% and those who want to decrease it by 30%.We can
clearly see that the cumulative method is not suited for its
purpose because after only three rounds the ’Fanout/Peers’
plot is already distorted. In fact, half of the peers that could
decrease their fanout by 30% in the first adaption phase want

to increase their fanout by 30% in the second phase and
vice versa. The memoryless approach logically produces three
times the same graph since the fanout is reset to Finit at the
beginning of each adpation phase. Is there a way to increase
fairness by taking into account the previous adaption phase?
E.g. imagine two peers A and B with FA

old = a and FB
old = b,

a < b. Assume both peers had the same positive benefit
during the last round, thus calculate the same Fprospected =
Finit +(∆B ·Finit). Using the relative method, this results in
αP+1

A = Fprospected−a < Fprospected−b = αP+1
B . With αP+1

A
and αP+1

B we now have a mean to distinguish two peers who
have the same Fprospected. How do we define fairness? Which
of the peers has more right to reach Fprospected? For example,
let us say that a peer with a small benefit ∆B (thus running
’steadily’) has more right to reach its Fprospected than one
with a big benefit. Applied to the previous example this would
mean that B has more right to reach Fprospected. To increase
the possibility that peer B reaches Fprospected, we could define
that a peer decides in function of αP+1 whether to apply a
compensation or whether to redistribute it directly. The smaller
αP+1, the smaller the percentage to accept a compensation.
Still, there exists the prerequisite that if nothing is done with
αP+1

A and αP+1
B , both peers A and B should have the same

chance to reach Fprospected. For the graph in Figure 12 (p.
8) this means, since currently all αP+1 are treated the same
way, that the ’Fanout/Peers’ distribution should stay the same
for all three adaption phases. This is the case, therefore the
relative strategy is valid and can be extended to implement
a fairer protocol.

D. General observations for ’Fanout/Peers’ distribution

In Figure 13 on page 9 we can see results of one adaption
phase for each proposed scenario for the distribution of
∆B (from top to bottom: constant[-0.6], bernoulli[-0.6,0.6],
uniform[-0.6,0.6], gaussian(0,0.09)) applied to each of the
proposed strategies to distribute αP+1 over αr[] (from left to
right: constant, modulo, decreasing). The distributions of ∆B
are extensive, meaning almost all peers deliver a very different
number of interesting events in each phase. In reality we
expect the ∆B to relatively small (e.g. a normal distribution
with mean zero and a small variance). In this case the ∆B
distributions serve to determine the reaction of the network to
extreme events. We observe, by looking at each line seperately,
that the graphs look alike and more or less how they are
supposed to look like. It is worth noticing that the decreasing
strategy has the tendency to accumulate peers at the boundaries
Fmin and Fmax.

E. Fanout Global Fglobal

In this section we assume that we can work with the relative
method to calculate the αP+1 of the next adaption round.
We want to evaluate the effects of the different methods to
distribute αP+1 over the R adaption rounds. First, let us have
a look at the event when all peers want to decrease their
fanout by 60% (constant[-0.6]). In Figure 14 (p. 10) we can
see the evolution of Faverage. It is clear that the Fglobal will
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Fig. 12. Comparison between cumulative(top), relative(middle) and memoryless(bottom) strategy for calculation of αP+1 over three adaption phases using
a Bernoulli[-0.3,0.3] distribution for ∆B

drop below the F optimal
global because all the peers try to decrease

their fanout. In the graph on the left side, using the constant
method, the fanout drops to 10.5 at most. When using the
modulo or the decreasing method the fanout drops to 9.5 and
9 respectively, which can have an effect on the reliability of
the network. So the constant method has an advantage over
the two other methods regarding the global fanout Fglobal. But
looking at Figure 15 (p. 11), the disadvantage of the constant
method becomes apparent. Because all the peers change their
fanout by just 1 at the time, the length of the adaption phase
is variable and long. For a gaussian(0,0.36) ∆B distribution it
can take up to 18 rounds for the Fglobal to adjust. To be able
to compare the modulo and decreasing method, we can see in
Figure 16 (p. 12) that the αglobal

r is decreasing with every
round in the decreasing method, whereas with the modulo
method this value can fluctuate, depending on the modulo
for the last change αr[R]. In the graph displayed, you can
see that for the modulo method, αr[1]average is smaller than
αr[2]average. For the decreasing method, αr[1]average is the
largest of all.

F. Redistributions
Even though the redistributions can be embedded in normal

messages and thus don’t necessarily mean that extra messages

need to be transported over the network, we still want to min-
imize the number of redistributions necessary. More exactly,
minimizing the number of redistributions in one round is more
important than minimizing the overall number redistributions
because we want to maximize the probability of transporting
all redistributions over normal messages. Looking at Figure 17
(p. 13), we immediately see that the number of redistributions
is generally lower when using the constant method (1st row),
but they are distributed over more rounds. This is logical
because αr = 1 for all peers, and the network stays more or
less balanced during the adaption phase, e.g. the chance that a
peer receives a compensation that it cannot apply is minimal.
The modulo method (2nd row) also yields a smaller number of
redistributions compared to the decreasing method (3rd row).
This is due to the fact that αP+1 is uniformly distributed over
α1...(R−1)

r [] when using the modulo method. The decreasing
method assigns 50% of the αP+1 to αr[1]. The network is not
balanced at all after the first adaption round (see IV-E), thus
the probability that a peer receives a compensation that it is
not able to apply is bigger, and this explains why the number
of redistributions is more elevated.
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Fig. 13. ’Fanout/Peers’ plot for a first adaption phase. Top to bottom : constant[-0.6], bernoulli[-0.6,0.6], uniform[-0.6,0.6], gaussian(0,0.09). Left to right :
constant, modulo, decreasing strategy to distribute αP+1 over αr[]

G. Deviation of Fprospected

The deviation gives an indication about how close a peer
came to reach its prospected fanout Fprospected. Now it is
important to understand that we cannot simply say, the smaller
the deviation the better. In table I for example, if all peers
would like to decrease their fanout by 80 percent (constant[-
0.8]), theoretically they should all have the same fanout at the
end of the adaption phase as at the beginning, Fnew = Fold.
For the deviation, this means that it should be excatly the
difference deviation = F − Fprospected = −αP+1 (indeed
we have in this example : αP+1 = +∆B ·F , = +−0.8 ·11, =
+−8.8, = −9). Therefore the deviation can only be used as a
metric when comparing values that originated from the same
∆B distribution. In table I we can see that the average as
well as the variance deviation don’t differ among the same

∆B distribution. Therefore, to profit from this metric, several
adaption phases have to be taken into consideration (see VI-A).
Also, it would be interesting to track the deviation of a specific
peer over several adaption phases (see VI-B).

TABLE I
DEVIATION OF Fprospected

(avg,var) ∼Constant ∼Bern ∼Unif ∼Gauss
constant ( 9 , 9 ) ( 1.6 , 2.5 ) ( 1.6 , 1.65 ) ( 1.9 , 3 )
modulo ( 9 , 9 ) ( 1.5 , 2.4 ) ( 1.6 , 1.65 ) ( 1.9 , 3 )

decreasing ( 9 , 9 ) ( 1.5 , 2.4 ) ( 1.8 , 1.82 ) ( 1.9 , 3 )

H. Summarization
At this early stage, it is hard to say which combination of

the proposed methods works best for the fair gossip protocol.
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Fig. 14. Extreme Event : every peer has a benefit of ∆B = −0.6. Left to right : constant, modulo, decreasing strategy to distribute αP+1 over αr[]

Each of the methods has its advantages and disadvantages
as described during the evaluation. In the table II, those
observations are displayed in a more compact way.

TABLE II
OVERVIEW OF EVALUATION RESULTS (LEFT TO RIGHT: DIFFERENT

METHODS TO DISTRIBUTE αP+1 OVER αr [])

constant modulo decreasing
Adaption length R + R′ ↓ → ↑

Fglobal ↑ ↓ ↓
Redistributions ↑ → ↓

Stability ↑ → ↑
Fairness ↑ ↑ →

To see why the modulo method has disadvantage concerning
adaption length and stability, have a look at Figure 14 (p.
10). It is possible that due to an unfortunate combination of
adaption length and αP+1, the modulo αaverage

r [R] is much
larger than than the other αaverage

r [1...R − 1]. This means
that the R′ is likely to be longer and brings the network out
of balance just before the end of the adaption phase. The
decreasing method has a slight disadvantage concerning the
fairness because we saw in Figure 13 (p. 9) that it has the
tendency to accumulate peers at the boundaries Fmin and
Fmax when it shouldn’t.

V. USER MANUAL

The purpose of this section is to give instructions on how to
setup a development workstation. The requirements are a Java
SDK, a Python SDK and of course the Peersim framework.

A. Starting Simulations
All simulations are run using peersim. Nothing was changed

in the source of peersim itself, so you could work with the
binaries only (peersim-1.0.1.jar at the time of writing), but
having access to the source is still useful to understand how
the FairGossip algorithm works. The class peersim.Simulator
is used to start a simulation by passing it the config file as
an argument. The config file for the FairGossip algorithm is
located in config/fairgossip.txt. To start a simulation using a
terminal :

1) go to the source folder FairGossip/src and compile
all classes in the folders fairGossip/controls , fairGos-

sip/protocols and fairGossip/utils using javac fairGos-
sip/XXX/*.java (or type make in the base folder Fair-
Gossip to compile all classes, peersim and FairGossip)

2) go to the folder base folder FairGossip and make sure
there are all libraries (djep-1.0.0.jar, jep-2.3.0.jar). Start
the simulation by typing
java -classpath jep-2.3.0.jar:djep-1.0.0.jar:src peer-
sim.Simulator config/fairgossip.txt.

Of course it is much more convenient to setup a project in an
IDE as for example Eclipse.

B. Scripts
Two python scripts were used, one for the ’Fanout/Peers’

plot which serves as a metric for the evaluation and the other
one to evaluate the dissemination of messages concerning
atomic broadcasts.

• peer fanout.py: This script collects the fanout data about
each peer in each round and then generates a data file for
each round which maps the fanout and the number of
peers with that specific fanout. This is done by iterating
over the fanout dump file of each round and counting
how many peers have the same fanout. Notice that in
order for the dump file to be generated, the control
fanoutdumper has to be activated in the config file for
the simulation (config/fairgossip.txt). After the script has
generated the data file it prepares a gnuplot file in the
folder reports/peers fanout.plt which can be plotted by
executing gnuplot peers fanout.plt. Last but not least the
script has to know the length of an adaption phase and
how many adaption phases were simulated. These two
variables have to be mapped from the config file of
the simulation. To executed the script, type python2.5
scripts/python/peer fanout.py in the FairGossip folder.

• fdplot.py: To use this script, the flag RDINFECT has
to be set to true in the control FairGossipObserver. The
script runs a number of experiments and creates a data
and a plot file to represent the results in a 3d plot.
By varying the random seed and iterating over different
fanout and ’infect for x rounds’ values the script tries to
determine under which condition the we have an atomic
broadcast (thus an increased reliability). This feature
could prove to be useful to test the reliability of the
FairGossip algorithm, up to know it has only been used
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Fig. 15. The evolution of Faverage over one adaption phase. From top to bottom : Gaussian, Uniform, Bernoulli. From left to right : Constant, Modulo,
Decreasing

to verify the correctness of the implementation. Notice
that the script generates its own configuration. It can be
executed by typing python2.5 scripts/python/fdplot.py in
the FairGossip folder. Since this script was used at a very
early stage of the project it might need some updates in
order to work properly. See Figure 18 for an example of
the plot.
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Fig. 18. Probability for an atomic broadcast

• PlotandMoveToReport.sh: A little executable script that

collects all the simulation results and moves them to the
folder reports/report ( the system output if you redirect it
to the file reports/log/syso output.txt, all graphs from the
plot file created by the FairGossipObserver and all graphs
from the ’Fanout/Peers’ script) ). The script is located
in reports/PlotandMoveToReport.sh, execute by typing
./PlotandMoveToReport.sh (after making it executable by
chmod u+x PlotandMoveToReport.sh). Notice that the
reports are moved rather than copied to avoid too much
confusion.

VI. FUTURE WORK

As always and as with almost everything, there are a lot
of things than can be worked on. Here an overview over the
different directions.

A. Next steps

• The deviation of Fprospected in regard to F at the end
of an adaption phase should be measured over several
adaption phases. This should give us more information
about the two different approaches to calculate αP+1,
the relative (fig. 7, p. 4) and the memoryless approach
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Fig. 16. The αaverage
r for a gaussian(0,0.35) ∆B distribution. Left to right : constant, modulo, decreasing strategy to distribute αP+1 over αr[]

(fig. 8, p. 5), e.g. we want the deviation to be the same
in case all peers are given the same priority (see IV-C).

• At this point, the benefit ∆B is generated according a
random variable. Implementing the concept of a message
would enable us to calculate a real benefit ∆B. The
model would be closer to reality and the effects of the
different strategies on the stability and reliability could
be examined more closely.

• As described in IV-E, there could be problems with the
reliability of the network in case Fglobal < F optimal

global .
The effects could be tested using the script fd plot.py
(see V-B), which simulates a series of experiments to
determine the probability of an atomic broadcast.

• The effect of the length of the adaption phase on the result
is difficult to determine because the effects of numerous
proposed strategies are too significant to draw conclusions
about the length of the adaption phase. The amounts
of simulations and analysis would exceed the scope of
this project, especially when considering that the impact
probably won’t be huge.

B. Additional evaluation

• Refine the ability to measure the deviation of Fprospected,
e.g. implement an observer who tracks peers along the
adaption process. We could then study the differences
between the deviation from peers with small a αP+1 and
the ones with big a αP+1 (see IV-C).

• The lower and upper limits for the fanout F , Fmin

and Fmax, surely have an effect on the performance
of the algorithm. At this point it is difficult to actually
determine the consequences of changing these bounds.
As an example, see Figure 19 on page 15. All graphs
are as expected, notably maybe the logically much larger
number of redistribution with narrow range.

C. Ghost Fanout

In the FairGossip algorithm as proposed, all peers change
their fanout F during an adaption phase. Another approach
would be the perfom the adaption process on a Ghost Fanout
Fghost, an artificial fanout that is affected only after Fglobal

is stable again. The challenge with this approach is that there
is no mean to detect when this ghost fanout is stable again.

A solution would be to fix a adapation length where the
probability of a stable system is close to 1.

D. Network size
All the theory works fine when considering a network that

constantly has the same number of nodes. But in reality peers
join and quit the network frequently. A peer doesn’t know
the size of the network, so how can we guarantee reliability
without knowing what the global fanout Fglobal should be?
One solution would be to estimate the size of the network,
which is difficult to implement. Another would be to fix the
optimal fanout Foptimal higher than what it has to be in order
to have a margin for a growing network.

E. Self Punishing
The fair algorithm proposed is only fair as long as all

participating peers have clear conscience. Unsocial peers could
easily corrupt the network by just decreasing their own fanout
and not accepting any compensations that would increase it.
There is no mechanism that could prevent or even detect such
behavior in a push-based gossip algorithm. What makes it even
worse with the fair algorithm proposed, a peer could decrease
its fanout and others would even bear his workload.

F. Contagion period
At this point the nodes only change their fanouts. We

can also imagine that the fanout stays constant and it is the
contagion period that is being modulated by the node. This
means that a peer disseminates a message not only one time
but multiple times (’infect for x rounds’). The mechanism
that guarantees stability would need to be adapted but could
work on the same principles. One could also imagine a hybrid
version where a peer changes both its fanout and its contagion
period.

G. Push-Pull algorithm
A logical advancement would be to extend the existing

push-algorithm to be a push-pull-algorithm. The advantages
are numerous, just to name a few :

• A peer could send redistribution only to peers who can
compensate it
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Fig. 17. The number of redistributions during the first adaption phase. Top to bottom : constant[-0.6], bernoulli[-0.6,0.6], uniform[-0.6,0.6], gaussian[0.6].
Left to right : constant, modulo, decreasing

• Reliability issues could be resolved by saying that a peer
can only lower its fanout after the change was already
compensated

• etc.
Unfortunately and logically, there are also disadvantages that
make life more complicated:

• Added complexity
• Concurrency problems
• Added network traffic
• etc.

On the other hand, when one attempts to deploy the proposed
FairGossip algorithm onto a real distributed system (see VI-H),
the communication between peers needs to be reliable anyway,

e.g. a peer doesn’t know what happens with a compensation
that it distributes, but it still needs to be certain that the
compensation has been received on the other side. As a
consequence, some sort of push-pull algorithm is already
needed when deploying the push-based FairGossip algorithm,
therefore it would make sense to extend the algorithm when
performing that step.

H. Deploy onto a distributed system
Peersim is a good way to conceptually develop the idea

for the proposed fair protocol. But when the algorithm has
reached a certain stage, it makes sense to deploy it onto a real
distributed system to test its behavior. Only then we can test
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things like the reliability, the stability, the additional workload
compared to a standard gossip dissemination, the clustering
effects etc.

I. Fairness generalisation
The only parameter which is used to evaluate the benefit of

a peer is the the number of interesting events received in one
phase. One can easily imagine to use another parameter to cal-
culate the benefit. The FairGossip algorithm is not bound to the
number of events delivered but instead could be generalized
for any other measurable and comparable parameter. Consider
for instance the optimization of resource problem where the
load of each peer should be proportional to their capacities.
We can assume that here the benefit (the capacity) reflects the
average load (e.g.available bandwidth) of a peer during one
phase, and that the adaptivity mechanism we developed can
be used to lower the load on loaded peers and increase it on
unloaded ones.
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Fig. 19. Comparison between a fanout range of [1,21] (left) and [5.16] for a ∼Gaussian(0,0.04).Top to Bottom : ’Fanout/Peers’ plot, Faverage, αaverage
r ,

redistributions.


