
Performance Analysis Of Himesis

Eugene Syriani Hans Vangheluwe

August 21th, 2010

Abstract

In our quest of addressing model-driven engineering problems of industrial scale, we seek for an efficient data
structure to optimally represent models. In AToMPM, modelsare represented as graphs. Furthermore, the tool is
implemented in the Python language. We therefore compare two potential candidates, namelyIGraph [1] and Net-
workX [2]. A thorough performance analysis allows us to choose themost efficient one. Furthermore, we extend it
to efficiently manipulate models, more specifically to perform model transformation. We describe the different algo-
rithms that ensure this task and compare its performance with a standard graph transformation benchmark.

1 Introduction

Nowadays, model-based development is emerging in industry. However, the models industry deals with are very large
and tend to scale with up to 105 to 106 elements. Model-based tools, such as AToMPM (the new version of AToM3 [3]),
must allow the modeller to work with such industrial-scale models. It should be able to handle common tasks such as
loading, saving, representing visually, and transformingmodels.

Since graphs are often used to model the state of a system, models are represented as graphs in AToMPM. The
data structure used internally is called Himesis, representing typed, attributed, directed graphs. In order to make the
kernel of AToMPM as efficient as possible (although implemented in the Python object-oriented language), Himesis
must allow one to optimally manipulate graphs.

In Section 2, we first compare the performance of two promising Python libraries achieving these tasks. Section 3
examines the performance of the most efficient one, focusingon the tasks accomplished in model-based tools. One
critical task in particular is to find sub-graphs in a given graph, following some constraint conditions (meta-model type,
multiplicities, OCL constraints, etc). Since graph transformation heavily relies on the matching algorithm, Section4
describes the algorithms implemented in Himesis for (1) computing sub-graph isomorphisms and (2) pattern matching
as used in model transformation. The performance of Himesisis analysed in Section 5 in the context of a standard
graph transformation benchmark. Finally we conclude in Section 6.

2 Making the Right Choice

After seeking for existing libraries for existing libraries that efficiently manipulate graphs, our investigation resulted
with two potential candidates:IGraph [1] andNetworkX[2].

2.1 IGraph & NetworkX

Both IGraph [4] and NetworkX [5] are open source software packages for creating and manipulating graphs. IGraph
is implemented in ANSI C, although it offers a Python API. NetworkX is entirely implemented in Python. They

1

both allow creating directed multi-graphs,i.e.,where edges have a source to target orientation and there canbe more
than one edge between any two (not necessarily distinct) nodes. Attributes can be assigned to nodes, edges, or to the
graph itself1. The values can be of any type, including graphs, thus supporting hierarchical graphs [6]. Although both
libraries exhibit very similar features, they differ in theway data is stored internally.

In IGraph, nodes are not explicitly stored. Instead, the internal structure only keeps track of the total number of
nodes in the graph. Nodes and edges are each identified by a non-negative integer ID. Node and edge ID numbering
is always continuous which may require re-numbering when deletion occurs. Consequently, the attribute values of
a node are not stored in the node itself. Instead, an overall additional vector is assigned globally to the graph. The
drawback is that if an attribute is only meaningful for a small subset of nodes, the required memory space will be
assigned for all nodes, as if they all had this attribute defined on themselves. Attributes are nevertheless conveniently
accessible by lookup/reference tables.

In NetworkX, a graph is stored by its adjacency list implemented in a Python dictionary of dictionaries. The outer
dictionary is keyed by nodes to values that are themselves dictionaries. The latter are keyed by neighbouring nodes
to values that are edge attributes associated with that edge. Nodes can take the form of any hashable Python object.
For non-hashable objects, NetworkX allows to represent thenode as a unique identifier and assign the data as a node
attribute. This is the same way IGraph allows for arbitrary objects be stored in a node. However with NetworkX, the
burden is on the developer to guarantee the uniqueness of theidentifiers.

2.2 IGraph vs. NetworkX

Given these differences and most of all that IGraph’s kernelis implemented in a language much more efficient then
NetworkX is, we will examine how each library performs for model manipulation tasks. For our concern, these tasks
are: creation, deletion, and modification of nodes and edges, as well as the traversal of all the elements in the graph
(the well known CRUD operations).

2.2.1 Experimental Conditions

Figure 1 shows a heat graph, represented as a table, assessing for which case one library is more optimal than the
other. For each operation we vary two parameters. The first one is the number of timesn an operation is applied. In
this comparison, we generate an initial Erdõs-Rényi randomgraphG(50,0.5). It is a graph with 50 nodes such that
an edge is created between any two nodes with probabilityp= 0.5, the randomness being sampled from a uniform
distribution function. The probability chosen generates adense graph, given that directed multiple edges and self
loops are allowed. Note that the same initial graphG is used for both libraries, ensuring non-biased experiments. The
second parameter is how data is stored in the graph. For this experiment, we evaluate the case when no data is stored
in the graph (depicted by the “No Attributes” label in Figure1) and when nodes hold attribute values (depicted by the
“Attributed” label in Figure 1)

The table in Figure 1 represents the results of the experiments along three dimensions: whether data is stored, the
operation under study, and the number of times the operationis performed. In this table, each inner cell is defined by
((d,op,n), r) where:

• op∈ {AN,AE,UN,TN,DE,DN} is the operation of interest:Add nodes, Add edges, Update nodes, Traverse,
Delete edges, andDelete nodes, respectively. In this experiment, the operations were applied in this order to
evaluate their performance independently.

• d∈ {NA,AT} indicates whether data is stored:No attributesor Attributed, the latter stores data at the node level
using the library’s node attribute mechanism. For the attributed case, the size of the data stored at each node is
4,118 bytes, which is considered as a light-weight attribute in Python.

• n∈ N is the number of times the operation has been applied.

1We only considered attributed nodes for the experiments of this section.

2

Figure 1: Comparing IGraph with NetworkX for CRUD operations. The darker the colour, the better IGraph performs
and vice versa.

• r ∈ [0,+∞[is the ratio of the computation time between the two libraries2. When 0≤ r < 1, NetworkX is faster
and whenr > 1, IGraph is faster. The boundary case ofr = 1 simply depicts that they were as fast for performing
the operationop.

Each cell can therefore be uniquely identified by the tuple(op,d,n). To alleviate the notation, replacing any element of
this tuple by∞ refers to the corresponding sub-table. For example,(NA,∞,10) represents the results of the experiment
where all the operations are applied 10 times on a graph with no attributes. Note that every(d,∞,n) combination is a
distinct experiment with a new graphG as input. The system running these experiments is composed of 32 nodes with
7,200 RPM Intel Core 2 Duo process of 2.66 GHz, 8 GB of memory with a 667 MHz DDR2, and two times 4MB of
L2 cache. The connection is a 4 gigabit port switch with layer2 switching.

2.2.2 Analysis of the Comparison

At a first glance, Figure 1 reflects much more dark cells then light ones, indicating that IGraph performs better than
NetworkX overall. For a graph with no attributes (whend = NA), since IGraph stores nodes very efficiently as ex-
plained previously, it clearly outperforms NetworkX with respect to the creation of elements: 1.3×103 times faster
for the creation of 2×105 nodes and 30 times faster for the creation of the same amount of edges. NetworkX is up to
4 times faster for deleting small amounts of edges (less than50), while IGraph is up to 45 times faster for larger values
of n. As for the deletion of nodes, IGraph is up to 80 times faster for mid-sized graphs (104 edges) and around 50 times
faster for larger graphs. This ratio is significantly smaller than for the creation of nodes because of the re-numbering
required to ensure a continuous numbering of nodes in IGraph. Traversing all nodes in the graph is twice as fast on
average in IGraph for any size of the graph. The update operation (op=UN) in this case is simply the sum of adding
and removing the same amount of nodesn, since no attributes are stored in the nodes. On average thisoperation is
100 times faster for IGraph.

Now that we know IGraph is significantly more efficient than NetworkX for non-attributed graphs, we will examine
if it is still the case when data is added to the graph. Whend = AT, the creation of nodes is about 3 times faster in
IGraph than in NetworkX forn≤ 100. Creating a larger number of nodes is as fast in both libraries as the initialization
of attributes becomes an overhead on the actual creation of anode. This is confirmed with the fact that the update
operation is also as fast in both libraries. The ratio for edge creation is the same as for the non-attributed case for
n≤ 2×104. This is predictable as the presence node attribute does notinfluence edge creation. However, when creating
more edges, IGraph is slightly even more efficient: the ratiois 1.5 times higher than for the non-attributed case.
Nevertheless, edge deletion for the attributed case is as performant as its non-attributed homologue. Node deletion
becomes only 4 times faster with IGraph when attributes are present. NetworkX is slower traversing the graph with
attributed nodes (up to 4 times slower for graphs with 2×104 nodes). Table 1 summarizes the overall comparison.

2All numeric results of the experiments presented in this paper have an error margin of±1.000×10−1 unit.

3

Operation No Attributes Attributed

Add nodes 719.9 583.3 1.5 1.2
Add edges 17.9 9.8 23.2 18.0

Update nodes 99.5 65.5 1.0 0.0
Traverse 2.0 0.6 2.5 1.2

Delete edges 28.7 22.8 27.8 22.1
Delete nodes 46.4 25.5 5.2 1.7

Table 1: Average (first column) and standard deviation (second column) over all values ofn of the efficiency factor of
IGraph over NetworkX.

Directed graph

Multi-graph

Hyper-graph

G H

Figure 2: Different types of graphsG and their representation as Himesis graphsH.

3 Optimal Representation of Models

Given the results of the previous experiment, IGraph is overall significantly more efficient in time complexity. It is also
more efficient in space complexity since the machines running the NetworkX library ran out of memory atn= 3×105,
while no thrashing was observed when IGraph was dealing withgraph sizes of up to 106 elements. In this section, we
investigate for the optimal representation of data in the graph. We analyse the performance and relative cost of the
CRUD operations.

3.1 Realizing Domain-Specific Models as Directed Simple Graphs

In domain-specific languages, models represent an abstraction of a real-life system. These models are often considered
as entity/relation systems:entities represent the concepts and data of the model andrelations describe how these
concepts are related. Moreover, a relation may itself hold data. When such models are realized as directed graphs,
representing entities as nodes and relations as edges seemsobvious at a first glance. Moreover, IGraph supports
attribute assignment on both elements. In specific cases, a relation may itself be related to another relation or entity3.
But then the graph representation would require to considersuch relations as nodes. Therefore, to uniformly represent
entities and relations of a model, we propose that they be represented as nodes. In this case, an edge represents the
link between an entity and a relation, a relation and an entity, or a relation and a relation. Hence attributes need only to
be stored on nodes. Another advantage of this uniform representation of models is when a model has a multi-graph or
hyper-graph topology. Figure 2 describes how the relationsare represented in each case. However, our representation
does not consider multi-hyper-graphs, which are not a common topology of domain-specific models.

Now let us examine the cost of this uniform representation ofa modelM. Let G= (V(G),E(G)) denote a directed
graph representing the entities ofM as nodesV(G) and its relations as edgesE(G). LetH denote the graph representing

3For example, in UML class diagrams [7], an association classcan relate two classes and also be part of an inheritance relationship with
another association class.

4

the entities and relations ofM as nodesV(H) and the links as edgesE(H). (Examples ofG andH are depicted in
Figure 2.) We then have that|V(H)| = |V(G)|+ |E(G)| and|E(H)|= 2×|E(G)|. Therefore there is only a constant
difference between the size ofH andG. This is also the case whenG is a multi-graph. WhenG is a hyper-graph,|V(H)|
is as before but now|E(H)|= |Src(E(G))|+ |Tar(E(G))|, whereSrcandTar represent respectively the source nodes
and target nodes of each edge.

3.2 Performance Evaluation of CRUD operations in IGraph

To investigate for the optimal representation of data, we need to modify the domain ofd in the condition tuple(d,op,n)
such that:d ∈ {NA,LA,HA,LO,HO}, respectivelyNo Attribute, Light Attribute, Heavy attribute, Light object, and
Heavy object. They span two dimensions: data representation and the sizeof the data. The “attribute” label indicates
that, for each node, data is stored as a separate node attribute. The “object” label indicates that all the data is wrapped
in a single object and only that object is stored as a node attribute. In our experiments, a light attribute is 139 bytes,
whereas a heavy attribute is 4,330 bytes. The first corresponds to the size of two integers and three characters in
Python. The second corresponds to the size of two integers, two 50-character-long strings and another string of 4,094
characters long.

Figure 3 represents the time performance of IGraph for each value ofd. When no data is stored in the graph,
i.e., d= NA (Figure 3(a)), node creation is the least costly operation with less than 10 milliseconds for adding 106

nodes. Node deletion is also very efficient with 100 milliseconds for the same amount of nodes. As mentioned before,
for the case whered = NA, the update node operation is evaluated as first deleting then adding a new node to replace
it. This is why it is about the same speed as the delete node operation. Edge deletion seems to perform faster than edge
creation for larger graphs with respectively 100 milliseconds versus 1 second. Node traversal is undoubtedly the most
costly operation. IGraph can traverse 2×104 nodes within a minute, but it takes almost 6.5 days to traverse 106 nodes
in breadth-first search.

The plots ford = LA andd = LO are very similar to each other. This indicates that the relative performance of
the operations is the same when light data is stored in the graph (Figure 3(b) and 3(d) respectively). Edge operations
become the fastest. Nevertheless, fromn= 2×104 on, node deletion performs better than edge creation but worst than
edge deletion, both by a factor of 2. Node creation is now slower by a factor 103 in the case ofd = LA and by a factor
of 5×102 in the case ofd = LO. Moreover, node update is about the same speed as node creation, which confirms
that the setting of attribute values is an overhead for node creation. Traversal is still the most costly operation.

Finally, the plots ford = HA andd = HO are also very similar. The exceptions are that node deletionis now more
expensive than edge creation with 1.7 seconds forn = 106. Also, node creation (and thus the update operation) are
more costly than the traversal operation up ton= 2×104 nodes.

To better illustrate the described results, the table in Figure 4 presents the average performance time of each
operation for different sizes of the graph. The graphs are grouped in three categories. Small graphs (less than 103

nodes) are typically used for small examples or debugging purposes. Medium graphs (between 103 and 105 nodes) are
considered as large graphs for academics but average size for industrial projects. Large graphs (more than 105 nodes)
are typically used in large industrial applications such asmobile networking. Furthermore, the table in Figure 5
summarizes the impact of choosing the “attribute” or the “object” representation for data in the graph. It clearly shows
that the “object” approach is is more efficient than the “attribute” approach.

Add Nodes. From Figure 6(a), node creation is linear with a slope of 10−8, 10−5, and 10−3 respectively for the case
where there are no attributes, for light attributes, and forheavy attributes.

Add/Delete Edges.From Figure 6(b), edge creation is independent from the datarepresentation and size. It is in fact
quadratic in terms ofn. It is the same case for edge deletion as shown in Figure 6(c).

Delete Nodes.From Figure 6(d), node deletion is also quadratic in terms ofn. Here we see that the “attribute”
representation is slightly more optimal for small to medium-sized graphs by 30%.

Update Nodes. In Figure 6(e), updating light data represented in the “attribute” approach is 30 times slower than the
“object” approach. As for heavy-weight data, either approach is as slow by a factor 103.

5

(a)

(b) (c)

(d) (e)

Figure 3: The effect of data representation. The graphs are plotted in log-log scale.

6

Figure 4: Average speeds for executing CRUD operations.

Figure 5: Factor effect of using IGraph’s node-level attribute mechanism for all node attributes versus wrapping all
attributes in one object stored using IGraph’s node-level attribute mechanism.

Traverse. Finally, from Figure 6(f), traversal of the graph is independent from the data representation and size. The
plots are quadratic reflecting the traversal’s complexity.

3.3 Optimal Representation of Data of Models in IGraph

The previous experiment considered graphs in general. In the following experiment, we investigate for an optimal
representation of attributes of AToMPM models. Elements ofthese models can hold an arbitrary number of data
(attributes). A typical element of an AToMPM model includesthe following data: a universally unique id, two integers,
two booleans, two 50-character long strings, an additional10-character long string encoding the type of this element,a
1000-character long string representing an action or constraint on the element (typical for elements of transformation
models), and a list of seven 10-character long strings enumerating all the sub-types of the type of this element Thus
the total size of this typical element is 1,382 bytes, which is an average size according to the previous experiment.

We now consider three different alternatives for representing data in the nodes of IGraph graph:

• Node attribute mechanism used for each of the above attributes (this is theAT approach used previously).

• A python object encapsulating all the attributes, stored asone node attribute (this is theOT approach used
previously).

• A hash table holding all the attributes, stored as one node attribute (this will be referred to asHT).

In order to determine which ofAT, OT, or HT is the optimal representation to use in Himesis, we evaluatetheir
performance on CRUD operations applied to nodes only, sinceSection 3.2 has confirmed that data stored in nodes has
no impact on the performance of edge operations.

Create Nodes.Figure 7(a) shows the scales for creating4 nodes for each representation: 9×10−3 for AT, 5×10−3

for OT, and 3×10−3 for HT.

Update Nodes.Figure 7(b) shows the scales for updating nodes for each representation: 9×10−3 for AT, 5×10−3

for OT, and 3×10−3 for HT. Not surprisingly, this is the same order as for adding nodessince, according to
Section 3.2, the addition of nodes takes significantly less time than initializing its attributes (about a 103 times
faster).

4Addition of nodes and initialization of its attributes.

7

(a) (b)

(c) (d)

(e) (f)

Figure 6: CRUD operations on nodes for each representation of data. The plots are in log-log scale.

8

(a) (b)

(c) (d)

Figure 7: CRUD operations on nodes for each representation of data. The plots are in log-log scale.

9

Delete Nodes.Figure 7(c) shows the scales for deleting nodes for each representation: 4×10−4 for AT, 8×10−4 for
OT, and 7×10−4 for HT.

Query Nodes. To query nodes, we have investigated for the optimal way of retrieving the data from nodes: using the
mechanism built in IGraph for querying nodes (theselect method) or programmatically retrieving attribute
values. The results were very conclusive: using the IGraph query mechanism for HT and OT is 1.6 times faster,
and 3.1 times faster if using the IGraph query mechanism for AT. Thus we only consider the IGraph mechanism
for querying nodes. Figure 7(d) shows the scales for querying nodes for each representation: 3×10−4 for AT
and 8×10−4 for bothOT andHT.

We would like to minimize the time each of the CRUD operationstakes in a rule. Here, we assume that a rule con-
sists of a left-hand side (LHS) pre-condition pattern graphand a right-hand side (RHS) post-condition pattern graph.
From the observations above, we can write the following formulas representing the time cost of a rule application for
each representation of data:

AT : 90a+90u+4d+3q

OT : 50a+50u+8d+8q

HT : 30a+30u+7d+8q

, wherea,u,d, andq are the number of times the add, update, delete, and query operations5 on nodes happens in a rule,
respectively. Therefore, choosing the optimal representation depends on the solution of the following inequalities:

ChooseHT overOT ⇔ 20(a+u)+d > 0 (1)

ChooseAT overOT ⇔ q> 8(a+u)−0.8d (2)

ChooseAT overHT ⇔ q> 12(a+u)−0.6d (3)

Equation 1 is always true since, by definition, a rule appliesat least one of the add, update, or delete operations.
HenceOT will not be considered anymore and equation (2) can be discarded. The left-hand side of (3) represents
the operation performed in the matching phase of the rule (querying nodes). The right-hand side of (3) represents the
operation performed in the rewriting phase of the rule (add,update, delete nodes). Recall that the matching phase
queries all nodes of the pre-condition pattern as well as allnodes of the source graphG (in the worst case). Henceq∈
O(|V(LHS)|+ |V(G)|). Following a similar reasoning, we have thata∈O(|V(RHS−LHS)|) u∈O(|V(LHS∩RHS)|)
d ∈ O(|V(LHS−RHS)|). On the one hand, in the extreme case where the LHS is empty, wetherefore have that
|V(G)|> 12.6|V(RHS)|. On the other hand if the RHS is empty, then|V(G)|>−13.6|V(LHS)|, which is always true
if both the LHS andG are not empty. Therefore, a sufficient condition for choosing theAT approach is if there are
13 times more nodes in the source graph than in the RHS. This isvery likely to hold given that relation-like model
elements are also represented as nodes in Himesis. Moreover, favouring theAT approach reduces attribute access
time for other model manipulations as well. The plot in Figure 8 classifies the performance of each graph operation
performed on a Himesis graph implemented with theAT approach.

4 Match & Rewrite Operations in Himesis

Model transformation plays a crucial role in model-driven development. A transformation is commonly expressed
as a set oftransformation rules. A rule consists of a pre-condition pattern and a post-condition pattern. The former
depicts a pattern that should occur in the input model and thelatter depicts how this occurrence shall be modified.
When models are implemented as graphs, the pre-condition pattern specifies that an instance of this pattern must be a
sub-graph of the input graph. Since pattern matching (and inparticular, the sub-graph homomorphism problem) is NP-
Complete [8], there are various exponential-time worst case solutions, for which the average-time complexity can be

5The update and query operations are performed on all the attributes of each node.

10

Figure 8: Performance of all operations on Himesis graphs.

reduced with the help of heuristics. These approaches can bedivided in two major categories:constraint satisfaction
problemsandsearch plans.

On the one hand, search plan techniques [9, 10] define the traversal order for the nodes of the model to check
whether the pattern can be matched. This is done by computingthe cost tree of the different search paths and choosing
the less costly one. Complex model-specific optimization steps can be carried out for generating efficient adaptive
search plan [11]. On the other hand, graph pattern matching can be described as a constraint satisfaction problem [12],
where the pre-condition elements are variables, the elements of model form the domain and typing, and the links and
attribute values form the set of constraints. These techniques make use of backtracking algorithms [13] for finding a
sub-graph of the input graph that is isomorphic6 to the pre-condition graph. The algorithm explores the search space in
a depth-first order. Well-known algorithms such as Ullmann [14] and VF2 [15] are some of the most efficient examples
for solving the sub-graph isomorphism problem as a constraint satisfaction problem. In Himesis, we implement the
pattern matching algorithm on top of these two algorithms.

4.1 An Efficient Sub-graph Isomorphism Algorithm

The matching algorithm of Himesis combines a variation of the VF2 algorithm together with the refinement strategy
of Ullmann’s algorithm, as outlined in Algorithm 1.

6In fact, it is homomorphic since the pattern graphs describeconstraints on the attributes of the source graph.

11

Algorithm 1 extend(state)
1: if mappingIsComplete(state)then
2: storeMatch(state)
3: end if
4: for p, sin suggestMapping(state)do
5: if areCompatible(p, s)then
6: if areSyntacticallyFeasible(p, s)then
7: if areSemanticallyFeasible(p, s)then
8: state.storeMapping(p, s)
9: extend(state)

10: state.undoMapping(patternNode, s)
11: end if
12: end if
13: end if
14: end for

The procedureextend augments the state of the algorithm with all possible mappings from the pattern graph to
the source graph. In the following, we call amappingthe one-to-one correspondence between a pattern node and a
source node. We denote by amatchthe set of mappings in which all source nodes form a graph thatis homomorphic
to the pattern graph. Lines 4-14 recursively compute further mappings given the current state of the algorithm. The
statestores the following information:

• MP andMS are the mapping sets holding the pattern nodes and the sourcenodes respectively in the current
mappings,

• TP
out andTS

out hold the set of adjacent nodes to respectivelyMP andMS following outgoing edges, at any time;

• TP
in andTS

in hold the set of adjacent edges coming in respectivelyMP andMS following incoming edges, at any
time;

• TP
inout = TP

out∩TP
in andTS

inout = TS
out∩TS

in. The latter six sets are called theterminal sets.

Each step of the search computes a partial mapping of the nodes and verifies that it is does not violate the topology
of the pattern graph.suggestMapping suggests a potential mapping of a source nodes with a pattern nodep (the
pair (p,s) is also known as the candidate pair in [15]). The choice of thepair is done in the following order: first from
(TP

inout,T
S
inout), then from(TP

out,T
S

out), then from(TP
in ,T

S
in), and finally from all other nodes.

Afterwards,areCompatible verifies if it is worth continuing this mapping. This is done by comparing the
number of incident edges ofs and p (this is known as the refinement step in [14]). The compatibility check verifies
that:

|Out(p)| ≤ |Out(s)| ∧ |In(p)| ≤ |In(s)| (4)

whereIn(n) andOut(n) respectively represent the set of incoming and outgoing adjacent edges of a noden. This is
similar to the refinement step of Ullmann’s algorithm.

Then comes the feasibility checks.areSyntacticallyFeasible ensures that the topology of the current
mapping corresponds to a sub-graph of the pattern graph. This is done by looking at the number of incident edges
when(p,s) is added to the current set of mappings (MP andMS).

Let InOut(n) = In(n)+Out(n), for any noden,
let Outp = Out(p)∩TP

out and Outs = Out(s)∩TS
out,

let Inp = In(p)∩TP
in and Ins = In(s)∩TS

in,
let Allp = MP∪TP

out∪TP
in and Alls = MS∪TS

out∪TS
in.

12

Then the following must be true to ensure syntactic feasibility of sandp:

|Outp| ≤ |Outs|∧

|Inp| ≤ |Ins| ∧ (5)

|Outp|+ |Inp|+ |InOut(p)−Allp| ≤ |Outs|+ |Ins|+ |InOut(s)−Alls|

The last test ensures that the semantics ofscorresponds to the semantics ofp. In our case, semantic information of the
nodes is encoded in their attributes, but the deails of the functionareSemanticallyFeasiblewill be elaborated
later on. Whensandp satisfy all of the above conditions,(p,s) is considered a valid mapping and is stored in the state
(line 8). The algorithm then continues looking for remaining mappings. When all valid mappings have been computed
(lines 1-3), the corresponding match is stored. The algorithm backtracks to the previous state when either a complete
match is found or if the current partial match (set of mappings in MP andMS) does not allow for any further valid
mapping. Note that a nice property of this algorithm is that any state in the search tree is visited exactly once.

Algorithm 2 allows to compute all matches between a pattern graphP and a source graphS. Furthermore, an initial
set of mappings can be specified to prune the search tree constructed by the procedureextend. This initial mapping
can also be seen as the initial context in which the matchingsmust be computed: it restricts specific pattern nodes to
be mapped exactly to predefined source nodes.

Algorithm 2 computeMappings(S, P, context)
1: state← initState(S, P)
2: for p, sin contextdo
3: state.update(p, s)
4: end for
5: extend(state)
6: return state.getMatches()

Performance Evaluation of the Implementation

Let us first analyse the space complexity of theextend procedure. The state of the algorithm is encoded in thestate
variable. It holds the two partial mapping sets as well as allsix terminal sets. Thus the number of nodes stored in
the state is at most 5× |V(P)|+ 3× |V(S)| which is linear in terms of the nodes of the source and patterngraphs.
Moreover, since IGraph stores the nodes as integers,stateis therefore quite compact. Additionally, the experiments
below have shown that the algorithm performs better if the adjacency list (encoded as a hash table) is memoized as
well. The size of this hash table is in the worst case|V(P)|2+ |V(S)|2 for fully connected, directed, simple graphs.

We now compare the time performance of theextend algorithm of Himesis with VF2’s sub-graph isomorphism
algorithm. We have chosen the IGraph implementation of VF2 as benchmark which is in direct correspondence with
original implementation. Note that Himesis is implementedin Python whereas VF2 was implemented in C. Accord-
ing to http://shootout.alioth.debian.org/u32q/benchmark.php?test=all&lang=python&lang2=gcc, Python is in general
slower than C by an average factor of 23, which is not integrated in the results presented here. In these experiments, we
gathered the computation time with respect to the number of nodesn of the source graph. The source graph represents
random valid class diagrams encoded as Himesis graphs. The average number of class diagram elements is shown in
Figure 9(d) For each source graph we have run the algorithm onsix pattern graphs which sizes range from 2 to 12
nodes. For both the source and pattern graphs, the number of edges is the same order as the number of nodes (which
is typical in class diagrams). Each data point of the plots inFigure 9 represents the average time over the six pattern
graphs.

Figure 9(a) shows the performance of both algorithms for finding the first match only. For small graphs, VF2 is
about 25 times faster than Himesis. For medium graphs, VF2 istwice as fast as Himesis. However at around 2.2×105

nodes, both perform as fast. At this point, Himesis takes over VF2 by a factor of 6 for large graphs.

13

(a) (b)

(c) (d)

Figure 9: Average of sub-graph isomorphism matching over the six pattern graphs..

14

Figure 9(b) shows the performance of both algorithms for finding all matches. For small graphs, VF2 is about
60 times faster than Himesis. For medium graphs, VF2 is 5 times faster than Himesis. However at around 1.5×105

nodes, both perform as fast. At this point, Himesis takes over VF2 by a factor of 5 for large graphs.
Figure 9(c) shows the performance of both algorithms when nomatch exists. For small graphs, VF2 is about 24

times faster than Himesis. The medium graph category must bedivided in two. For graphs with 103 and 104 nodes,
VF2 is 3.6 times faster than Himesis. As for graphs with 104 and 105 nodes, Himesis takes over by a factor of 2.2. The
break even point is around 1.7×104 nodes. At this point, Himesis takes over VF2 by 3 times for large graphs.

The table in Figure 9(d) summarizes these observations. Notice how Himesis outperforms VF2 significantly for
large graphs.

4.2 Pattern Matching

The transformation kernel of AToMPM isT-Core [16]. In T-Core, the pre- and post-condition patterns of a rule are
encoded as Himesis graphs. A pre-condition is composed of a positive condition graph (LHS) and optional negative
condition graphs (NACs). Proposition (6) defines the semantics of a rule withn NACs: if an occurrence of the LHS
is found in the source graph before the rule is applied and none of the NACs is found, then an occurrence of the RHS
must be found in the source graph after the rule has been applied. A more formal definition based on category theory
can be found in [17].

LHS∧¬NAC1∧¬NAC2∧ . . .∧¬NACn⇒ RHS (6)

In Himesis, a nodeN of a pattern graph holds the following information:

• A universally unique identifier: such identifiers are ensured to be unique at all time.

• The typet of the model elementN encodes: this represents the absolute path (across packages) of the name of
the type element.

• A boolean flagstmspecifying whether a source node mapped toN must of typet or a sub-type oft.

• The setst of all sub-type oft.

• The identifier of a binding pivot
←
x (for pre-condition graphs): if specified, it predefines which source node that

was assigned to the pivotx must be matched toN.

• The identifier of a pivot assignment
→
x: if specified, it indicates that the source node mapped toN will be assigned

to the pivotx.

• A label global to the scope of the rule. Node labelling in the different pattern graphs of the rule is used as follows.
In the LHS, a label allows one to distinguish between two nodes of the same type that must be mapped to
different source nodes. A label present in both the LHS and the RHS or in both the LHS and a NAC corresponds
to the same matched source node. A label present in a NAC but not in the LHS allows one to distinguish between
two nodes of the same type that must be mapped to different source nodes.

• Each attribute of the meta-model element corresponding tot is subject to the RAM procedure [18]. In the LHS
and the NAC, the node is assigned one constraint per attribute. The constraint can be of arbitrary complexity,
but can only refer to source nodes bound to the correspondingpattern (LHS xor NAC). In the RHS, the node
is assigned an action code per attribute. The action can be ofarbitrary complexity, but can only refer to source
nodes bound to the LHS pattern.

The size of the data stored in each pattern node is 1,342 bytes, without taking into consideration the meta-model
attributes. Additional information is stored at the graph pattern level: the set of all meta-models involved in the pattern7

as well as an additional constraint (for a LHS or a NAC) or action (for an RHS). The constraint and action follow the
same conditions as for pattern node attributes.

7Because in AToMPM, rules can involve many meta-models as ine.g.,multi graph grammars [19].

15

Up to now, we have described an efficient solution for finding asub-graph of the source graph isomorphic to the
pattern graph. However, this is not sufficient for pattern matching as this only takes into account the topology of the
pattern graph. Constraints and NACs must be taken into consideration as well. Therefore, Algorithm 3 specifies a
procedure that extends the previous sub-graph isomorphismsolution for pattern matching purposes. But we must first
modify theextend procedure to handle constraints on meta-model attributes as well as node typing. The type of a
pattern nodep and a source nodes must correspond. This requirement must be verified as early as possible to reduce
the search space. We therefore modify the functionareCompatible in Algorithm 1. More specifically, condition
(4) must now take into considerations the types of the candidate pair(p,s) as specified in (7), such that the type ofs
is the same as the type ofp or one of its sub-types. (4) can then be rewritten as:

|Out(p)| ≤ |Out(s)| ∧ |In(p)| ≤ |In(s)| ∧ ((s.t = p.t)∨ (p.stm∧s.t ∈ p.st)) (7)

Additionally, the functionareSemanticallyFeasiblemust ensure that the attributes held ins each satisfy the
corresponding meta-model attribute constraints inp. Also, to help the algorithm find a match as soon as possible,
we have parametrized thesuggestMapping function with a priority mechanism to suggest a candidate pair. Our
implementation allows to specify an arbitrary order of a terminal set. By default,suggestMapping will suggest an
unmatched pattern node such that its type occurs the least often in the graph. This heuristic ordering can be modularly
extended with further knowledge of the pattern graph and thesource graph in our implementation.

The pattern matching algorithm in Himesis is described in Algorithm 3. The procedurematch takes a source
graphG and the LHS pattern graph as input. Pivot bindings may also bespecified in thecontext. The procedure can
be divided in three cases. In the following, we consider a match asvalid if the source nodes in the mappings of the
match satisfy the constraint of the pattern graph.

No NACs. When there are no NACs specified in the pre-condition pattern, then only lines 1,12-14 are applied. This
simply calls thecomputeMappings procedure and returns the valid matches.

Unbound NACs. We denote a NAC as unbound if none of its nodes has a label present in the corresponding LHS.
If the pre-condition has unbound NACs, it suffices to find one valid NAC match to prevent the pre-condition
pattern from successfully finding any matches. Lines 3-14 describe this behaviour. First,G is matched on the
NAC with the provided context. If no valid match is found, theprocedure then tries to find matches for the LHS
as in the previous case. Otherwise, no match is output.

Bound NACs. All other NACs are bound to the LHS. SincecomputeMappings is the most costly procedure, we
want to avoid computing mappings twice,i.e., the common part between the LHS and a NAC. Thus the idea is
to first match the common part between the LHS and a NAC, then continue the matching along the NAC, and
finally, if no valid NAC matches were found, continue from thematch of the common part along the LHS.

A NAC having a common part with the LHS means that there is a sub-graph of the LHS that overlaps with
the NAC. We denote this intersection as a pre-condition graph calledbridge. In general, computing the bridge
would require to find the maximum common sub-graph (MCS) between these two graphs. Solving the MCS
isomorphism problem is NP-Complete. However, making use ofthe labels in the Himesis pattern graphs reduces
the complexity to linear-time. Therefore the bridge can be constructed as follows: if a node has a label present in
nodes of both the LHS and the NAC, then this node is part of the bridge. Also, every edge in the smallest graph
between the LHS and the NAC whose source and target nodes are in the bridge is part of the bridge. However,
recall that pattern nodes also hold a constraint for each meta-model attribute. Thus, each meta-model attribute
of a bridge node is computed as the conjunction of the corresponding attribute constraint in the LHS and the
corresponding attribute constraint in the NAC. Note that noconstraint is added on the pattern graph of the bridge
as in the LHS or NAC cases. It easy to show that the time complexity of constructing the bridge between the
LHS and an NAC isO(V +E), whereV = max(|V(LHS)| , |V(NAC)|) andE = min(|E(LHS)| , |E(NAC)|)8.

In thematch procedure, line 24 computes the bridgeB with the largest number of nodes. Since a bridge can
be statically computed, all bridges had already been precomputed and integrated in the corresponding NACs (at

8V should also be multiplied by the maximum number of meta-model attributes, which is small in practice.

16

Algorithm 3 match(G, LHS, context)
1: validMatches← /0
2: moreNACs← False
3: for NAC in LHS.getNACs() do
4: bridge← NAC.getBridge()
5: if V(NAC.getBridge()) > 0 then
6: moreNACs← True
7: else
8: for nacMatchin computeMappings(G, NAC, context)do
9: if NAC.checkConstraint(nacMatch)then

10: return /0
11: end if
12: end for
13: end if
14: end for
15: if not moreNACsthen
16: for lhsMatchin computeMappings(G, LHS, context)do
17: if LHS.checkConstraint(lhsMatch)then
18: validMatches← validMatches∪ {lhsMatch}
19: end if
20: end for
21: return validMatches
22: end if
23: maxNAC← LHS.getNACwithMaxBridge()
24: B← maxNAC.getBridge()
25: for bMatchin computeMappings(G, B, context)do
26: for maxNACMatchingin computeMappings(G, maxNAC, bMatch∪ context)do
27: if not maxNAC.checkConstraint(maxNACMatching)then
28: goto 20
29: end if
30: end for
31: for lhsMatchin computeMappings(G, LHS, bMatch∪ context)do
32: if LHS.checkConstraint(lhsMatch)then
33: for NAC in LHS.getNACs() do
34: if NAC 6= maxNACandV(NAC.getBridge()) > 0 then
35: for nacMatchin computeMappings(G, NAC, lhsMatch∪ context)do
36: if not NAC.checkConstraint(nacMatch)then
37: validMatches← validMatches∪ {lhsMatch}
38: end if
39: end for
40: end if
41: end for
42: end if
43: end for
44: end for
45: return validMatches

17

compile-time). On line 25,G is matched onB with the provided context. Then on lines 26-30,G is matched
on the NAC corresponding toB. To prune the search space of this matching, the bridge mappings are provided
as context together with the initial context. Those mappings are valid since the nodes inB are in the NAC as
well. If a valid match for this NAC is found, then the current match ofB is discarded and the next one is tried.
When a match ofB is found such that it does not induce a valid match, we matchG on the LHS with again the
bridge mappings provided as context together with the initial context. Each valid match of the LHS represents
a potential valid match of the procedure. However, there maybe additional bound NACs with a bridge having
less nodes thanB. In this case, lines 33-41 ensure that only the valid matchesof the LHS that do not satisfy
the remaining NACs are stored. Note that when applying thecomputeMappings procedure onG with the
remaining NACs, the LHS mappings are provided as context together with any pivot node bound in the LHS
that were given in the initial context. Finally on line 45, only the valid matches are output.

4.3 Rewriting the Matches

A rule is successfully applied when proposition (6) is satisfied. The pre-condition satisfaction is ensured by the pattern
matching algorithm described previously. One way to satisfy the post-condition is to modify the matched nodes in the
source graph adequately. To transform (or rewrite) the matches, a Himesis RHS pattern graph is provided with a
compiledexecute function. Given the LHS and the RHS pattern graphs, the rewriting of a matchM = {(p,s)|p ∈
LHS∧s∈G} can be statically determined. For each(p,s) ∈M we perform the following steps in that order:

1. If the label ofp is present in both the LHS and the RHS, thenp follows theupdate operation. Each attribute of
s is set according to the action specified in the correspondingmeta-model attribute of the RHS node that has the
same label asp.

2. LetC represent the graph whose node labels are present in the RHS but not inK. Also edges ofC are constructed
in a similar way as for the bridge,i.e., E(C) = {(ni ,n j)|ni ,n j ∈V(C)∧ (ni ,n j) ∈ E(RHS)}. Then the nodes and
edges ofC must follow thecreate operation. For each node (or edge) inV(C) (or E(C)), a corresponding source
node (edge) is created in the source graph. Furthermore, theattributes of the new nodes are initialised according
to the action specified in the corresponding meta-model attribute of the respective node inC.

3. If the label ofp is present in LHS but not in the RHS, thenp must follow thedelete operation: removes from
the source graph. Note that in IGraph, deleting a node automatically deletes its adjacent edges.

4. If p is assigned a pivot identifier
→
x, then

→
x will be mapped tos.

5. Finally, after all nodes have been processed, we apply theaction specified in the RHS on the source nodes that
are inM as well as those created fromC.

Since the rewriting phase is compiled, its run-time complexity is linear: O(|V(LHS)|+ |E(LHS)|+ |V(RHS)|+
|E(RHS)|) Note that according to graph transformation literature [20], Himesis’ transformation procedure follows
the Single-Pushout (SPO) approach in contrast with the Double-Pushout (DPO) approach. On the one hand, the iden-
tification issue of the gluing condition in DPO is avoided thanks to the labelling mechanism in place. That is because
every node in each pattern graph is unique and thus may be mapped to exactly one node in each matching. On the
other hand, we have explicitly chosen to sustain the dangling edges issue. That is if a matched source node must
be deleted, all its adjacent edges will be deleted too. This has the advantage of reducing the number of rules in the
transformation.

5 Related Work

The nameHimesiswas first introduced in [21]. In his masters thesis, Provost described an efficient framework for
graph-subgraph isomorphism. The implementation of Algorithm 1 is based on his work. However, his approach does

18

not address pattern matching as used in model transformations. Also, there is no evaluation of the performance of each
CRUD operation as done in this paper.

To compare our implementation of Himesis with other graph transformation approaches, we provide our results
for a standard graph transformation benchmark: theDistributed Mutual Exclusion Algorithmbenchmark presented
by Varró in [22]. Although some measurements were reported in the original paper, Geiss et al. [10] provide a more
complete spectrum of measurements with more tools. In the latter paper, the measurements were carried out on an
AMD Athlon 3000+ with 1GB of RAM. To reuse these results, we multiplied9 Geiss’ figures by 0.684 to match the
processor’s speed specified in Section 2.

The tools used for this comparison are the following. GrGen.NET SP [10], FUJABA [23], and PROGRES [24]
are transformation tools using search plan techniques for the matching phase. An approach from Varró [25] (hereafter
referred to as VarroDB) to execute graph transformations directly in a relational database. GrGen.NET PSQL which,
in contrast with GrGen.NET SP, also stores the graphs in a relational database. Finally, AGG [12] is the only tool that
uses a CSP for the matching phase All experiments, were performed without any of the optimizations suggested by the
benchmark as no measurement for these cases were available for the other tools. As Himesis provides a framework for
manipulating graphs, we integrated it inT-Core, in combination with Python. More specifically, theT-Core matcher
calls the procedurematch form Algorithm 3 and theT-Core rewriter calls theexecutemethod of the corresponding
RHS graph to perform the rewriting.

For the Short Transformation Sequence experiment (STS), Figure 10(a) shows thatT-Core performs averagely
compared to the other tools. It however performs on average 5.6 times better thanAGG, which is the only other tool
whose matching phase is also implemented as a CSP. For the As Long As Possible experiment (ALAP), Figure 10(b)
shows that, once more,T-Core performs averagely compared to the other tools. It however performs on average 9.2
times better thanAGG. For the Long Transformation Sequence experiment (LTS), the only results available are for
N=1,000 (N processes with one resource). Figure 10(c) showsthatT-Core performs quite well compared to the other
tools. It now performs on average over 100 times better thanAGG and about as fast as GrGen.NET using ProgresSQL.
The table in Figure 10(d) summarizes the results.

6 Conclusion

This paper contributes in providing an efficient framework for AToMPM. Himesis, the framework we developed
based on IGraph, allows one to efficiently manipulate modelsencoded as graphs. The primitive CRUD operations are
very fast even for models with up to 106 elements. Moreover, we have described the implementation of the pattern
matching algorithm used to perform model transformation. The comparison of performance with other existing tools
and approaches show that Himesis is indeed an efficient framework.

One reason for the average performance results for graph transformation tasks may be that Himesis is entirely
implemented in Python. Future plans are to implement the core algorithms in a faster target language, such as C.

References

[1] Csárdi, G. and Nepusz, T. (2006) The igraph software package for complex network research.InterJournal
Complex Systems, 1695.

[2] Hagberg, A. A., Schult, D. A., and Swart, P. J. (2008) Exploring network structure, dynamics, and function using
NetworkX. In Varoquaux, G., Vaught, T., and Millman, J. (eds.), SciPy’08, Pasadena (USA), August, pp. 11–15.

[3] de Lara, J. and Vangheluwe, H. (2002) AToM3: A tool for multi-formalism and meta-modelling. In Kutsche,
R.-D. and Weber, H. (eds.),FASE’02, Grenoble (France), April, LNCS,2306, pp. 174–188. Springer-Verlag.

[4] igraph.sourceforge.net (2009). Igraph Library v0.5.3.

9This factor is obtain from the SPEC organization at http://www.spec.org/cpu2000/results/cpu2000.html.

19

(a) (b)

(c) (d)

Figure 10: Performance comparison for the Distributed Mutual Exclusion Algorithm benchmark with no optimization.

20

[5] networkx.lanl.gov (2010). NetworkX v1.1.

[6] Drewes, F., Hoffmann, B., and Plump, D. (2002) Hierarchical graph transformation.JCSS, 64, 249–283.

[7] Object Management Group (2009)Unified Modeling Language Superstructure.

[8] Mehlhorn, K. (1984)Graph Algorithms and NP-Completeness, Monographs in Theoretical Computer Science.
An EATCS Series,2. Springer.

[9] Zündorf, A. (1994) Graph pattern matching in PROGRES. InEhrig, H., Engels, G., and Rozenberg, G. (eds.),
Graph Grammars and Their Application to Computer Science, Williamsburg,USA, November, LNCS,1073, pp.
454–468. Springer-Verlag.

[10] Geiß, R., Batz, G. V., Grund, D., Hack, S., and Szalkowski, A. (2006) GrGen: A fast SPO-based graph rewriting
tool. In Corradini, A., Ehrig, H., Montanari, U., Ribeiro, L., and Rozenberg, G. (eds.),ICGT’06, Heidelberg
(Germany), September, LNCS,4178, pp. 383–397. Springer-Verlag.

[11] Varró, G., Varró, D., and Friedl, K. (2005) Adaptive graph pattern matching for model transformations using
model-sensitive search plans. In Karsai, G. and Taentzer, G. (eds.),GraMoT’05, Tallinn (Estonia), September,
ENTCS,152, pp. 191–205. Elsevier.

[12] Rudolf, M. (1998) Utilizing constraint satisfaction techniques for efficient graph pattern matching. In Ehrig,
H., Engels, G., Kreowski, H.-J., and Rozenberg, G. (eds.),TAGT’98, Selected Papers, Paderborn (Germany),
November, LNCS,1764, pp. 381–394. Springer.

[13] Krissinel, E. B. and Henrick, K. (2004) Common subgraphisomorphism detection by backtracking search.SPE,
34, 591–607.

[14] Ullmann, J. R. (1976) An algorithm for subgraph isomorphism. Journal of the ACM, 23, 31–42.

[15] Cordella, L., Foggia, P., Sansone, C., and Vento, M. (2004) A (sub)graph isomorphism algorithm for matching
large graphs.TPAMI, 26, 1367–1372.

[16] Syriani, E. and Vangheluwe, H. (2010) De-/re-constructing model transformation languages.ECEASST, 29.

[17] Ehrig, H., Prange, U., and Taentzer, G. (2004) Fundamental theory for typed attributed graph transformation. In
Ehrig, H., Engels, G., Parisi-Presicce, F., and Rozenberg,G. (eds.),ICGT’04, Rome (Italy), September, LNCS,
3256, pp. 161–177. Springer-Verlag.

[18] Kühne, T., Mezei, G., Syriani, E., Vangheluwe, H., and Wimmer, M. (2010) Explicit transformation modeling.
In Ghosh, S. (ed.),MODELS 2009 Workshops, LNCS,6002, pp. 240–255. Springer.

[19] Königs, A. and Schürr, A. (2006) MDI: A rule-based multi-document and tool integration approach.SoSym, 5,
349–368.

[20] Ehrig, H., Engels, G., Kreowski, H.-J., and Rozenberg,G. (1997)Handbook of graph grammars and computing
by graph transformation, Volume 1: Foundations. World Scientific Publishing Co., Inc.

[21] Provost, M. (2005) Himesis: A hierarchical subgraph matching kernel for model driven development. Master’s
thesis. McGill University Montréal (Canada).

[22] Varró, G., Schürr, A., and Varró, D. (2005) Benchmarking for graph transformation.VL/HCC’05, Dallas (USA),
September, pp. 79–88. IEEE Press.

[23] Fischer, T., Niere, J., Turunski, L., and Zündorf, A. (2000) Story diagrams: A new graph rewrite language based
on the Unified Modelling Language and Java. In Ehrig, H., Engels, G., Kreowski, H.-J., and Rozenberg, G.
(eds.),Theory and Application of Graph Transformations, Paderborn (Germany), November, LNCS,1764, pp.
296–309. Springer-Verlag.

[24] Zündorf, A. and Schürr, A. (1992) Nondeterministic control structures for graph rewriting systems. In Mayr,
E. W. (ed.),Graph-Theoretic Concepts in Computer Science, Fischbachau,Germany, May, LNCS,570, pp. 48–
62. Springer-Verlag.

21

[25] Varró, G., Friedl, K., and Varró, D. (2006) Implementing a graph transformation engine in relational databases.
SoSym, 5, 313–341.

22

