
Softw Syst Model
DOI 10.1007/s10270-011-0205-0

REGULAR PAPER

A modular timed graph transformation language
for simulation-based design

Eugene Syriani · Hans Vangheluwe

Received: 30 April 2009 / Revised: 18 April 2011 / Accepted: 17 May 2011
© Springer-Verlag 2011

Abstract We introduce the MoTif (Modular Timed graph
transformation) language, which allows one to elegantly
model complex control structures for programmed graph
transformation. These include modular construction, paral-
lel composition, and a temporal dimension in addition to the
usual transformation control structures. The first part of this
contribution formally introduces MoTif and its semantics is
based on the Discrete EVent system Specification (DEVS)
formalism which allows for highly modular, hierarchical
modelling of timed, reactive systems. In MoTif, graphs are
embedded in events and individual transformation rules are
embedded in atomic DEVS models. A side effect of the use of
DEVS is the introduction of an explicit notion of time. This
allows one to model a time-advance for every rule as well as
to interrupt (pre-empt) rule execution. In the second part, we
design a case study to show how the explicit notion of time
allows for the simulation-based design of reactive systems
such as modern computer games. We use the well-known
game of PacMan as an example and model its dynamics in
MoTif. This also allows the modelling of player behaviour,
incorporating data about human players’ behaviour, and reac-
tion times. Thus, a model of both player and game is obtained
which can be used to evaluate, through simulation, the play-
ability of a game design. We propose a playability perfor-
mance measure and change the value of some parameters of
the PacMan game. For each variant of the game thus obtained,
simulation yields a value for the quality of the game. This

Communicated by Prof. Robert France.

E. Syriani (B) · H. Vangheluwe
McGill University, Montréal, Canada
e-mail: esyria@cs.mcgill.ca

H. Vangheluwe
University of Antwerp, 2020 Antwerp, Belgium
e-mail: hv@cs.mcgill.ca

allows us to choose an “optimal” (from a playability point of
view) game configuration. The user model is subsequently
replaced by a visual interface to a real player, and the game
model is executed using a real-time DEVS simulator.

Keywords Simulation · DEVS · Graph transformation

1 Introduction

In 1996, Blostein et al. [1] described some issues regarding
the practical use of graph rewriting, at that time very sporadic.
Graphs are a versatile and expressive data representation,
and there are many advantages to the explicit representation
(as opposed to encoding in the form of programs) of graph
transformations. Issues such as expressiveness, scalability,
and re-use of models of graph transformation as well as
the ability to integrate such models with traditional soft-
ware components were considered critical enablers for wide-
spread use of graph transformations. During the past decade,
several of these issues have been addressed and tools have
been developed. In particular, tools such as Fujaba [2]
allow for programmed graph rewriting. The purpose of pro-
grammed graph rewriting is to be able to model the con-
trol structure of (graph) transformation. This is done in
terms of control flow primitives such as sequence, branching
(choice), and looping (iteration). Hierarchical encapsulation
allows for modular construction (and re-use) of control flow
structures. Some tools add expressiveness through non-
determinism and parallel composition. In general, it is also
desirable for a control language to be target (programming)
language neutral. The explicit incorporation of time is rare
in current transformation languages. The above requirements
were summarized recently in [3]. Programmed (or structured)
graph transformation is one of the keys to making graph

123

E. Syriani, H. Vangheluwe

transformation scalable and hence industrially applicable.
Tools such as Fujaba [2], GReAT [4], VMTS [5], PROGReS
[6], and MOFLON [7] support programmed graph transfor-
mation. These tools mostly introduce their own control flow
language.1

The main contribution of this paper is the re-use of a dis-
crete-event modelling and simulation formalism, such as the
Discrete Event system Specification (DEVS), to describe the
scheduler of a model transformation. Since DEVS inherently
allows to build hierarchical models, the transformation lan-
guage becomes highly modular by re-using specific compo-
nents of a transformation. Another side-effect of using DEVS
is the explicit introduction notion of time in model trans-
formations. This allows one to model a time-advance for
every rule as well as to interrupt (pre-empt) rule execution.
Thanks to this notion of time, we implement a simulation-
based design of reactive systems such as modern computer
games. More precisely, the dynamics of the game is entirely
modelled in the model transformation language.

We show the advantages of our approach by means of the
well-known PacMan game example, presented in Sect. 2.
In Sect. 3 we formally introduce the Modular Timed graph
transformation (MoTif) formalism as well as its semantics,
based on the DEVS formalism. Subsequently, the suitabil-
ity of MoTif for Modelling and Simulation-based Design
is demonstrated. The Pacman game is entirely modelled in
MoTif in Sect. 4, including the game semantics, the trans-
formation environment as well as the player behaviour. The
simulation and optimization experiments as well as the syn-
thesis of a real-time Pacman web application are explained in
Sect. 5. Section 6 compares MoTif with other existing con-
trolled graph transformation tools and languages. Finally, in
Sect. 7, we conclude with advantages of our approach as well
as future work.

2 The PacMan formalism

In order to illustrate the power of MoTif in the context
of simulation-based design, we use a simplified version of
the well-known video game PacMan throughout this paper.
The PacMan language syntax and semantics are inspired
by Heckel’s tutorial introduction to graph transformation
[8]. In what follows, we first synthesize a PacMan-specific
visual modelling environment in our tool AToM3 (A Tool
for Multi-formalism and Meta-Modelling) [9] by defining
a meta-model of the PacMan language. Subsequently, we
model the semantics of the PacMan language by means of
graph transformation rules.

1 Though Fujaba’s Story Diagrams are heavily based on UML Activity
Diagrams.

Fig. 1 The PacMan meta-model

2.1 The PacMan language (Abstract and concrete syntax)

The PacMan language has five distinct syntactic elements:
PacMan, Ghost, Pellet, GridNode, and ScoreBoard.
Figure 1 shows the meta-model (model of the abstract
syntax) of this modelling language. PacMan, Ghost, and
Pellet objects can be linked to GridNode objects with an
On association. This represents that these objects can be
“on” a grid node. The four self-associations Left, Right, Top,
and Bottom between GridNode objects represent the geo-
metric organization of the game area, similar to the classic
PacMan video game. At a semantic level, these associations
denote that PacMan and Ghost “may move” to a connected
GridNode. A Scoreboard object holds an integer valued
attribute score. For the concrete syntax of the PacMan lan-
guage, an icon is associated with each of the meta-model’s
classes. For each of the meta-model’s associations, a geo-
metric/topological constraint relation is given. The On asso-
ciation between PacMan and Ghost entities for example
is rendered as the PacMan icon being centred over the grid
node icon.2 Note that in this example, restrictions are applied
neither on the number of instances of each meta-model class
nor on the number of links to a GridNode instance.

2.2 The PacMan Semantics (Graph transformation)

The operational semantics of the PacMan formalism is
defined by means of a collection of (graph) transformation
rules. These rules take as input a host graph (model) and pro-
duce as output the transformed graph. The resulting graph
may be only partly modified, e.g., the GridNode elements
are preserved in the transformation. In MoTif, a rule con-
sists of a left-hand side (LHS), a right-hand side (RHS), and
optionally a negative application condition (NAC). The LHS
represents a pre-condition pattern to be found in the host
graph along with conditions on attributes. The RHS repre-
sents the post-condition after the rule has been applied on the
matched subgraph by the LHS. The NAC represents what pat-
tern condition shall not be found in the host graph, inhibiting
the application of the rule if it is. In MoTif, the application

2 Note that this is why links (instances of association) are not shown
explicitly in Figs. 2–5.

123

MoTif for simulation-based design

Fig. 2 PacMan Semantics: rule for Ghost killing PacMan

Fig. 3 PacMan Semantics: rule for PacMan eating Pellet

Fig. 4 PacMan Semantics: rule for Ghost moving right

Fig. 5 PacMan Semantics: rule for PacMan moving right

of a rule follows the Single Push-Out approach [10]. Addi-
tionally, specific node binding through pivot3 information
provided to a rule can be used for local search.

Concrete visual syntax is used in the rules in Figs. 2–5.
This feature of AToM3 is particularly useful for domain-spe-
cific modelling. The kill rule in Fig. 2 shows killing: when
a Ghost object is on a GridNode which has a PacMan object,
that PacMan object is deleted. The eat rule in Fig. 3 shows
eating: when a PacMan object is on a GridNode which has
a Pellet object, the Pellet object is deleted and the score gets
updated (using an attribute update expression). The ghost-
Right rule in Fig. 4 expresses the movement of a Ghost
object to the right and the pacmanRight rule in Fig. 5 the
movement of a PacMan object to the right. Note the pres-
ence of a NAC in the last rule which prevents the PacMan
from moving to a GridNode which holds a Ghost (as this

3 The term pivot refers to a similar concept in the GReAT language [4]
for parameter passing: it represents an explicit reference to an element
matched by a rule.

would imply certain death). Similar rules to move Ghost and
PacMan objects up, down, and left are omitted.

3 The MoTif language

The collection of rules described in the previous Section does
not specify a rule application order. This Section introduces
a control flow language which allows modellers to explic-
itly describe the order in which rules will be applied. This
control flow language is based on the DEVS simulation for-
malism. In the following, it will be shown how the modularity
and expressiveness of DEVS allow for elegant encapsulation
of programmed model transformation, (i.e., graph rewriting)
building blocks.

3.1 The discrete event system specification formalism

The DEVS formalism was introduced in the late seventies
by Zeigler as a rigorous basis for the compositional model-
ling and simulation of discrete event systems [11]. It has been
successfully applied to the design, performance analysis, and
implementation of a plethora of complex systems such as
peer-to-peer networks [12], transportation systems [13], and
complex natural systems [14].

Figure 6 shows a possible meta-model of DEVS in UML
Class Diagram notation. A DEVS model (the abstract class
Block) is either an AtomicBlock or a CoupledBlock. An
atomic model describes the behaviour of a timed, reactive
system. A coupled model is the parallel composition of
several DEVS sub-models which can be either atomic or
coupled. Submodels have ports, which are connected by
channels (represented here by the associations between the
different ports). Ports are directional and are either Inport or
Outport. The abstract classes (In/Out)port can be instanti-
ated as an (In/Out)port or a Coupled(In/Out)port, respec-
tively. Ports and channels allow a model to receive and send
events (any subclass of Event) from and to other models.
A channel must go from an output port of some model to
an input port of a different model, from an input port of a
coupled model to an input port of one of its sub-models, or
from an output port of a sub-model to an output port of its
parent model, as depicted by the associations of Fig. 6. Note
that the dynamic semantics of DEVS is not expressed by the
meta-model. It will be informally presented hereafter.

An atomic DEVS model is a structure
〈
S, X, Y, δint, δext,

λ, τ
〉
. S is a set of sequential states. X is a set of allowed

input events. Y is a set of allowed output events. There
are two types of transitions between states: δint : S → S
is the internal transition function and δext : Q × X → S
is the external transition function. Associated with each
state are τ : S → R

+ ∪ {+∞}, the time-advance function
and λ : S → Y , the output function. In this definition,

123

E. Syriani, H. Vangheluwe

Fig. 6 The DEVS meta-model

Inport

name: string

CoupledBlock

selectFunction(list of Block): Block

AtomicInport CoupledInport

AtomicBlock

externalTransition(Event): State
internalTransition(State): State
outputFunction(State): Event
timeAdvance(State): Real

Block

name: string

State

declarations: string

Time

time: Real

1

state

*

inports

*

inports

CoupledOutportAtomicOutport
*

outports

*

outports

**

*

*

*

Event

**

Outport

name: string

1

1

1

1

*

sub-models

*

channels

channels

channels

channels

Q = {(s, e) |s ∈ S, 0 ≤ e ≤ τ (s)} is called the total state
space. For each (s, e) ∈ Q, e is called the elapsed time, the
time the system has spent in a sequential state s since the
last transition. The state of the atomic DEVS is initialized to
q0 = (s0, e0), but in the sequel we only consider s0 for sim-
plicity. When the time is infinite, it is said to be passivated,
and when it is zero, it is said to be transient.

Informally, the operational semantics of an atomic model
is as follows: the model starts in its initial state. It will remain
in any given state for as long as the time-advance of that state
specifies or until input is received on some port. If no input
is received, after the time-advance of the state expires, the
model first (before changing state) produces an output event
as specified by the output function. Then, it instantaneously
jumps to a new state specified by the internal transition func-
tion. However, if an input event is received before the time
for the next internal transition, then it is the external transi-
tion which is applied. The external transition depends on the
current state, the time elapsed since the last transition, and
the input event.

To illustrate the atomic DEVS concept, consider a user
of a transformation system, who receives a graph G every
time a rule is applied. Furthermore, after analysing the graph,
he outputs a decision encoded as an integer n ∈ N. We
model the user’s behaviour4 by an atomic model m. It has
two states S = {I DL E, AN ALY Z E} × N; the state is
also used to store the computed integer. m can only receive
a graph as input and hence X = {G} and send an inte-
ger as output and hence Y = N. S is initially in I DL E
mode. Upon reception of G, m applies the external transition

4 This example is a simplification of the UserBehaviour model to be
introduced in Sect. 4.2.

δext((I DL E, e), G) = AN ALY SE . It stays in AN ALY Z E
mode, until the time advance τ(AN ALY Z E) = 5 expires.
Then, m outputs λ(AN ALY Z E) = n and subsequently
applies the internal transition δint(AN ALY Z E) = I DL E .
m then stays in this mode until an external input is received,
since τ(I DL E) = +∞.

A coupled DEVS model named C is a structure 〈X, Y, N ,

M, I, Z ,select〉 where X and Y are as before. N is a set
of component names (or labels) such that C 	∈ N . M =
{Mn|n ∈ N , Mn is a DEVS model (atomic or coupled) with
input set Xn and output set Yn} is a set of DEVS sub-models
or components. I = {In | n ∈ N , In ⊆ N ∪ {C}} is a set of
influencer sets for each component. Z = {Zi,n|∀n ∈ N , i ∈
In, Zi,n : Yi → Xn ∨ ZC,n : X → Xn ∨ Zi,C : Yi → Y } is
a set of transfer functions between connected components.
select : 2N → N is the select or tie-breaking function.
2N denotes the powerset of N (the set of all sub-sets of N).

The connection topology of sub-models is expressed by
the influencer set In of the components. Note that for a given
model n, this set includes not only the external models that
provide inputs to n, but also its own internal sub-models that
produce its output (if n is a coupled model). Transfer func-
tions (Zi,n) represent output-to-input translations between
components. They can be thought of as channels that make
the appropriate type translations. For example, a “departure”
event output of one sub-model is translated to an “arrival”
event on a connected sub-model’s input. The select func-
tion takes care of conflicts as explained below.

The semantics for a coupled model is, informally, the par-
allel composition of all the sub-models. A priori, each sub-
model in a coupled model is assumed to be an independent
process, concurrent to the rest. There is no explicit method of
synchronization between processes. Blocking does not occur

123

MoTif for simulation-based design

m1 m2

c

Fig. 7 A hierarchical DEVS model

except if it is explicitly modelled by the output function of
a sender, and the external transition function of a receiver.
There is, however, a serialization whenever there are multi-
ple sub-models that have an internal transition scheduled at
the same time. The modeller controls which of the conflict-
ing sub-models undergoes its transition first by means of the
select function.

To illustrate the coupled DEVS concept, we extend the
previous example by involving different decision makers. It
is visually depicted in Fig. 7. Suppose we now have two
decision blocks m1 and m2, where mi deterministically out-
puts i . The task is to output the computed numbers when a
graph is received. For that, we construct a coupled model c
where X = {G} and Y = N. We label the two inner models
M = {m1, m2} by N = {1, 2}, respectively. We then connect
the inport of c to the inport of m1 and the inport of m2. We also
connect the outports of both m1 and m2 to the outports of c.
Therefore, I = {I1 = {c} , I2 = {c} , Ic = {1, 2}}. As for the
transfer function, we define Zc,1(G) = Zc,2(G) = G for
the input-to-input channels and Z1,c(n) = Z2,c(n) = n for
the output-to-output channels. At simulation time (run-time),
after G is received, m1 and m2 are scheduled to output and
then perform their internal transition at the same time, since
their time advance is 5 and they received the input at the same
time. The select function then chooses which inner model
will execute first, e.g., set select({1, 2}) = 1.

We have developed our own DEVS simulator called py-
thonDEVS [15], grafted onto the object-oriented scripting
language Python. We have used pythonDEVS for the work
described in this paper.

3.2 Controlled graph transformation in DEVS

MoTif is a controlled graph transformation language. It offers
a clean separation of the transformation entities, (i.e., the
rewriting rules) from the structure and flow of execution of
the transformation. While Sect. 2.2 outlined the graph trans-
formation rules, we focus here on the structural and control
flow aspects of MoTif. Figure 8 shows how a MoTif model
is a DEVS model specialized for graph transformation by
extending the meta-model in Fig. 6.

The central elements of this DEVS-based graph transfor-
mation meta-model are the rule blocks. The graphs to be
transformed are embedded in the events that flow through
the ports from block to block. The atomic block ARule (for
“Atomic Rule”) is the smallest transformation entity and the

coupled block CRule (for “Coupled Rule”) is meant for
composition of rule blocks. A rewriting rule is part of the
state of an ARule (mentioned as ARuleState), as a refer-
ence to a compiled version of the rule (a function to be called
whenever the rule needs to be invoked). Rule application is
performed in two phases: (1) the matching, where all pos-
sible matches are found and (2) the transformation on one
or more matches. The ARuleState also keeps track of the
graph and pivot received. The time advance of an ARule can
be specified at modelling time to set its execution time (both
match and transform). If not set, the time advance is +∞.
Note that the time attribute of ARule parametrizes its time
advance function.

ARules receive events from their AModelIn port (this is
depicted by the inherited aggregation referring to inports).
Henceforth, we will also refer to such events as “packets”
as they have an internal structure, containing a graph and
optionally a reference to a matched element, i.e., the pivot
node. If a pivot is provided, the match of a rule is bound to
that node. In case of success, (i.e., when at least one match
has been found), an event containing the transformed graph
is emitted through the ASuccessOut port. In case of fail-
ure, the original graph is sent through the AFailOut port.
Furthermore, it is possible to enable pivot passing for these
two outports. For the success outport, either the new pivot
specified by the rewriting rule or the original received pivot
is passed onto the connected block. In the case of multiple
matches found in the received graph, a host graph received
by the ANextIn port will only apply the transformation on
the next match without running the matching phase again.
This feature is very useful for complex flow logic and to
increase performance. On reception of an event through the
ACancelIn port, the rule application is cancelled. The can-
cel operation prohibits the rule from transforming its current
match. Similar ports are available for a CRule block. They
serve as interfaces from incident blocks to sub-models.

As in a general purpose DEVS model, atomic and coupled
rule blocks are connected through their ports. One-to-many
or many-to-one connections are possible. The semantics of an
(A/C)SuccessOut outport5 connected to many (A/C)Mode-
lIn inports is the parallel execution of the rules encoded in
the receiving blocks.

In the MoTif visual modelling language, the concrete syn-
tax of an ARule is a single rectangle frame as illustrated in
Fig. 9 for the Eat block. The top left triangle on a rule block
represents the ModelIn port. On the top right, the triangle
with a horizontal line through it is the CancelIn port. The
two small filled triangles on the left represent the NextIn port.
The bottom left tick symbol is the SuccessOut port and the
bottom right “X” symbol is the FailOut port. Pivot passing
is enabled when an outport is circled. A MoTif sub-model

5 The (A/C)FailOut has an analogous semantics.

123

E. Syriani, H. Vangheluwe

Fig. 8 The MoTif meta-model,
based on the DEVS meta-model

encoding transformation rules can be part of a CRule. This
is, for example the case in Figs. 9 and 10. CRules are visually
depicted by a double rectangle frame. The same ports appear
on both atomic and coupled transformation models which
implies that they can be used interchangeably to thus modu-
larly build complex hierarchical transformation models.

In graph transformation, it is sometimes desirable to non-
deterministically select one rule to be applied when several
other also match. That is why MoTif introduces the Selec-
tor block. Its purpose is to receive, through its ASuccessIn
inport, the transformed graph sent from an ARule that has
been chosen by the select function. Instantaneously it out-
puts an event via its ACancelOut outport, forcing all remain-
ing rules to cancel their transformation. Then, with a time
advance of 0, the Selector passes the packet it received to
the next block(s) via its ASuccessOut port. In case of fail-
ure of all ARules, the rule selected by the select func-
tion sends its original packet to the AFailIn inport of the
Selector. In return, the Selector forces the cancellation of
all these rules and outputs the packet received through its

AFailOut port. For example, in the pattern in Fig. 10,
the Selector will select at most one of the four Pacman
movements, non-deterministically. Visually, a Selector is
depicted by a dashed-line rectangle frame with different
inports and one more outport. The top left thick-lined tri-
angle is the SuccessIn port. The top right filled triangle is
the FailIn port. The top middle triangle pointing up with a
line through it is the CancelOut port.

Since the semantics of DEVS is the parallel composition
of atomic blocks, MoTif allows rules to be applied in parallel.
This leads to what we will call “threads” of rule applications.
A Synchronizer is needed to merge and synchronize con-
current threads. Our approach uses in-place transformation
of models, which means that the events sent and received are
references to the host model, in contrast with out-place trans-
formation where rules work on copies of the host model [16].
This avoids the undecidable problem of merging transformed
models and is more memory efficient, but parallel execu-
tion requires special care. The Synchronizer waits until all
the threads have sent their packets through its ASuccessIn

123

MoTif for simulation-based design

Fig. 9 MoTif model showing a recursive transformation. The
PacmanMove CRule encapsulates the sub-pattern in Fig. 10. The
upper one encodes PacMan trying to move and the lower one is to
actually make the move. The “X” on a CRule is only for visual syn-
tax, indicating that it contains XRules encapsulating back-tracking.
The detailed semantics of this sub-model is formally described by an
execution trace in the appendix

or AFailIn inports. Only then will it send the transformed
graph through its ASuccessOut port if at least one thread
succeeded. Otherwise, it will send the unmodified graph
through its AFailOut port. Figure 11 illustrates the use of the
Synchronizer model. The Synchronizer (dotted line rect-
angle frame) synchronizes two threads: the Ghost movement
and the Pacman movement.

To increase the expressiveness of the MoTif transfor-
mation language, additional rule blocks have been added.
Among them is the FRule (“For all Rule”) which will be
used in our PacMan example. It is an ARule that applies its
transformation phase to all the matches found (in arbitrary,
but deterministic and repeatable order, through the use of a
pseudo-random uniform generator) before sending the new
graph. The matches are assumed to be parallel independent
[10]. Two matches are parallel independent if no overlap-
ping matched element is modified (node deletion or attribute
modification) by the rule when applied. The purpose of the
FRule is purely syntactic. It is syntactic sugar for applying

Fig. 11 An example of rules to be applied in parallel and then syn-
chronized

the rule iteratively over all matched subgraphs. An FRule
is represented using the same concrete visual syntax as an
ARule, annotated by an “F”.

The SRule (“Star Rule”) is a special rule block which
allows a rule to execute as long as possible. That is, after
the received graph is matched and transformed, the resulting
packet is then matched by the same rule. This continues until
no more matches can be found in the resulting packet. Care
should be taken when using this construct as it may result
in an infinite loop. The SRule is represented using the same
concrete visual syntax as an ARule, annotated by an “*”.

Another special rule block is the XRule (“Transactional
Rule”). It extends the ARule with memory capacity, which
provides back-tracking. It keeps a stack of host graphs before
applying the rule in the XRuleState. Through XRules,
MoTif allows for recursion. This will be illustrated in
Sect. 4.2 when analysing different types of players. The
XRule is represented using the same concrete visual syntax
as an ARule, annotated with an “X”.

The formal semantics of each of the above blocks is
detailed in Appendix A.

3.3 Soundness of MoTif

When connecting MoTif elements, by providing channels
between ports, the resulting model defines an execution flow

Fig. 10 The PacmanMove
CRule with non-deterministic
selection of XRules

123

E. Syriani, H. Vangheluwe

Fig. 12 DEVS-based
programmed graph rewriting
architecture

Selector

Synchronizer

class pacDie:
 def match(packet):
 ...
 def execute():
 ...

class pacDie:
 def match(packet):
 ...
 def execute():
 ...

class Eat(ARule):
 def extTransition():
 packet = self.peak(self.graph_in)
 self.state.rule.match(packet)
 return self.state

 def intTransition():
 return self.state

 def outputFnc():
 if (self.state.rule.hasMatch()):
 self.poke(self.success_out, self.execute())

 def timeAdvance():
 return self.state.time

class Kill(ARule):
 def extTransition():
 packet = self.peak(self.graph_in)
 self.state.rule.match(packet)
 return self.state

 def intTransition():
 return self.state

 def outputFnc():
 if (self.state.rule.hasMatch()):
 self.poke(self.success_out, self.execute())

 def timeAdvance():
 return self.state.time

Specifiy the graph transformation rules

Compile

Compile

Specify the control structure of the transformation

import

(py)DEVS code

Simulate

Trace

Classes encoding the rules

Kill
kill

kill

Kill :

ARule

Kill

Eat

G
E
N
E
R
A
T
E

CRule

GhostMove

Rules Used
>1: PacManUp
>2: Eat
>3: PacManDown
>4: Eat
>5: PacManDown
>6: Eat
>7: PacManDown
>8: Eat
>9: GhostRight
>10: GhostDown
>11: Kill

of a graph transformation. In order to ensure a proper flow,
Proposition 1 states that whenever a packet is received by a
MoTif element, a packet is eventually output from that entity.

Proposition 1 Given an atomic MoTif element
〈
X, Y, S,

δint, δext, λ, τ
〉
, let Se ⊆ S be the set of all possible states

resulting from the application of δext. Let S f ⊆ S be the set of
all possible states where τ is finite. We then have ∀s ∈ S, λ(s)
is defined ⇔ s ∈ Se ∩ S f .

Proof The sufficient condition can be easily checked from
the definition of each element. That is, if s is a state result-
ing from δext and τ(s) is finite, then λ(s) is defined. For the
necessary condition, note that neither the initial state nor a
state produced by δint leads to an output as the time advance
is infinite. ��

The MoTif language is not restricted to these constructs:
pure atomic and coupled DEVS models are also allowed. The
modeller can thus increase the expressiveness of the trans-
formation model by adding customized behaviour. However,
soundness of the transformation cannot be ensured if an

arbitrary atomic DEVS model is involved in the transfor-
mation. By default, the MoTif code generator makes use of
this feature when compiling the model down to an executable
model transformation environment, by inserting a model of
the interaction between the user of the transformation and
the transformation model.6 Using this generative approach,
different transformation environments can easily be synthe-
sized (allowing for example step-by-step transformation exe-
cution for debugging purposes, as opposed to interruptible
run-to-completion execution).

4 Modelling the PacMan case study

At the heart of our approach lies the embedding of graphs
in DEVS events and of individual transformation rules into
atomic DEVS blocks. Figure 12 shows the workflow of our

6 Using atomic DEVS models with arbitrary state and transition func-
tions in MoTif models does not guarantee proper transformation models
output as stated by Proposition 1. They can, however, be used if properly
defined, as in the case study in Sect. 4 for example.

123

MoTif for simulation-based design

approach and the compilations it comprises. First, we model
a collection of transformation rules using a domain-specific
visual notation (shown on the top left of the figure). Each of
these transformations is translated to a class with the same
name as the rule (kill is shown here on the top right).
The core of the generated code are the methodsmatchwhich
performs the matching, taking a (host) graph as argument,
and executewhich encodes the transformation phase. Sec-
ond, we build a hierarchical MoTif model, in the MoTif visual
modelling language (shown at the bottom left of the figure).
ARules contain a reference to the appropriate rule. Third, the
MoTif model gets compiled into a DEVS model: CRules get
translated into coupled DEVS models and ARules models
get translated into atomic DEVS models. In the latter, the
match method encoding the matching is called in the exter-
nal transition and the execute method encoding the trans-
formation is called in the output function of the atomic DEVS
model. The transition function is triggered by an external
event (in which a to-be-transformed host graph is embedded).
Note that this is a reference to a graph as in-place transfor-
mation is used. Finally, all generated code is combined and
used as input to a DEVS simulator which performs the trans-
formation and produces an execution trace.

4.1 (Modelling) The transformation environment

The overall transformation model of the PacMan game is
shown in Fig. 13. The atomic DEVS block User is respon-
sible for user (player) interventions. It can send the initial
graph to be transformed, the number of rewriting steps to be
performed (possibly infinite), and some control information.
In our previous work [17], the control information was in the
form of key press codes to model the user input to a game. All
these events are received by the Controller, another atomic
DEVS block. This block encapsulates the coordination logic
between the external input and the transformation model.
It sends the host graph through its outport to a rule set
(the Automatic CRule) until the desired number of steps is
reached. If a control event is received, however, the Control-
ler sends the graph to another rule set (the UserControlled
CRule). The Automatic CRule expects only a graph to per-
form the rewriting on, whereas the UserControlled CRule
waits for a control, too. The details are omitted here to focus
on the overall structure.

The model described in [17] does not model a realistic,
playable game. When the user sends a key, the correspond-
ing transformation rule is executed and the graph is sent to
Automatic until another key is received or the PacMan entity
has been deleted. What prohibits this from being suitable for
a playable game is

– A rule consumes a fixed amount of time. From the graph
rewriting perspective, this allows one to compute the time

Fig. 13 The overall transformation model

complexity of the transformation. However, this does not
take into consideration any notion of game levels or real-
time behaviour which a game such as PacMan should
have.

– The user sends information to the rewriting system to (1)
configure the transformation engine and (2) to control
the transformation execution abstracted to the specific
domain of interest (PacMan movements). This model
does not take into account any playability issues, such
as the Ghost moving too fast versus a user reacting too
slowly.

In the sequel we present an extended model with focus on
timing information. This will allow us, through simulation,
to construct an optimally “playable” game.

4.2 Modelling the player

In current graph transformation tools, the interaction between
the user—the player in the current context—and the trans-
formation engine is hard-coded rather than explicitly mod-
elled. Examples of typical interaction events are requests to
step through a transformation, run to completion, interrupt an
ongoing transformation, or change parameters of the trans-
formation. In the context of the PacMan game, typical exam-
ples are game-events such as PacMan move commands. Also,
if animation of a transformation is supported, the time-delay

123

E. Syriani, H. Vangheluwe

Fig. 14 The enhanced User model

between the display of subsequent transformation steps is
encoded in the rewriting engine.

In contrast, in our DEVS-based approach, the interaction
between the user and the game is explicitly modelled and
encapsulated in the atomic DEVS block User (see Fig. 13).
Note that in this interaction model, time is explicitly present.

With the current setup, it is impossible to evaluate the qual-
ity (playability) of a particular game dynamics model without
actually interactively playing the game. This is time-consum-
ing and reproducibility of experiments is hard to achieve.
To support automatic evaluation of playability, possibly for
different types of players/users, it is desirable to explicitly
model player behaviour. With such a model, a complete game
between a modelled player and a modelled PacMan game—
an experiment—can be run autonomously. Varying either
player parameters (modelling different types of users) or Pac-
Man game parameters (modelling for example different intel-
ligence levels or speed in the behaviour of Ghosts) becomes
straightforward and alternatives can easily be compared
with respect to playability. For the purpose of the PacMan
game, player behaviour parameters can be user reaction speed
or levels of decision analysis (such as path finding). We have
explored these two dimensions of behaviour. Section 5 will
discuss reaction speeds more in-depth.

Obviously, evaluating quality (playability) will require a
precise definition of a playability performance metric. Also,
necessary data to calculate performance metrics need to be
automatically collected during experiments. Explicitly mod-
elling player behaviour can be done without modifying the
overall model described previously thanks to the modular-
ity of DEVS. We simply need to replace the User block
by a coupled DEVS block with the same ports as shown
in Fig. 14. We would like to cleanly separate the way a
player interrupts autonomous game dynamics, (i.e., Ghost
moving) on the one hand and the player’s decision making
on the other hand. To make this separation clear, we refine the
User block into two sub-models: the User Interaction and

the UserBehaviour atomic DEVS blocks. On the one hand,
the User Interaction model is responsible for sending con-
trol information such as the number of transformation steps
to perform next, or a direction key to move the PacMan.
On the other hand, the UserBehaviour block models the
actual behaviour of the player. This is often referred to as the
“AI” of a Non Player Character (NPC) in the game commu-
nity. It is this block which, after every transformation step,
receives the new game state graph, analyses it, and outputs
a decision determining what the next game action (such as
PacMan move up) will be. Also, since it is the UserInter-
action block which keeps receiving the game state graph,
we chose to give this block the responsibility of sending the
initial host graph to the transformation subsystem.

An atomic DEVS block, Dispatch, receives the user
action and branches the execution to the corresponding rule to
be triggered. Thus, in this approach, the event-driven execu-
tion of the transformation is embedded in the transformation
model rather than in the rule itself such as in [18,19]. There,
the notion of Event-driven Graph Rewriting was proposed
in the context of visual modelling: a graph rewriting rule is
triggered in response to a user action. More precisely, the
rule itself is augmented to behave according to the event it
received. In MoTif, we have separated the event reaction from
the rule itself. When the UserBehaviour coupled DEVS
block emits the event, it is fed to the UserControlled model
via the Controller as shown in detail in Fig. 15. Also, in our
approach, the user and user interaction itself have been mod-
elled in the User coupled DEVS block. Different players
may use different strategies. Each strategy leads to a differ-
ent model in the UserBehaviour block. We have modelled
three types of players for our experiments: Random, Lazy,
and Smart.

The Random player does not take the current game state
graph into consideration but rather chooses the direction in
which the PacMan will move in randomly. Note that this type
of player may send direction keys requesting illegal PacMan
moves such as crossing a boundary (wall). This is taken care
of by our PacMan behaviour rules: the particular rule that
gets triggered by that key will not find a match in the graph
and hence PacMan will not move. However, time is progress-
ing and if PacMan does not move, the ghost will get closer to
it which will eventually lead to PacMan death. Note that the
rules used are similar to the move right of Fig. 5: the NAC
prevents movements towards a grid node already occupied
by a Ghost.

The Lazy user does not make such mistakes. After query-
ing the game state graph for the PacMan position, it moves
to the adjacent grid node that has Food but not a Ghost on
it. If no such adjacent grid node can be found, it randomly
chooses a legal direction.

The Smart user is an improved version of the Lazy user.
Whereas the Lazy user is restricted to making decisions based

123

MoTif for simulation-based design

Fig. 15 The UserControlled
model

Fig. 16 The enhanced
GhostMove Model

only on adjacent grid nodes, the Smart user has a “global”
view of the board. The strategy is to compute the closest grid
node with Food on it and move the PacMan towards it depend-
ing on the position of the Ghost. One way to implement this
strategy is by using a path finding algorithm. Many solutions
exist for such problems, including some efficient ones such
as A* [20]. It is possible to integrate this kind of path find-
ing techniques in a MoTif model. Because it is not the main
focus of this paper, we only outline two possibilities. One
is to explicitly model the path finding with transformation
entities. The depth-first search model discussed in Sect. A
can be a starting point. Another abstraction is algorithmic,
using an atomic DEVS block to encode the algorithm in its
external transition function. In any case, whether modelled
declaratively using backtracking rules or algorithmically, the
path finding sub-model can be used as a “black-box” and
integrated transparently in the transformation model. In this
case-study, extending the PacMan meta-model with (x, y)

coordinates on grid nodes allows a linear time solution to
this particular path finding problem. AToM3 allows one to
add actions to meta-model elements. Relative coordinates’
management is handled in the action of each of the four asso-
ciations between GridNode objects: if a GridNode instance
g1 is associated with another instance g2 by a Left associa-
tion, then g1.x < g2.x and g1.y = g2.y. Similar conditions
are defined for Right, Top, and Bottom associations. There-
fore, the path finding algorithm only needs to compute the

shortest Manhattan distance from PacMan to Pellet as well
as perform a simple check for the grid node coordinates of
the Ghost.

We compare the performance of different user behaviour
types in Sect. 5. Note that to match different user types, we
need to model similar strategies for the Ghost to make the
game fair. Indeed, a Smart user (controlling the PacMan)
playing against a randomly moving Ghost will not be inter-
esting nor will a Lazy user playing against a Smart Ghost.
As players may become better at a game over time, game lev-
els are introduced whereby the game adapts to the player’s
aptitude. This obviously increases game playability.

4.3 Modelling the game

As long as the (modelled) player does not send a decision
key to move the PacMan (thus changing the game state
graph) the game state graph continues to loop between the
Controller block and the Automatic block. If no instanta-
neous rule (Kill or Eat) matches, then it is the lower prior-
ity GhostMove block that modifies the graph. The Ghost
movement model in Fig. 16 is enhanced from earlier work
[17] to support different strategies. The game state graph is
received by a Decider atomic DEVS block. Similar to the
UserBehaviour block, it emits a direction that drives the
movement of the Ghost. The Random, Lazy, and Smart strat-
egies are analogous to those of the player. The Random Ghost

123

E. Syriani, H. Vangheluwe

will randomly choose a direction, the Lazy Ghost will look
for a PacMan among the grid nodes adjacent to the one the
Ghost is on, and the Smart Ghost has “global” vision, and
always decides to move towards the PacMan.7 The same
argument previously made about optimal path finding and
backtracking applies. The Decider sends the graph and the
decision (in the form of a key) to a Dispatch block and the
rest of the behaviour is identical to that in the UserCon-
trolled CRule.

4.4 Explicit use of time

We have now modelled both game and player, and the
behaviour of both can use Random, Lazy, or Smart strat-
egies. However, one crucial aspect has been omitted up to
now: the notion of time. Time is critical for this case study
since game playability depends heavily on the relative speed
of player (controlling the PacMan) and game (Ghost). The
speed is determined by both decision (thinking) and reaction
(observation and keypress) times.

We will now show how the notion of time from the DEVS
formalism integrated in a graph transformation system can
be used for realistic modelling of both player and game. We
consider a game to be unplayable if the user consistently
either wins or loses. The main parameter we have control
over during the design of a PacMan game is the speed of the
Ghost.

Each atomic DEVS block has a state-dependent time
advance that determines how long the block stays in a partic-
ular state. Kill and Eat rules should happen instantaneously,
thus their time advance is 0 whenever they receive a graph.
In fact, all rules involved in the transformation have time
advance 0. What consumes time is the decision making of
both the player (deciding where to move the PacMan) and
the game (deciding where to move the Ghost). For this rea-
son, only the Decider and the UserBehaviour blocks have
strictly positive time advance.

To provide a consistent playing experience, the time for
the Ghost to make a decision should remain almost identical
across multiple game plays. The player’s decision time may
vary from one game to another and even within the same
game. We have chosen a time advance for the Decider that
is sampled from a uniform distribution with a small vari-
ance (interval radius of 5 ms). What remains is to determine
a reasonable average of the distribution. To make the game
playable, this average should not differ significantly from the
player’s reaction time. If they are too far apart, a player will
consistently lose or win making the game uninteresting.

7 In the original PacMan video game, these different Ghost types are
referred to as “Clyde” for Random, “Pinky” for Lazy, and “Inky” for
Smart.

5 Simulation experiments

In the previous Section, we determined that the playability
of the PacMan game depends on the right choice of the aver-
age time advance of the Decider block, i.e., the response
time of the Ghost. We will now perform multiple simulation
experiments, each with a different average time advance of
the Decider block. For each of the experiments, a playability
performance metric (based on the outcome and duration of a
game) will be calculated. The value of the Decider block’s
average time advance which maximizes this playability per-
formance metric will be the one retained for game deploy-
ment. Obviously, the optimal results will depend on the type
of player.

5.1 Modelling user reaction time

First of all, a model for player reaction time is needed.
Different psychophysiology controlled experiments [21]
give human reaction times (for subjects between the ages
of 17 and 20):

– the time of simple visuomotor reaction induced by the
presentation of various geometrical figures on a monitor
screen with a dark background;

– the time of reaction induced by the onset of movement of
a white point along one of eight directions on a monitor
screen with a dark background.

The reaction time distribution can be described by an asym-
metric normal-like distribution. The cumulative distribution
function for sensorimotor human reaction time is

F(x) = e−e
b−x

a

where a characterizes data scatter relative to the attention
stability of the subject: the larger a is, the more attentive the
subject; b characterizes the reaction speed of the subject. For
simulation purposes, sampling from such a distribution is
done by using the Inverse Cumulative Method [22]: a value
sampled from the initial distribution function is computed
by sampling a random number from a uniform distribution
in the interval [0, 1] and subsequently evaluating the inverse
cumulative function at that value.

For our simulation, four types of users were tested: Slow
with a = 33.3 and b = 284, Normal with a = 19.9 and
b = 257, Fast with a = 28.4 and b = 237, VeryFast with
a = 17.7 and b = 222. The parameters used are those of
four example subjects in [21].

123

MoTif for simulation-based design

Fig. 17 Time till end

5.2 Simulation results

For the simulations, we only consider the Smart user strat-
egy. For each type of user (Slow, Normal, Fast, and Very-
Fast), the length of the simulated game is measured: the time
until PacMan is killed (loss) or no Pellet is left on the board
(victory). To appreciate the need for these results, the score is
also measured for each run. Simulations were run for a game
configuration with 24 GridNodes, 22 Pellets, 1 Ghost, and 1
PacMan. The game speed (ghost decision time) was varied
from 100 to 400 ms. Each value is the result of an average
over 100 samples simulated with different seeds.

The following presents the simulation results obtained by
means of the DEVS simulations of our game and player
model. All figures show results for the four types of users
(Slow, Normal, Fast, and VeryFast). Figure 17 shows the
time until the game ends as a function of the time spent on the
Ghost’s decision. The increasing shape of the curves imply
that the slower the ghost, the longer the game lasts. This is
because the user has more time to move the PacMan away
from the Ghost. One should note that after a certain limit
(about 310 ms for the VeryFast user and 350 ms for the Nor-
mal user), the curves tend to plateau. To further investigate
behaviour, Fig. 18 shows the score (relative percentage of
number of Pellets eaten) for the different game speeds. Not
surprisingly, these curves and the previous ones have the
same shape: increasing up to a certain limit and then remain-
ing constant. These limits even coincide at sensibly the same
values and happen when the score reaches 100%. An expla-
nation for this behaviour is simply that after a certain point,

the Ghost decision time is too low and the user always wins.
Therefore, the optimal average time-advance value we are
looking for is found in the middle of the steep slope of the
plots.

Figure 19 depicts the frequency with which a player will
win a game (when playing a large number of games) as a func-
tion of the time spent on the Ghost’s decision. We decided
that we want to deploy a game where the user should be able
to win with a probability of 75%. Thus, the optimal average
Ghost time advance (decision time) was found to be 325 ms
(taking into account fairness among the different types of
users). Note that the focus of this paper is not on the rea-
sons for such decisions/assumptions but rather on how the
integration of graph rewriting systems with the DEVS for-
malism gives the modeller the right level of abstraction for
simulation and performance analysis.

To give further insight into the variability of the game
experience, Fig. 20 shows the game length distribution at
the optimal time advance value. It is an unimodal distribu-
tion with a peak at 7.5 s. This average is quite low, but not
surprising given the small game board. Experience with the
deployed real-time game application is consistent with this
value.

5.3 Game deployment

Having found a prediction for the optimal time the Decider
block should spend on the choice of the next move-
ment of the ghost entity, we can now test the simu-
lated game with real users, in real-time. From the AToM3

123

E. Syriani, H. Vangheluwe

Fig. 18 Score at the end of
game

Fig. 19 Victory frequency

PacMan formalism/meta-model we have synthesized—yet
another model transformation—an Ajax/SVG-based appli-
cation. The MoTif model is slightly modified to get the
decision event from an external source. The User coupled
DEVS now has an inport “interrupt” waiting for external
input. The User Interaction block is then linked to that
port to receive the decisions. The player behaviour model
in the User Behaviour block is thus discarded. The trans-
formation model is executed by a real-time version of our

pythonDEVS simulator. An intermediate layer for event
management and communication between the web client and
the transformation model is used.

The most expensive operation in a graph transformation
tool is the matching phase. MoTif’s current implementation
of the rule matching turned out to be significantly fast enough
to play the deployed game. Figure 21 shows a snapshot of
the deployed game with the same initial state and conditions
as the simulated game.

123

MoTif for simulation-based design

Fig. 20 Game length
distribution; Normal user, game
time advance 325 ms

Fig. 21 Snapshot of the deployed PacMan game running in a web
browser

6 Related work

6.1 Graph transformation with time

Timed Graph Transformation (TGT), as proposed by Gyapay
et al. [23], integrates time in the double push-out approach.
They extend the definition of a production by introducing,
in the model and rules, a “chronos” element that stores the
notion of time. Rules can monotonically increase the time.
DEVS is inherently a timed formalism, as explained previ-
ously. In contrast with TGT, it is the execution of a rule that
can increase time and not the rule itself. That is, in TGT the

designer of the rule can increment the chronos element in the
RHS pattern. However, in MoTif time is a property of a rule
taken into consideration in the scheduling of the rules. Hence,
the control flow (of the graph transformation) has full access
to time. This addition of time is similar to how Heckel et. al.
define stochastic graph transformations [24]. Every transfor-
mation rule is augmented by a probability indicating the delay
of application of the rule. In fact, Heckel et al.’s approach is
complementary to ours: one can encode the application rate
of individual MoTif rules in the time advance function, if the
current simulation time is stored in the state of each rule. As
pointed out in [23], time can be used as a metric to express
how many time units are consumed to execute a rule. Having
time at the level of the block containing a rule rather that in
the rule itself retains this expressiveness.

6.2 Tool comparison

Many graph transformation tools and languages have been
developed during the last two decades. Hence, we present
those that describe a transformation in a controlled way,8

(i.e., programmed graph rewriting). Table 1 compares them
to MoTif using the criteria enumerated in Sect. 1.

GReAT [4,25,26] is the model transformation language
for the domain-specific modelling tool GME [27]. GReAT’s
control structure language uses a custom asynchronous data-
flow diagram notation where a production is represented
by a “block” (called Expression in [4]). Expressions have
input and output interfaces (inports and outports). They

8 This is by no means an exhaustive list.

123

E. Syriani, H. Vangheluwe

Table 1 A comparison of the control structure of graph transformation tools

Property MOTIF PROGRES FUJABA GREAT VMTS

Control structure DEVS Imperative language Story Diagram Data flow Activity diagram

Atomicity ARule transaction, rule Rule Expression Step

Sequencing Yes & Yes Yes Yes

Branching Selector pattern choose. . .else Branch activity Test/Case Decision Step, OCL

Looping FRule, SRule loop For-all pattern Yes Self loop

Non-determinism Selector pattern and,or No 1 − n connection No

Recursion Yes Yes No Yes Yes

Parallelism Synchronizer pattern No Optional No Fork, Join

Back-tracking XRule Implicit No No No

Hierarchy CRule Modularisation Nested state Block, ForBlock High-level Step

Time Yes No No No No

exchange packets: node binding information. The in-place
transformation of the host graph thus requires only packets
to flow through the transformation execution. Upon receiv-
ing a packet, if a match is found, the (new) packet will be sent
to the output interface. Inport to outport connections depict
sequencing of expressions in that order.

Two types of hierarchical rules are supported. A Block
forwards all the incoming packets of its inport to the tar-
get(s) of that port connection, (i.e., the first inner expres-
sion(s) of the Block). On the other hand, a ForBlock sends
one packet at a time to its first inner expression(s). When
the ForBlock has completely processed a packet, the next
packet is sent and so on. Branching is achieved using Test
expressions. Test is a special composite expression holding
Case expressions internally. A Case is given in the form of
a rule with only a LHS and a boolean condition on attributes.
An incoming packet is tested on each Case and every time
the Case succeeds, it is sent to the corresponding outport. If
a Case has its cut behaviour enabled, the input will not be
tried with the subsequent Cases. When an outport is con-
nected to more than one inport or if multiple Cases succeed
in a Test (also one-to-many connection), the order of exe-
cution of the following expressions is non-deterministic. To
achieve recursion, a composite expression (Block, ForBlock,
or Test/Case) can have an internal connection to a parent or
ancestor expression (in terms of the hierarchy tree).

In VMTS [3,5], the controlled graph rewriting system is
provided by the VMTS Control Flow Language (VCFL), a
stereotyped UML Activity Diagram. In this abstract state-
machine a transformation rule is encapsulated in an activity,
called Step. Sequencing is achieved by linking steps; self
loops are allowed. Branching in VCFL is a Decision Step
conditioned by an OCL expression. Chains of Steps can
thus be connected to the Decision. However, at most one
of the branches may execute. The Steps connected to the
Decision should then be non-overlapping (this is checked at

compile-time). A branch can also be used to provide condi-
tional loops and thus support iteration.

Steps can be nested in a High-level Step. A primitive
step ends with success when the terminating state is reached
and with failure when a match fails. However, in hierarchi-
cal steps, when a decision cannot be found at the level of
primitive steps, the control flow is sent to the parent state or
else the transformation fails. As in GReAT, recursive calls to
High-level Steps are possible. A Fork connected to a Step
allows for parallelism and a Join synchronizes the parallel
branches. Semantically, parallelism is possible in VMTS but
it is not yet implemented [5].

The Programmed Graph Rewriting System (PROGReS)
was the first fully implemented environment to allow pro-
gramming through graph transformations [6,28,29]. The
control mechanism is an imperative language (with textual
concrete syntax). A rule in ProGReS has a boolean behaviour
indicating whether it succeeded or not. Among the imperative
control structures it provides, rules can be sequenced using
the & operator. Branching is supported by the choose con-
struct, which applies the first applicable rule following the
specified order. ProGReS allows non-deterministic execution
of transformation rules. and and or are the non-determin-
istic duals of & and choose, respectively, by selecting in
a random order the rule to be applied. With the loop con-
struct, it is possible to loop over sequences of (one or more)
rules as long as they succeed.

A sequence of rules can be encapsulated in a
transaction following the usual atomicity, isolation,
durability, and consistency (ACID) properties. The underly-
ing database system where the models are stored is respon-
sible for ensuring the first three properties. An implicit
back-tracking mechanism ensures consistency. Hence, Pro-
GreS offers two kinds of back-tracking: data back-tracking
(with undo operations) and control flow back-tracking [30].
When a rule r ′ fails in a sequence in the context of a trans-

123

MoTif for simulation-based design

action, the control flow will back-track to the previously
applied rule r . The data back-tracking mechanism undoes
the changes performed by the transformation of r . If r is
applicable on another match, it applies the transformation on
it and the process continues with the next rule (possibly r ′).
If r has no further matches, two cases arise. If r was chosen
non-deterministically from a set of applicable rules, a non-
previously applied rule is selected from this set. Otherwise,
the process back-tracks recursively to the rule applied before
r . Sequences and transactions can be named allowing for
recursive calls. The module concept provides a two-level
hierarchy in the control flow structure by encapsulating a
sequence of transactions.

Insights gained through the development of PROGReS
have led to FUJaBA (From UML to Java and Back Again)
[2,31], a completely redesigned graph transformation envi-
ronment based on Java and UML. FUJaBA’s programmed
graph rewriting system is based on Story Charts, a combi-
nation of Story Diagrams [31] and Statecharts. An activ-
ity in such a diagram contains either graph rewrite rules,
which adopt a Collaboration Diagram-like representation
or pure Java code. The graph schemes for graph rewriting
rules exploit UML class diagrams. With the expressiveness
of Story Charts, graph transformation rules can be sequenced
(using success and failure guards on the linking edges) along
with activities containing code. Branching is ensured by the
condition blocks which act like an if-else construct. An activ-
ity can be a for-all story pattern, which acts like a while loop
on a transformation rule. FUJaBA’s approach is implementa-
tion-oriented. Classes define method signatures and method
content is described by Story Chart diagrams. All models
are compiled to Java code. Although the standard version of
FUJaBA does not include the notion of time, the real-
time [32,33] version does.

The MOFLON [7] toolset uses the FUJaBA engine for
graph transformation, since the latter already features UML-
like graphical diagrams. It provides an environment where
transformations are defined by Triple Graph Grammars
(TGGs) [34]. These TGGs are subsequently compiled to
Story Diagrams. This adds declarative power to FUJ-
aBA similar to that of the OMG’s QVT (Query/View/
Transformation—www.omg.org).

Although all the above tools provide a control flow mecha-
nism for graph transformations, many designed a new formal-
ism for this purpose. Also, none of these exploit event-based
transformations. MoTif not only allows event-triggered exe-
cution, but the user and his interaction with the executing
transformation can be explicitly modelled, offering a user-
centric approach to model transformations. On top of the
novelties MoTif adds to control structures for model transfor-
mation, it is the only language introducing the notion of time
and allowing the designer to explicitly model back-tracking
and recursion behaviours.

Note that in the aforementioned tools, user-tool interaction
is hard-coded. Furthermore, the notion of time is absent in
all of these languages. Some do provide sophisticated, user-
friendly graphical interfaces. Efficiency and expressiveness
of the rule pattern language is not the focus of this paper.
A comparison with these criteria can be found in the results
of graph transformation tool contests [35]. The above list of
tools can be extended by many other existing tools. For exam-
ple, the control structure of AGG [36] is layer-based, AToM3

is priority-based, MoTMoT [37] relies on story diagrams,
and VIATRA2 [38] relies on an abstract state machine, just
to name a few others.

In [17], we showed the advantages of re-using a discrete-
event modelling/simulation formalism to describe transfor-
mation control. In [39], we focused on the time aspect of
modelling complex transformations, a side-effect of using a
discrete-event modelling formalism. The present paper is an
extension of [39]. First, formalization of the transformation
language MoTif, was provided. Furthermore, new constructs
were added to increase the expressiveness of the language,
such as the Synchronizer to merge parallel threads of trans-
formation, the FRule allowing a rule to be atomically applied
on all its matches, and the XRule to add recursion and back-
tracking to the language. Second, we elaborated on how the
PacMan example was modelled and on the analysis of the
simulations experiments. An outline of how the game was
finally synthesized and deployed in a web application was
also given. Finally, we have compared other graph transfor-
mation languages with MoTif.

Nowadays, the Eclipse Modelling Framework (EMF) is
gaining a lot of popularity. EMF allows to design a transfor-
mation language by modelling its abstract and concrete syn-
taxes. MoTif is a completely modelled language. Its abstract
syntax (defined by a meta-model) and its concrete (visual)
syntax are specified in AToM3. This can also be done in EMF.
The semantics of MoTif is defined in terms of the DEVS
formalism. The DEVS simulator ensures the execution of
MoTif transformations. This would not be directly possible
to implement in EMF, since this would require to add a virtual
machine for simulating DEVS models on top E-Core virtual
machine.

For a more elaborate comparison, see the Ph.D. thesis [40].

6.3 Other approaches

A possible approach to ensure the incremental synchroniza-
tion of models is incremental transformation. Typically, if a
change occurred in a model, the effects of these changes
should be propagated to other related models, preferably
without re-executing the entire model transformation from
the beginning. An incremental transformation is defined
as a set of relations between source and target meta-mod-
els. These relations define constraints on models to be

123

www.omg.org

E. Syriani, H. Vangheluwe

synchronized. Change-detection and change propagation
mechanisms are then used as in [41]. The first time it is run,
the transformation creates a target model. In Tefkat [42], trace
links are automatically created. Then, if a change is detected
in one of the two models, it propagates this change to the
other model, by adding, removing, or updating elements so
that the relations are still satisfied. Ráth et. al. [41] propose a
technique based on the RETE algorithm that consists of cach-
ing the matches of a pattern for future rule applications. The
match set is thus available from the cache at any time with-
out having to perform further pattern matching. The cache
is incrementally updated whenever changes are made to the
model.

MoTif is designed by combining graph transformation
primitives (rules) with DEVS as a scheduling language. Sim-
ilarly, Fujaba’s story diagrams combine rules with activity
diagrams as a scheduling language. More recently, Feng in
his Ph.D. [43] thesis combines rules with Ptolemy’s synchro-
nous data flow. An interesting avenue for future research is
a combination of rules with languages such as MATLAB
Simulink [44] or SCADE [45].

7 Conclusion

In this paper, we have introduced MoTif as a transfor-
mation language based on the Discrete-EVent system
Specification (DEVS) formalism for the specification of
complex control structures for programmed graph rewrit-
ing, with time. DEVS allows for highly modular, hierarchi-
cal modelling of timed, reactive systems. In our approach,
graphs are embedded in events and individual rewrite
rules are embedded in atomic DEVS models. The meta-
model of MoTif was described together with a formal-
ization of the different entities of the language. A side
effect of this approach is the introduction of an explicit
notion of time. This allows one to model a time-advance
for every rule as well as to interrupt (pre-empt) rule
execution. The approach we described elegantly satis-
fies all the requirements for a programmed model trans-
formation language enumerated at the beginning of this
paper.

We have shown how the explicit notion of time allows
for the simulation-based design of reactive systems such as
modern computer games. We used the well-known game
of PacMan as an example and modelled its dynamics with
programmed graph transformation based on DEVS. This
allowed the modelling of player behaviour, incorporating
data about human players’ behaviour and reaction times. We
used the models of both player and game to evaluate, through
simulation, the playability of a game design. In particular,
we proposed a playability performance metric and varied
parameters of the PacMan game. This led to an “optimal”

(from a playability point of view) game configuration. The
user model was subsequently replaced by a web-based visual
interface to a real player, and the game model was executed
using a real-time DEVS simulator.

The use of graph transformation at the heart of this
approach allows non-software-experts to specify all aspects
of the design in an intuitive fashion. The resulting simulations
give quantitative insight into optimal parameter choices. This
is an example of Modelling and Simulation Based Design,
where the graph transformation rules and the timed trans-
formation system are modelled, as well as the user (player)
and the context. Having modelled all these aspects in the
same model transformation framework, MoTif, allows for
simulation-based design.

The transformation language used in the PacMan exam-
ple emulates AToM3’s rewriting semantics. In fact, we could
have used another graph transformation semantics (such as
unordered or layered graph rewriting). We could even have
combined different transformation specification languages.
As such, DEVS acts as a “glue” language.

The power of DEVS lies in the ability to express the con-
trol flow of the transformation. Each rule is represented in
an atomic DEVS block (this is comparable to the atomicity
of the rules in PROGReS). Blocks receive graphs and send
graph through their ports. Other ports are used to send opti-
mization hints (such as pivot nodes in GReAT and VMTS) or
to pass some information on the flow of the rule set (like the
Key in the extended PacMan model). DEVS allows modu-
larity. Indeed, coupled DEVS blocks can be treated as black
boxes. The use of DEVS allows for multi-level hierarchies in
models. Sequencing is treated as in GReAT by simply con-
necting block ports. Iteration and loops can thus be modelled.
A given block can be a test block for branching if we give
it such a semantics, (i.e., no transformation occurs). This is
what the Dispatch block in the PacMan example depicts.
Parallel execution is provided by the DEVS formalism when
an output port is connected to many input ports. If execution
(not simulated) parallelism is needed, the parallel DEVS [46]
formalism can be used.

Using the DEVS formalism as a control flow language for
graph rewriting enabled us not only to model the AToM3

semantics for graph transformation execution but also to
model continuous execution and user interaction. Note that
we are thus modelling control structures supporting step-by-
step simulation, continuous simulation, and user-controlled
simulation, which are not in the system under study, but rather
in the execution environment.

The beauty of DEVS models lies in the modularity of its
building blocks. In fact, each block performs an action given
some input and can produce outputs. This modularity triv-
ially supports the combination of building blocks specified
using multiple formalisms. Hence, we may combine graph
grammars with for example Statecharts and code. This is

123

MoTif for simulation-based design

the key to scaling up (graph) transformation modelling to
arbitrarily more complex models, far beyond the limits of
pure rule-based graph transformation systems.

For future work we propose the following. Currently,
back-tracking in XRules is done by making local copies of
the graph. This is obviously hard to maintain in memory as
graphs get larger, (e.g., order of magnitude 106 number of
nodes). One possibility is to exploit a transaction mechanism
for XRules. Although the transformation implementation is
fast enough for this specific example of a PacMan game,
performance analysis is needed for larger-scale games.

The synchronization process of parallel transformations
in MoTif assumes parallel independence of the rules and
thread-safe interaction between the parallel transformation
threads. We will to investigate what restrictions on MoTif
transformations are necessary to satisfy these assumptions.

At the model structure level, it is noted how topologically
similar the UserControlled rules and GhostMove CRules
are. Re-use and parametrization of transformation models
deserves further investigation.

For the presented Modelling and Simulation-based design
application, we could also enhance the game with Dynamic
Difficulty Adjustment techniques as outlined in [47]. For
example, the user speed could be measured in real-time and
compared with the simulated user speeds. The speed of the
ghost can then be adapted appropriately.

Appendix A: Detailed semantics of MoTif

In the following, we formalize each of the MoTif blocks
in terms of DEVS structures. The time base used is T =
R

+ ∪ {+∞}. Also, for the sake of completeness of the for-
mal DEVS models, we assume an input segment function9

ω : T → X which determines the input event on an inport
at a certain time.

A.1 The ARule

The ARule is an atomic DEVS, parametrized by a rule r
and two boolean parameters σ1 and σ2 to indicate whether
a pivot is to be sent upon a successful or failed matching,
respectively. The parameter � specifies the time a rule will
consume during the matching phase. An ARule is defined
by the following structure:

ARuler,�,σ1,σ2 = 〈S, X, Y, δint, δext, λ, τ 〉.
The state S is defined as

S =
{

(γ, ρ, α, σ1, σ2, � (r)) |γ ∈ G∗, ρ

= m(γ), α, σ1, σ2 ∈ {true,false}
}
.

9 ω triggers the external transition.

Fig. 22 The state automaton � underlying the execution of a rule

In this notation, γ is a graph (model) taken from the set G of
all directed, labelled, attributed, typed graphs.10 ρ is a single-
node graph such that ρ

m→ γ is a morphism. For simplicity,
ρ will from now on refer to the single node representing the
optional pivot. The boolean variable α indicates whether the
ARule is active. �(r) is a hierarchical state machine with
guards and events, indicating the state of the rule r . The
automaton in Fig. 22 shows the different modes a rule can
be in and will be explained when defining δext. S is initially
set to s0 = (

nil,nil,false, σ1, σ2, �
i (r)

)
.

The time-advance is finite only when the ARule is active:

τ (s) =
{

� ∈ [0,+∞) if α = true
+∞ otherwise

, ∀s ∈ S.

The AModelIn port can receive a packet 〈γ, ρ〉 consisting of
a graph γ and possibly a pivot ρ. Therefore, XAModelIn =
{〈γ, ρ〉} ∪ {φ}. φ represents the null event as used in
[11]: it covers the case when no event is present. The
ANextIn port can receive any event instance E of a sub-class
of Event. Hence, XANextIn = INSTANCEOF (Event) ∪
{φ}. The ACancelIn port can only receive ⊥, indicating
to the rule not to apply its transformation phase. Thus
XACancelIn = {⊥} ∪ {φ}. We can then define the input
set of an ARule as the cross-product: X = XAModelIn ×
XACancelIn × XANextIn.

The output set of an ARule is

Y = YASuccessOut × YAFailOut,

YASuccessOut = {〈
γ ′, ρ′〉} ∪ {φ},

YAFailOut = {〈γ, ρ〉} ∪ {φ}.
〈
γ ′, ρ′〉 is the resulting packet after the transformation phase

of the application of rule r . Note how it is possible to have
ρ′ = ρ.

The internal transition function passivates the ARule:

δint (γ, ρ, α, σ1, σ2, � (r)) = (γ, ρ,false, σ1, σ2, � (r)).

10 G∗ = G ∪ {nil} and V ∗
γ = Vγ ∪ {nil}.

123

E. Syriani, H. Vangheluwe

Fig. 23 The Automatic CRule
shows sequencing of FRules
and a CRule

The external transition function is constructed as follows:

δext ((s, e) , x) =
{

(γ, ρ,false, σ1, σ2, � (r)) if x = ⊥(
γ, ρ,true, σ1, σ2, �

M (r)
)

if x = 〈γ, ρ〉 ∨ x = E
.

When ⊥ is received (from ACancelIn), the ARule is deacti-
vated but the state of r is preserved. When a packet is received
(from AModelIn), first the state of r is reset. This clears pre-
vious matches and dereferences any pointer assigned to a pre-
vious match. Then, r enters in match mode. This is denoted
by �M because, according to the statechart in Fig. 22, r can
be in either �T if there is at least one unprocessed match left
or �⊥ if not. In case an event is received from ANextIn (this
is when x = E), r selects the next match, if possible. Again,
r results in either �T or �⊥ states.

Finally, the output function returns the transformed packet
if the match was successful; otherwise, it returns the original
packet. INSTATE checks whether the automaton � is in a
particular state (basic or composite).

λ (s)=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

〈
γ ′, ρ′〉 if σ1 =true ∧ � (r) .INSTATE

(
�� (r)

)

〈
γ ′,nil

〉
if σ1 =false ∧ � (r) .INSTATE

(
�� (r)

)

〈γ, ρ〉 if σ2 =true ∧ � (r) .INSTATE
(
�⊥ (r)

)

〈γ,nil〉 if σ2 =false ∧ �(r).INSTATE
(
�⊥ (r)

)

.

Let us consider the Kill ARule in Fig. 23. Let r = kill
(the rule in Fig. 2) and � = 0. kill is the rule encoded in
the state of this ARule. Note that σ1 = σ2 = true (sends a
pivot in case of both a failed or a successful match). Kill’s state
is initially s0 as defined previously. At a certain time, a packet
〈γ, ρ〉 is received. After resetting previous matches, kill
matches the host graph against its LHS. Assuming a match
is found, kill is in its �� state. Since � = 0, the output
function occurs immediately: the transformation is applied
and the new packet

〈
γ ′, ρ′〉 is sent through ASuccessOut.

Finally, the internal transition function is triggered and Kill
is deactivated until an event is received from AModelIn or
ANextIn, since the current time-advance evaluates to +∞.
In the case where no matches were found, kill remains in

its present state. As a result, the output function sends the
host packet through AFailOut.

A.2 The CRule

The CRule is defined exactly like a coupled DEVS:

C Rule =
〈
X, Y, N , M = {Mi |i ∈ N } ,

I = {Ii } , Z = {
Zi, j

}
,select

〉
.

The input and output sets are defined as in their atomic
counterpart:

X = XCModelIn × XCCancelIn × XCNextIn,

Y = YCSuccessOut × YCFailOut.

For example, the CRule Automatic in Fig. 23 has three
inner models: two ARules Kill and Eat and one CRule
GhostMove. M is the set of these three inner models (in
general all ARules, CRules, or other DEVS sub-mod-
els of this CRule). N is the set of labels which identi-
fies each component by its unique name (as it appears in
Fig. 23 for example). The connection topology is given by
IKill = {Automatic} , IEat = {Kill} , IGhostMove = {Eat},
and IAutomatic = {Kill, Eat, GhostMove}. The Zi, j func-
tions are all the identity, as in the example of Sect. 3.1. In this
ElemCRule, first the kill rule is tried. If it fails, then eat
is tried and, in case of failure, ghostMove is tried. If any
of the rules in this CRule matches, the resulting transformed
packet is sent out of Automatic. This encodes priorities in a
transformation.

As for the select function, it chooses one sub-model of
the CRule from the imminent set. The imminent set is the set
of sub-models from M which would have an internal transi-
tion at the same time. This set is computed at simulation time
by the simulator, as described in [11]. The select function
is described by the following prioritized algorithmic steps:

1. If a Selector is in the imminent set, choose the Selector:
this ensures that only one rule will execute.

2. Among all the rules that still have a match, choose a cor-
responding ARule from the imminent set at random: this
emulates to non-deterministic execution of a rule.

3. At this point no rule has any unprocessed matches left.
Now choose any of the ARule models in the imminent
set.

4. Finally, the imminent set contains either custom atomic
blocks or Synchronizers. Select a model randomly.

Once a sub-model is selected, it first produces an output,
if needed for the current state. This may trigger the δext of
the influences of this sub-model. Then its δint is performed.

123

MoTif for simulation-based design

The select function is called as long as the imminent set
is non-empty.

A.3 The Selector

The Selector is also an atomic DEVS:

Selector = 〈X, Y, S, δint, δext, λ, τ 〉.
The state S of the Selector is composed of two boolean

variables t and f , representing the reception of any event
from ASuccessIn and AFailIn, respectively. The event is
stored in π .

S =
{

(t, f, π) |t, f ∈ {true, false} ,

π ∈ INSTANCEOF (Event) ∪ {∅}
}
.

S is initially set to s0 = (false,false,∅).
As for the ports, the event class Event’ is the same as

Event. We use the two notations to distinguish an event E’
received by ASuccessIn from E received by AFailIn.

X = XASuccessIn × XAFailIn,

XASuccessIn = {
Event′

} ∪ {φ} ,

XAFailIn = {Event} ∪ {φ} ,

Y = YASuccessOut × YAFailOut × YACancelOut,

YASuccessOut = {
Event′

} ∪ {φ} ,

YAFailOut = {Event} ∪ {φ} ,

YACancelOut = {⊥} ∪ {φ} .

The time-advance returns 0 if an event was received:

τ (s) =
{

0 if t = true ∨ f = true
+∞ otherwise

,∀s ∈ S.

The external transition function follows from the above def-
initions:

δext ((s, e) , x) =
{(
true,false, E ′) if x = E ′

(false,true, E) if x = E
.

The output function sends two events simultaneously: the
packet is sent through the appropriate port and ⊥ is sent
through ACancelOut.

λ (s) =
{{

E ′} ∪ {⊥} if s = (
true,false, E ′)

{E} ∪ {⊥} if s = (false,true, E)
.

The internal transition function resets the state to s0.
It is important to note that the semantics of the Selec-

tor is well defined, even in a parallel setup. If a packet is
received from each of ASuccessIn and AFailIn at the same
time,11 the output function is undefined. Hence no output

11 Remember that the transformations are in-place and hence there is a
single graph (often referred to as repository). Nevertheless, in a parallel
setup, there may be multiple references to the graph in the flow at the
same time.

is generated. However, if the Selector is a sub-component
of an enclosing CRule, the select function prevents this
situation from occurring. Consider, for example, the pattern
in Fig. 10 and assume that the packet received through the
CRule is matched by the two ARules Up and Down. The
select function will choose one of them, say Up, to exe-
cute and output the resulting packet (step 2). The Selector
will then receive the new packet and is thus ready to output.
The imminent set consists subsequently of the Selector and
Down. By step 1 of the select function, the Selector out-
puts the new packet as well as the cancel event ⊥ which
passivates Down. A more detailed trace of execution involv-
ing this pattern is provided in appendix B.

A.4 The Synchronizer

The Synchronizer is yet another atomic DEVS, parame-
trized by the number of threads θ to synchronize:

Synchronizerθ = 〈X, Y, S, δint, δext, λ, τ 〉.
The state S of the Synchronizer is composed of two inte-

gers t and f , counting the number of events received from
ASuccessIn and AFailIn, respectively. π can hold an event;
thus a state s ∈ S can hold at most one event. The trivial case
where θ = 1 is legitimate, but at run-time, the Synchronizer
becomes an overhead.

S =
{

(t, f, θ, π) |t, f, θ ∈ N, θ

≥ 1, π ∈ INSTANCEOF (Event) ∪ {∅}
}
.

S is initially set to s0 = (0, 0, θ,∅).
The ports are similar to those of the Selector, but with no

port for cancelling:

X = XASuccessIn × XAFailIn,

Y = YASuccessOut × YAFailOut.

The time-advance returns 0 only when the number of
events received reaches the threshold θ . In practice, this
means that all threads have reached the Synchronizer.

τ (s) =
{

0 if t + f = θ

+∞ otherwise
,∀s ∈ S.

After the application of δext, π holds the latest event
received from ASuccessIn. If no such event has been
received yet, then it holds the first event received from AFai-
lIn. The reception of simultaneous inputs is resolved similarly
to the case of the Selector.

δext ((s, e) , x)

=
⎧
⎨

⎩

(
t + 1, f, θ, E ′) if x = E ′

(
t, f + 1, θ, E ′) if x = E ∧ π = E ′

(t, f + 1, θ, E) if x = E ∧ (π = E ∨ π = ∅)

.

123

E. Syriani, H. Vangheluwe

Fig. 24 An SRule is transformed to a CRule enclosing an ARule and
an accumulator, which defines its semantics. The names R, A, and B
are not part of the rule

The output function is only defined if at least one event
has been received.

λ (s) =
{

π if t ≥ 1 ∨ f ≥ 1
φ otherwise

.

The internal transition function resets the state to s0. The
behaviour of the Synchronizer is very similar to the Selec-
tor’s. The difference is that the latter outputs the event as
soon as it has received it, whereas the former waits until a
fixed number of events is received first.

A.5 The SRule

An SRule R is defined by the transformation rule of Fig. 24.
MoTif internally translates R into a CRule C composed of
an ARule A and an accumulator B. Therefore, to complete
the formal definition of R, we define C and B. C is a CRule
where M = {A, B} , N = {1, 2} labels the A and B, respec-
tively, and I = {I1 = {c, 2} , I2 = {1} , Ic = {2}}.

On the other hand, B has a lot of similarities with the
Synchronizer. The state S is modified because we do not
need to count successes and failures; thus t and f are boo-
leans and θ is discarded. Another booleanα is used to indicate
whether B is active (similar to the ARule).

S =
{

(t, f, α, π) |t, f, α ∈ {true,false} ,

π ∈ INSTANCEOF (Event) ∪ {∅}
}
.

It is initially set to s0 = (false,false,false,∅).
The input set is the same as the Synchronizer. For the

output set, we denote the event E ′′ sent from success_out,
although it is the same as E , the one received from fail_in
and thus E ′′ = E . The event received from success_in is
sent via continue_out.

Fig. 25 Priorities encoded with
SRules

R2

R1 *

X = Xsuccess_in × Xfail_in,

Xsuccess_in = {
E ′} ∪ {φ} ,

Xfail_in = {E} ∪ {φ} ,

Y = Ysuccess_out × Yfail_out × Ycontinue_out,

Ysuccess_out = {
E ′′} ∪ {φ} ,

Yfail_out = {E} ∪ {φ} ,

Ycontinue_out = {
E ′} ∪ {φ} .

The time-advance returns 0 only when an event is received.

τ (s) =
{

0 if α = true
+∞ otherwise

,∀s ∈ S.

The reception of an event activates B.

δext ((s, e) , x) =
{

(true, f,true, x) if x = E ′
(t,true,true, x) if x = E

.

The output function outputs the event B received when it
is active. If it was received through success_in, it is output
via continue_out. If it was received through fail_in, it is out-
put via success_out if B had previously received an event
through success_in; otherwise, it is output via fail_out.

λ (s) =

⎧
⎪⎪⎨

⎪⎪⎩

E ′ if α = true ∧ f = false
E ′′ if α = true ∧ t = true ∧ f = true
E if α = true ∧ t = false ∧ f = true
φ otherwise

.

The internal transition function passivates B:

δint (t, f, α, π)

=
{

(t, f,false, π) if f = false
(false,false,false,∅) otherwise

.

The SRule allows to easily encode priorities in a transfor-
mation as depicted in Fig. 25. Suppose that two rules r1 and
r2 are such that r1 has higher priority. Then, R1 would be an
SRule encoding r1 and R2 would be an ARule encoding r2.
The failure outport of R1 would be connected to the graph
inport of R2 and the success outport of R2 to the one of R1.
Both the success outport of R1 and the fail outport of R2 will
be connected to subsequent rule blocks.

123

MoTif for simulation-based design

Fig. 26 An FRule is transformed to a CRule enclosing an ARule and
an accumulator, which defines its semantics. The names R, A, and B
are not part of the rule

A.6 The FRule

An FRuler,�,σ1,σ2 has the same structure as an ARule. The
difference lies in the operational semantics: when the rule r
is in �� (r) with n possible matches, it consumes all of these
matches by applying the transformation on each. Thus, the
output γ ′ of λ (s) results in a graph where r has been applied n
times. The rule matching and application is atomic: therefore
no ordering of the sequence of application may be assumed.

Alternatively, an FRule can be defined similarly to an
SRule as in Fig. 26. The difference is that the continue_out
port of B is connected to the ANextIn port of A. An FRule
R is thus equivalent to a CRule C enclosing the correspond-
ing ARule A and an accumulator B. B has two inports suc-
cess_in and fail_in, respectively, connected from the ASuc-
cessOut and AFailOut ports of A. Three outports are also
needed for B: success_out, fail_out, and continue_out,
respectively, connected to CSuccessOut of C, CFailOut
of C, and ANextIn of A. If A outputs through ASuccess-
Out, B keeps track of a success and sends back the packet
via continue_out. If A outputs through AFailOut and B is
in success, then B outputs the packet via success_out. If A
outputs through AFailOut and B is not in success, then B
outputs the packet via fail_out.

Assuming multiple Pacman instances are allowed in the
game, both Kill and Eat blocks could be turned into an FRule.
This would encode that all Ghosts that can kill a PacMan do
so atomically (in one step). Similarly, all PacMen that can
eat a Pellet do so atomically.

A.7 The XRule

An XRuler,�,σ1,σ2 is introduced to support backtracking. It
has the same signature as an ARule, but the state S is extended

with a stack � of packets such as

S =
{

(γ, ρ, α, σ1, σ2, � (r) ,�) |γ ∈ G∗, ρ

= m(γ), α, σ1, σ2 ∈ {true, false}
}
.

The initial state of S and internal transition function are mod-
ified accordingly:

s0 =
(
nil,nil,false, σ1, σ2, �

i (r) ,∅
)
,

δint (γ, ρ, ε, σ1, σ2, � (r) ,�)

= (γ, ρ,false, σ1, σ2, � (r) ,�).

The external transition function operates on � with the
usual stack predicates. �.PUSH(x) returns � with object x
added on top of the stack. �.POP() returns � without the
object at the top of the stack. �.PEEK() returns the object
currently at the top of the stack. If � = ∅, the latter two
operations return ∅.

δext((s, e), x)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(γ, ρ,false, σ1, σ2, � (r) ,�)

if x = ⊥
(
γ, ρ,true, σ1, σ2, �M (r) , �.PUSH

(〈γ, ρ〉)
)

if x = 〈γ, ρ〉 ∧ � (r) .INSTATE
(
�� (r)

)

(
γ, ρ,true, σ1, σ2, �M (r) , �

)

if x = 〈γ, ρ〉 ∧ � (r) .INSTATE
(
�⊥ (r)

)

(
γ , ρ,true, σ1, σ2, �M (r) , �

)

if x = E ∧ �.PEEK () = 〈γ, ρ〉 ∧ � (r) .INSTATE
(
�� (r)

)

(
γ, ρ,true, σ1, σ2, �M (r) , �.POP()

)

if x = E ∧ �.PEEK () = 〈γ, ρ〉 ∧ � (r) .INSTATE
(
�⊥ (r)

)

.

The cancel case is identical to the one of ARule. When a
packet is received from the AModelIn port, the rule goes
into the matching mode �M as previously. There are two
cases. If a match is found, (i.e., r remains in ��), a copy12

〈γ, ρ〉 of the packet is pushed on the stack �. The state of
the XRule, however, holds the original graph γ and pivot
ρ. On the other hand, if the state of r is in �⊥, the stack
remains unchanged. Finally, we consider the cases where
an event is received from the ANextIn port. If there is still
at least one unprocessed match (� (r) .INSTATE

(
�� (r)

)

is true), then the XRule enters the roll-back step. The state
S then holds a copy of the packet on the top of the stack
�. That packet is also fed into rule r to process that match
on the correct graph. The roll-back step is needed as the
transformation is in-place and the graph may have been
modified between the matching phase and when the next
match is to be processed. The last case occurs if an event
is received from the ANextIn port but there are no further
matches. The packet on the top of the stack is placed in S to

12 x denotes a “copy” of x .

123

E. Syriani, H. Vangheluwe

ensure proper delivery of the original packet when the output
function is called. The stack is then popped. Note, how-
ever, that if the stack was empty, we have δext ((s, e) , x) =(
γ, ρ,true, σ1, σ2, �

M (r) ,∅)
, where γ and ρ remain

unchanged from the previous state s. A concrete exam-
ple illustrating the behaviour of an XRule is provided in
Appendix B.

Appendix B: Execution trace

Tables 2, 3, 4, 5, and 6 present an execution trace of the trans-
formation model in Fig. 9 and its sub-model in Fig. 10. This
transformation models the behaviour of Pacman searching
for Pellets to eat. The transformation encodes a pathfinding
mechanism through back-tracking and recursion.

Table 2 The execution trace of the a host graph fed into SmartMove

Step 1 2 3

TryMove.Left (nil,nil,false, �i ,∅) (γ0,nil,true, �⊥,∅) –

TryMove.Right (nil,nil,false, �i ,∅) (γ0,nil,true, ��, 〈γ0,∅〉) –

TryMove.Up (nil,nil,false, �i ,∅) (γ0,nil,true, �⊥,∅) –

TryMove.Down (nil,nil,false, �i ,∅) (γ0,nil,true, ��, 〈γ0,∅〉) (γ1,nil,false, �⊥, 〈γ0,∅〉)
TryMove.Selector (false,false,∅) – (true,false, 〈γ1,∅〉)
Eat (nil,nil,false, �i) – –

MakeMove.Left (nil,nil,false, �i ,∅) – –

MakeMove.Right (nil,nil,false, �i ,∅) – –

MakeMove.Up (nil,nil,false, �i ,∅) – –

MakeMove.Down (nil,nil,false, �i ,∅) – –

MakeMove.Selector (false,false,∅) – –

t 0 – 1

γ –

Table 3 The execution trace of the a host graph fed into SmartMove

Step 4 5 6

TryMove.Left (γ0,nil,false, �⊥,∅) (γ0,nil,true, �⊥,∅) –

TryMove.Right (γ0,nil,false, ��, 〈γ0,∅〉) (γ0,nil,true, ��, 〈γ0,∅〉) (γ3,nil,false, �⊥, 〈γ0,∅〉)
TryMove.Up (γ0,nil,false, �⊥,∅) (γ0,nil,true, �⊥,∅) –

TryMove.Down – (γ0,nil,true, �⊥,∅) –

TryMove.Selector (false,false,∅) – (true,false, 〈γ3,∅〉)
Eat (γ1,nil,true, �⊥) (γ1,nil,false, �⊥) –

MakeMove.Left – – –

MakeMove.Right – – –

MakeMove.Up – – –

MakeMove.Down – – –

MakeMove.Selector – – –

t – 2 3

γ –

123

MoTif for simulation-based design

Table 4 The execution trace of the a host graph fed into SmartMove

Step 7 8 9

TryMove.Left (γ0,nil,false, �⊥,∅) (γ0,nil,true, �⊥,∅) (γ0,nil,false, �⊥,∅)

TryMove.Right – (γ0,nil,true, �⊥,∅) (γ0,nil,false, �⊥,∅)

TryMove.Up – (γ0,nil,true, �⊥,∅) (γ0,nil,false, �⊥,∅)

TryMove.Down – (γ0,nil,true, �⊥,∅) (γ0,nil,false, �⊥,∅)

TryMove.Selector (false,false,∅) – (false,true, 〈γ0,∅〉)
Eat (γ3,nil,true, �⊥) (γ3,nil,false, �⊥) –

MakeMove.Left – – –

MakeMove.Right – – –

MakeMove.Up – – –

MakeMove.Down – – –

MakeMove.Selector – – –

t – 4 5

γ – –

Table 5 The execution trace of the a host graph fed into SmartMove

Step 10 11 12

TryMove.Left – – (γ6,nil,true, ��, 〈γ6,∅〉)
TryMove.Right – – (γ6,nil,true, ��, 〈γ6,∅〉)
TryMove.Up – – (γ6,nil,true, �⊥,∅)

TryMove.Down – – (γ6,nil,true, ��, 〈γ6,∅〉)
TryMove.Selector (false,false,∅) – –

Eat – – –

MakeMove.Left (γ0,nil,true, �⊥,∅) – (γ0,nil,false, �⊥,∅)

MakeMove.Right (γ0,nil,true, ��, 〈γ0,∅〉) (γ6,nil,false, �⊥, 〈γ0,∅〉) –

MakeMove.Up (γ0,nil,true, �⊥,∅) – (γ0,nil,false, �⊥,∅)

MakeMove.Down (γ0,nil,true, ��, 〈γ0,∅〉) – (γ0,nil,false, ��, 〈γ0,∅〉)
MakeMove.Selector – (true,false, 〈γ6,∅〉) –

t – 6 –

γ – –

The host model is represented in Table 2 at step 1.
In the state of the ARule and XRules, σ1, and σ2 are set
to false and are omitted for conciseness. We also assume
that for every ARule and XRule, � = 1. The notation
〈γi , ρi 〉 denotes the packet created at time t = i . The
transition from step 2 to step 3 follows the internal transi-
tion of TryMove.Down, having been selected by the select

function. The transition from step 3 to step 5 follows the
internal transition of TryMove.Selector. The models shown
in the last row of the tables indicate the new graph γ

after a successful application of a transformation rule. The
symbol “-” indicates that the content of the current cell
is the same as the cell on the same row in the previous
column.

123

E. Syriani, H. Vangheluwe

Table 6 The execution trace of the a host graph fed into SmartMove

Step 13 14 15

TryMove.Left – (γ6,nil,false, ��, 〈γ6,∅〉) –

TryMove.Right – (γ6,nil,false, ��, 〈γ6,∅〉) –

TryMove.Up – (γ6,nil,false, �⊥, 〈γ6,∅〉) –

TryMove.Down (γ7,nil,false, �⊥, 〈γ6,∅〉) – –

TryMove.Selector (true,false, 〈γ7,∅〉) (false,false,∅) –

Eat – (γ7,nil,true, ��) (γ8,nil,false, �⊥)

MakeMove.Left – – –

MakeMove.Right – – –

MakeMove.Up – – –

MakeMove.Down – – –

MakeMove.Selector – – –

t 7 – 8

γ –

The termination of MoTif transformations is ensured by
the termination condition of the DEVS simulator which is

– All atomic models are passivated, (i.e., τ(s) = +∞); or
– Specified explicitly, (e.g., time or state condition).

References

1. Blostein, D., Fahmy, H., Grbavec, A.: Issues in the practical
use of graph rewriting. In: Cuny, J.E., Ehrig, H., Engels, G.,
Rozenberg, G. (eds.) Selected Papers from the 5th International
Workshop on Graph Grammars and Their Application to Com-
puter Science. LNCS, vol. 1073, pp. 38–55. Springer, Williams-
burg, November 1996

2. Nickel, U., Niere, J., Zündorf, A.: The FUJABA environment.
In: ICSE’00, pp. 742–745. ACM Press, Limerick, June 2000

3. Lengyel, L., Levendovszky, T., Mezei, G., Charaf, H.: Control flow
support in metamodel-based model transformation frameworks.
In: EUROCON’05, pp. 595–598. IEEE, Belgrade, November 2005

4. Agrawal, A., Karsai, G., Kalmar, Z., Neema, S., Shi, F.,
Vizhanyo, A.: The design of a language for model transformations.
SoSym 5(3), 261–288 (2006)

5. Lengyel, L., Levendovszky, T., Mezei, G., Charaf, H.: Model
transformation with a visual control flow language. IJCS 1(1),
45–53 (2006)

6. Schürr, A., Winter, A.J., Zündorf, A.: Graph grammar engineering
with PROGRES. In: Schäfer, W., Botella, P. (eds.) 5th European
Software Engineering Conference. LNCS, vol. 989, pp. 219–234.
Springer, Sitges, September 1995

7. Amelunxen, C., Königs, A., Rötschke, T., Schürr, A.: MOFLON:
a standard-compliant metamodeling framework with graph trans-
formations. In: Rensink, A., Warmer, J. (eds.) Model Driven
Architecture—Foundations and Applications: Second European
Conference. LNCS, vol. 4066, pp. 361–375. Springer, Berlin
(2006)

8. Heckel, R.: Graph transformation in a nutshell. In: Proceedings
of the School on Foundations of Visual Modelling Techniques
(FoVMT 2004) of the SegraVis Research Training Network. ENT-
CS, vol. 148, no. 1, pp. 187–198. Elsevier (2006)

9. de Lara, J., Vangheluwe, H.: AToM3: a tool for multi-formalism
and meta-modelling. In: Kutsche, R.-D., Weber, H. (eds.) FASE’02.
LNCS, vol. 2306, pp. 174–188. Springer, Grenoble, April 2002

10. Ehrig, H., Engels, G., Kreowski, H.-J., Rozenberg, G.: Handbook
of graph grammars and computing by graph transformation. In:
Rozenberg, G. (ed.) Foundations, vol. 1. World Scientific Publish-
ing Co. (1997)

11. Zeigler, B.P.: Multifacetted Modelling and Discrete Event Simula-
tion. Academic Press, New York (1984)

12. Xie, H., Boukerche, A., Zhang, M., Zeigler, B.P.: Design of a QoS-
aware service composition and management system in peer-to-peer
network aided by DEVS. In: DS-RT, pp. 285–291 (2008)

13. Lee, J.-K., Lim, Y.-H., Chi, S.-D.: Hierarchical modeling and sim-
ulation environment for intelligent transportation systems. Simu-
lation 80(2), 61–76 (2004)

14. Filippi, J.-B., Bisgambiglia, P.: JDEVS: an implementation of
a DEVS based formal framework for environmental model-
ling. Environ. Model. Softw. 19(3), 261–274 (2004)

15. Bolduc J.-S., Vangheluwe, H.: The modelling and simulation pack-
age pythonDEVS for classical hierarchical DEVS. McGill Univer-
sity. MSDL Technical Report MSDL-TR-2001-01, June 2001

16. Mens, T., Van Gorp, P.: A taxonomy of model transformation. In:
GraMoT’05. ENTCS, vol. 152, pp. 125–142, Tallinn (Estonia),
March 2006

17. Syriani, E., Vangheluwe, H.: Programmed graph rewriting with
DEVS. In: Nagl, M., Schürr, A. (eds.) AGTIVE’07. LNCS, vol.
5088, pp. 136–152. Springer, Kassel (2007)

18. Guerra, E., de Lara, J.: Event-driven grammars: relating abstract
and concrete levels of visual languages. SoSym 6(6), 317–
347 (2007)

19. Guerra, E., de Lara, J.: Event-driven grammars: towards the inte-
gration of meta-modelling and graph transformation. In: Ehrig,
H., Engels, G., Parisi-Presicce, F., Rozenberg, G. (eds.) ICGT’04.
LNCS, vol. 3256, pp. 54–69. Springer, New York (2004)

123

MoTif for simulation-based design

20. Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heu-
ristic determination of minimum cost paths. IEEE Trans. Syst. Sci.
Cybern. 4(3), 100–107 (1968)

21. Zaitsev, A.V., Skorik, Y.A.: Mathematical description of senso-
rimotor reaction time distribution. Human Physiol. 28(4), 494–
497 (2002)

22. Devroye, L.: Non-Uniform Random Variate Generation. Springer,
New York (1986)

23. Gyapay, S., Heckel, R., Varró, D.: Graph transformation with
time: causality and logical clocks. In: ICGT’02. LNCS, vol. 2505,
pp. 120–134. Springer, Barcelona, October 2002

24. Heckel, R., Lajios, G., Menge, S.: Stochastic graph transforma-
tion systems. In: Ehrig, H., Engels, G., Parisi-Presicce, F., Rozen-
berg, G. (eds.) ICGT’04. LNCS, vol. 3256, pp. 243–246. Springer,
New York (2004)

25. Agrawal, A.: Metamodel based model transformation language. In:
OOPSLA’03, pp. 386–387. ACM Press, Anaheim (2003)

26. Vizhanyo, A., Agrawal, A., Shi, F.: Towards generation of efficient
transformations. In: Karsai, G., Visser, E. (eds.) GPCE’04. LNCS,
vol. 3286, pp. 298–316. Springer, New York (2004)

27. http://www.isis.vanderbilt.edu/projects/gme/. 6 Dec 2008
28. Blostein, D., Schürr, A.: Computing with graphs and graph rewrit-

ing. SPE 9(3), 1–21 (1999)
29. Zündorf, A.: Graph pattern matching in PROGRES. In: Ehrig, H.,

Engels, G., Rozenberg, G. (eds.) Graph Grammars and Their
Application to Computer Science. LNCS, vol. 1073, pp. 454–468.
Springer, Williamsburg, November 1994

30. Zündorf, A.: Implementation of the imperative/rule based language
PROGRES. Department of Computer Science III, Aachen Univer-
sity of Technology, Germany, Aachener Informatik-Berichte 92-38
(1992)

31. Fischer, T., Niere, J., Turunski, L., Zündorf, A.: Story diagrams:
a new graph rewrite language based on the Unified Modelling
Language and Java. In: Ehrig, H., Engels, G., Kreowski, H.-J.,
Rozenberg, G. (eds.) Theory and Application of Graph Trans-
formations. LNCS, vol. 1764, pp. 296–309. Springer, Paderborn,
November 2000

32. Burmester, S., Giese, H., Hirsch, M., Schilling, D., Tichy, M.: The
fujaba real-time tool suite: model-driven development of safety-
critical, real-time systems. In: Proceedings of the 27th Interna-
tional Conference on Software Engineering ICSE ’05, pp. 670–671.
ACM, New York (2005)

33. Henkler, S., Greenyer, J., Hirsch, M., Schäfer, W., Alhawash, K.,
Eckardt, T., Heinzemann, C., Loffler, R., Seibel, A., Giese, H.: Syn-
thesis of timed behavior from scenarios in the Fujaba Real-Time
Tool Suite. In: ICSE ’09, pp. 615–618. IEEE Computer Society
(2009)

34. Schürr, A.: Specification of graph translators with triple graph
grammars. In: Tinhofer, G. (ed.) Graph-Theoretic Concepts in
Computer Science. LNCS, vol. 903, pp. 151–163. Springer,
Heidelberg, June 1994

35. 4th International Workshop on Graph-Based Tools: The Contest.
September 2008/07/21. [Online]. http://www.fots.ua.ac.be/events/
grabats2008/

36. Taentzer, G.: AGG: a graph transformation environment for model-
ing and validation of software. In: AGTIVE’03. LNCS, vol. 3062,
pp. 446–453. Springer, New York (2004)

37. Muliawan, O., Schippers, H., Van Gorp, P.: Model driven,
Template based, Model Transformer (MoTMoT). http://motmot.
sourceforge.net (2005)

38. Varró, D., Balogh, A.: The model transformation language of
the VIATRA2 framework. Sci. Comput. Program. 68(3), 214–
234 (2007)

39. Syriani, E., Vangheluwe, H.: Programmed graph rewriting with
time for simulation-based design. In: Pierantonio, A., Vallecillo, A.,
Bézivin, J., Gray, J. (eds.) ICMT’08. LNCS, vol. 5063,
pp. 91–106. Springer, Zürich, July 2008

40. Syriani, E.: A multi-paradigm foundation for model transformation
language engineering. Ph.D. Thesis, McGill University, February
2011

41. Ráth, I., Bergmann, G., Ökrös, A., Varró, D.: Live model trans-
formations driven by incremental pattern matching. In: Vallecillo,
A., Gray, J., Pierantonio, A. (eds.) ICMT’08. LNCS, vol. 5063,
pp. 107–121. Springer, New York (2008)

42. Hearnden, D., Lawley, M., Raymond, K.: Incremental model
transformation for the evolution of model-driven systems. In:
MoDELS’06. LNCS, pp. 321–335 (2006)

43. Feng, T.H.: Model transformation with hierarchical discrete-event
control. Ph.D. Thesis, EECS Department, University of California,
Berkeley, USA, May 2009

44. Simulink User’s Guide. MathWorks, Natick, USA. March 2010
45. Dormoy, F.X.: SCADE 6: A Model Based Solution for Safety Criti-

cal Software Development. Esterel Technologies, Toulouse (2007)
46. Chow, A.C.-H., Zeigler, B.P.: Parallel DEVS: a parallel, hierarchi-

cal, modular modeling formalism. TSCS 13, 55–67 (1996)
47. Hunicke, R.: The case for dynamic difficulty adjustment in games.

In: Proccedings of the ACM SIGCHI International Conference on
Advances in Computer Entertainment Technology, pp. 429–433.
ACM, Valencia (2005)

Author Biographies

Eugene Syriani is currently
a researcher in the School of
Computer Science, McGill Uni-
versity. He received his B.Sc. in
Mathematics and Computer Sci-
ence in 2006 and his Ph.D. in
Computer Science in 2011, both
obtained at McGill University.
He is a member of the Mod-
eling, Simulation, and Design
Lab supervised by Prof. Hans
Vangheluwe. His academic work
is sponsored by the Natural Sci-
ences and Engineering Research
Council of Canada. His current

research interests are Model Transformation, Model-driven Engineer-
ing, and Simulation-based Design. He is particularly interested in
the engineering of model transformation languages. His contribution
in the field resides in the engineering of model transformation lan-
guages, following multi-paradigm modelling principles. He has devel-
oped a framework for producing transformation languages tailored for
the specific needs, based on T-Core. He also has over five years of
industry experience in different service-oriented software companies in
Montreal, Canada.

123

http://www.isis.vanderbilt.edu/projects/gme/
http://www.fots.ua.ac.be/events/grabats2008/
http://www.fots.ua.ac.be/events/grabats2008/
http://motmot.sourceforge.net
http://motmot.sourceforge.net

E. Syriani, H. Vangheluwe

Hans Vangheluwe is a Professor
in the Department of Mathe-
matics and Computer Science,
Antwerp University, Belgium,
an Associate Professor in the
School of Computer Science,
McGill University, Montreal,
Canada, and an Adjunct Profes-
sor at the National University
of Defense Technology (NUDT),
Changsha, China. He holds a
D.Sc. degree, as well as M.Sc.
degrees in Computer Science and
in Theoretical Physics, all from
Ghent University, Belgium. He

heads the Modelling, Simulation and Design (MSDL) research lab,
geographically distributed over McGill and Antwerp University. He
has been the Principal Investigator of a number of research projects
focussed on the development of a multi-formalism theory and enabling
technology for Modelling and Simulation. Some of this work has led to
the WEST++ tool, which was commercialised for use in the design and

optimization of bioactivated sludge Waste Water Treatment Plants. He
was the co-founder and coordinator of the European Union’s ESPRIT
Basic Research Working Group 8467 “Simulation in Europe”, a found-
ing member of the Modelica (http://www.modelica.org) Design Team,
and an advisor to national and international granting agencies in Europe
and North America. In a variety of projects, often with industrial part-
ners, he applies the model-based theory and techniques of Computer
Automated Multi-Paradigm Modelling (CAMPaM) in a variety of appli-
cation domains. He has published over 100 peer-reviewed papers. He is
an Associate Editor of the International Journal of Critical Computer-
Based Systems, of Simulation: Transactions of the Society for Com-
puter Simulation, and of the International Journal of Adaptive, Resilient
and Autonomic Systems. His current interests are in domain-specific
modelling and simulation, including the development of graphical user
interfaces for multiple platforms. The MSDL’s tool AToM3 (A Tool
for Multi-formalism and Meta-Modelling), developed in collaboration
with Prof. Juan de Lara uses meta-modelling and graph transformation
to specify and generate domain-specific environments. Recently, he has
become active in the design of Automotive applications.

123

http://www.modelica.org

	A modular timed graph transformation language for simulation-based design
	Abstract
	1 Introduction
	2 The PacMan formalism
	2.1 The PacMan language (Abstract and concrete syntax)
	2.2 The PacMan Semantics (Graph transformation)

	3 The MoTif language
	3.1 The discrete event system specification formalism
	3.2 Controlled graph transformation in DEVS
	3.3 Soundness of MoTif

	4 Modelling the PacMan case study
	4.1 (Modelling) The transformation environment
	4.2 Modelling the player
	4.3 Modelling the game
	4.4 Explicit use of time

	5 Simulation experiments
	5.1 Modelling user reaction time
	5.2 Simulation results
	5.3 Game deployment

	6 Related work
	6.1 Graph transformation with time
	6.2 Tool comparison
	6.3 Other approaches

	7 Conclusion
	Appendix A: Detailed semantics of MoTif
	A.1 The ARule
	A.2 The CRule
	A.3 The Selector
	A.4 The Synchronizer
	A.5 The SRule
	A.6 The FRule
	A.7 The XRule

	Appendix B: Execution trace
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

