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Abstract

In our quest of addressing model-driven engineering problef industrial scale, we seek for an efficient data
structure to optimally represent models. In ATOMPM, modais represented as graphs. Furthermore, the tool is
implemented in the Python language. We therefore compaveptential candidates, namdigraph [1] and Net-
workX [2]. A thorough performance analysis allows us to choosentbst efficient one. Furthermore, we extend it
to efficiently manipulate models, more specifically to parfanodel transformation. We describe the different algo-
rithms that ensure this task and compare its performandearstandard graph transformation benchmark.

1 Introduction

Nowadays, model-based development is emerging in industwever, the models industry deals with are very large
and tend to scale with up to 1@ 1 elements. Model-based tools, such as ATOMPM (the new versiaToM? [3]),
must allow the modeller to work with such industrial-scaledals. It should be able to handle common tasks such as
loading, saving, representing visually, and transfornmragels.

Since graphs are often used to model the state of a systenglsrar@ represented as graphs in ATOMPM. The
data structure used internally is called Himesis, repiasgityped, attributed, directed graphs. In order to malee th
kernel of ATOMPM as efficient as possible (although impletadrin the Python object-oriented language), Himesis
must allow one to optimally manipulate graphs.

In Section 2, we first compare the performance of two promgi§igthon libraries achieving these tasks. Section 3
examines the performance of the most efficient one, focusinthe tasks accomplished in model-based tools. One
critical task in particular is to find sub-graphs in a giveagr, following some constraint conditions (meta-modeétyp
multiplicities, OCL constraints, etc). Since graph tramsfation heavily relies on the matching algorithm, Sectdon
describes the algorithms implemented in Himesis for (1) mating sub-graph isomorphisms and (2) pattern matching
as used in model transformation. The performance of Hiniesaimalysed in Section 5 in the context of a standard
graph transformation benchmark. Finally we conclude iniSe®.

2 Making the Right Choice

After seeking for existing libraries for existing librasi¢hat efficiently manipulate graphs, our investigatiorultesl
with two potential candidate$Graph [1] and NetworkX[2].

2.1 IGraph & NetworkX

Both IGraph [4] and NetworkX [5] are open source softwarekpges for creating and manipulating graphs. 1Graph
is implemented in ANSI C, although it offers a Python API. WetkX is entirely implemented in Python. They



both allow creating directed multi-graphis., where edges have a source to target orientation and theteecaiore
than one edge between any two (not necessarily distincgsdittributes can be assigned to nodes, edges, or to the
graph itself. The values can be of any type, including graphs, thus stipgdnierarchical graphs [6]. Although both
libraries exhibit very similar features, they differ in thay data is stored internally.

In IGraph, nodes are not explicitly stored. Instead, thermdl structure only keeps track of the total number of
nodes in the graph. Nodes and edges are each identified byr@egative integer ID. Node and edge ID numbering
is always continuous which may require re-numbering whdatid® occurs. Consequently, the attribute values of
a node are not stored in the node itself. Instead, an ovedditianal vector is assigned globally to the graph. The
drawback is that if an attribute is only meaningful for a dnsabset of nodes, the required memory space will be
assigned for all nodes, as if they all had this attribute @effion themselves. Attributes are nevertheless conveyientl
accessible by lookup/reference tables.

In NetworkX, a graph is stored by its adjacency list impletednn a Python dictionary of dictionaries. The outer
dictionary is keyed by nodes to values that are themseha@®udaries. The latter are keyed by neighbouring nodes
to values that are edge attributes associated with that édmes can take the form of any hashable Python object.
For non-hashable objects, NetworkX allows to represenhdite as a unique identifier and assign the data as a node
attribute. This is the same way IGraph allows for arbitrapyects be stored in a node. However with NetworkX, the
burden is on the developer to guarantee the uniqueness ilahtiers.

2.2 1Graph vs. NetworkX

Given these differences and most of all that IGraph’s keismghplemented in a language much more efficient then
NetworkX is, we will examine how each library performs for deb manipulation tasks. For our concern, these tasks
are: creation, deletion, and modification of nodes and edmew/ell as the traversal of all the elements in the graph
(the well known CRUD operations).

2.2.1 Experimental Conditions

Figure 1 shows a heat graph, represented as a table, agskssivhich case one library is more optimal than the
other. For each operation we vary two parameters. The fissi©the number of times an operation is applied. In
this comparison, we generate an initial Erdés-Rényi randosphG(50,0.5). It is a graph with 50 nodes such that
an edge is created between any two nodes with probalplity0.5, the randomness being sampled from a uniform
distribution function. The probability chosen generatedease graph, given that directed multiple edges and self
loops are allowed. Note that the same initial gr&pts used for both libraries, ensuring non-biased experimérite
second parameter is how data is stored in the graph. Forthé&iment, we evaluate the case when no data is stored
in the graph (depicted by the “No Attributes” label in Figuneand when nodes hold attribute values (depicted by the
“Attributed” label in Figure 1)

The table in Figure 1 represents the results of the expetsyaong three dimensions: whether data is stored, the
operation under study, and the number of times the opergiparformed. In this table, each inner cell is defined by
((d,op,n),r) where:

e ope {AN,AE,UN,TN,DE,DN} is the operation of interesAdd nodesAdd edgesUpdate nodesTraverse
Delete edgesandDelete nodesrespectively. In this experiment, the operations werdieghpn this order to
evaluate their performance independently.

e dc {NA AT} indicates whether data is storédb attributesor Attributed the latter stores data at the node level
using the library’s node attribute mechanism. For thelatted case, the size of the data stored at each node is
4,118 bytes, which is considered as a light-weight attebatPython.

e n < Nis the number of times the operation has been applied.

We only considered attributed nodes for the experimentsisfection.
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Figure 1: Comparing IGraph with NetworkX for CRUD operatoffhe darker the colour, the better IGraph performs
and vice versa.

e 1 € [0,+[ is the ratio of the computation time between the two libri#Vhen 0< r < 1, NetworkX is faster
and wherr > 1, IGraph is faster. The boundary case ef 1 simply depicts that they were as fast for performing
the operatiorop.

Each cell can therefore be uniquely identified by the téple d, n). To alleviate the notation, replacing any element of
this tuple by refers to the corresponding sub-table. For exam(plé, o, 10) represents the results of the experiment
where all the operations are applied 10 times on a graph witittnibutes. Note that everyl, . n) combination is a
distinct experiment with a new grafihas input. The system running these experiments is compdg2dnmdes with
7,200 RPM Intel Core 2 Duo process of 2.66 GHz, 8 GB of memoti wi667 MHz DDR2, and two times 4MB of
L2 cache. The connection is a 4 gigabit port switch with I&/ewitching.

2.2.2 Analysis of the Comparison

At a first glance, Figure 1 reflects much more dark cells thgimt lbnes, indicating that IGraph performs better than
NetworkX overall. For a graph with no attributes (whes= NA), since IGraph stores nodes very efficiently as ex-
plained previously, it clearly outperforms NetworkX witkspect to the creation of elements3 & 10° times faster
for the creation of % 10° nodes and 30 times faster for the creation of the same ambedges. NetworkX is up to

4 times faster for deleting small amounts of edges (less3anwhile IGraph is up to 45 times faster for larger values
of n. As for the deletion of nodes, IGraph is up to 80 times fasienfid-sized graphs (fGdges) and around 50 times
faster for larger graphs. This ratio is significantly smallean for the creation of nodes because of the re-numbering
required to ensure a continuous numbering of nodes in IGragversing all nodes in the graph is twice as fast on
average in IGraph for any size of the graph. The update aper@p= UN) in this case is simply the sum of adding
and removing the same amount of nodesince no attributes are stored in the nodes. On averagephbistion is
100 times faster for IGraph.

Now that we know IGraph is significantly more efficient thartMerkX for non-attributed graphs, we will examine
if it is still the case when data is added to the graph. Wthen AT, the creation of nodes is about 3 times faster in
IGraph than in NetworkX fon < 100. Creating a larger number of nodes is as fast in bothridzas the initialization
of attributes becomes an overhead on the actual creatiomotfl@. This is confirmed with the fact that the update
operation is also as fast in both libraries. The ratio foreedgepation is the same as for the non-attributed case for
n< 2x 10* This s predictable as the presence node attribute doésfhustince edge creation. However, when creating
more edges, IGraph is slightly even more efficient: the rii@.5 times higher than for the non-attributed case.
Nevertheless, edge deletion for the attributed case is dsrpant as its non-attributed homologue. Node deletion
becomes only 4 times faster with IGraph when attributes ezsgmt. NetworkX is slower traversing the graph with
attributed nodes (up to 4 times slower for graphs withZ0* nodes). Table 1 summarizes the overall comparison.

2All numeric results of the experiments presented in thissp&yave an error margin af1.000x 10~ unit.



Operation No Attributes | Attributed

Add nodes || 719.9| 583.3 || 1.5 | 1.2
Add edges 179 | 9.8 | 23.2| 18.0
Update nodes| 99.5 | 65.5 || 1.0 | 0.0
Traverse 2.0 0.6 25| 1.2
Delete edges|| 28.7 | 22.8 | 27.8| 22.1
Delete nodes| 46.4 | 255 | 5.2 | 1.7

Table 1: Average (first column) and standard deviation (seé@mlumn) over all values af of the efficiency factor of
IGraph over NetworkX.

G H
Directed graph
Multi-graph
Hyper-graph

Figure 2: Different types of graplt and their representation as Himesis gradhs

3 Optimal Representation of Models

Given the results of the previous experiment, IGraph isalsignificantly more efficient in time complexity. It is als
more efficient in space complexity since the machines runttia NetworkX library ran out of memory at= 3 x 10,
while no thrashing was observed when IGraph was dealinggrithh sizes of up to felements. In this section, we
investigate for the optimal representation of data in trephgr We analyse the performance and relative cost of the
CRUD operations.

3.1 Realizing Domain-Specific Models as Directed Simple Gpdos

In domain-specific languages, models represent an abstradta real-life system. These models are often considered
as entity/relation systemgntitiesrepresent the concepts and data of the modelratadions describe how these
concepts are related. Moreover, a relation may itself hald.cdWwhen such models are realized as directed graphs,
representing entities as nodes and relations as edges sdeionsgs at a first glance. Moreover, IGraph supports
attribute assignment on both elements. In specific casetation may itself be related to another relation or edtity
But then the graph representation would require to considehn relations as nodes. Therefore, to uniformly represent
entities and relations of a model, we propose that they besepted as nodes. In this case, an edge represents the
link between an entity and a relation, a relation and anyemiita relation and a relation. Hence attributes need only to
be stored on nodes. Another advantage of this uniform reptaton of models is when a model has a multi-graph or
hyper-graph topology. Figure 2 describes how the relattsagepresented in each case. However, our representation
does not consider multi-hyper-graphs, which are not a comtmology of domain-specific models.

Now let us examine the cost of this uniform representatioa mdelM. LetG = (V(G),E(G)) denote a directed
graph representing the entitiesMfas node¥ (G) and its relations as edgEs$G). LetH denote the graph representing

3For example, in UML class diagrams [7], an association atassrelate two classes and also be part of an inheritandgoredhip with
another association class.



the entities and relations & as noded/(H) and the links as edgds(H). (Examples ofG andH are depicted in
Figure 2.) We then have that (H)| = [V(G)| + |[E(G)| and|E(H)| = 2 x |E(G)|. Therefore there is only a constant
difference between the sizeldfandG. This is also the case whéhis a multi-graph. Whef® is a hyper-graphV (H)|

is as before but noWE(H)| = |SrdE(G))|+ |Tar(E(G))|, whereSrcandTar represent respectively the source nodes
and target nodes of each edge.

3.2 Performance Evaluation of CRUD operations in IGraph

To investigate for the optimal representation of data, weeliie modify the domain af in the condition tupléd, op, n)
such thatd € {NA LA/HA,LO,HO}, respectivelyNo Attribute Light Attribute Heavy attribute Light object and
Heavy objectThey span two dimensions: data representation and thefthe data. The “attribute” label indicates
that, for each node, data is stored as a separate nodetattiine “object” label indicates that all the data is wrapped
in a single object and only that object is stored as a nodibatiy In our experiments, a light attribute is 139 bytes,
whereas a heavy attribute is 4,330 bytes. The first corr@lsptm the size of two integers and three characters in
Python. The second corresponds to the size of two integens;®-character-long strings and another string of 4,094
characters long.

Figure 3 represents the time performance of IGraph for eatlevofd. When no data is stored in the graph,
i.e., d= NA (Figure 3(a)), node creation is the least costly operatiih less than 10 milliseconds for adding®10
nodes. Node deletion is also very efficient with 100 millmeds for the same amount of nodes. As mentioned before,
for the case wherd = NA, the update node operation is evaluated as first deletimgatiding a new node to replace
it. This is why it is about the same speed as the delete nodatipe Edge deletion seems to perform faster than edge
creation for larger graphs with respectively 100 millised® versus 1 second. Node traversal is undoubtedly the most
costly operation. IGraph can traverse 20* nodes within a minute, but it takes almost 6.5 days to traveéf nodes
in breadth-first search.

The plots ford = LA andd = LO are very similar to each other. This indicates that the ivegierformance of
the operations is the same when light data is stored in thghdfeigure 3(b) and 3(d) respectively). Edge operations
become the fastest. Nevertheless, fiom 2 x 10* on, node deletion performs better than edge creation bugtfzan
edge deletion, both by a factor of 2. Node creation is now stdwy a factor 18in the case ofl = LA and by a factor
of 5x 1% in the case ofl = LO. Moreover, node update is about the same speed as nod@graelich confirms
that the setting of attribute values is an overhead for noeation. Traversal is still the most costly operation.

Finally, the plots ford = HA andd = HO are also very similar. The exceptions are that node delétioow more
expensive than edge creation witlY seconds fon = 10°. Also, node creation (and thus the update operation) are
more costly than the traversal operation umte 2 x 10* nodes.

To better illustrate the described results, the table irufeigd presents the average performance time of each
operation for different sizes of the graph. The graphs aceggd in three categories. Small graphs (less th&n 10
nodes) are typically used for small examples or debuggimggses. Medium graphs (betweer? Hid 16 nodes) are
considered as large graphs for academics but average sirelfstrial projects. Large graphs (more thaf h6des)
are typically used in large industrial applications suchhasbile networking. Furthermore, the table in Figure 5
summarizes the impact of choosing the “attribute” or thejgots representation for data in the graph. It clearly shows
that the “object” approach is is more efficient than the fattie” approach.

Add Nodes. From Figure 6(a), node creation is linear with a slope ofé1a0-°, and 10°2 respectively for the case
where there are no attributes, for light attributes, andh&avy attributes.

Add/Delete Edges.From Figure 6(b), edge creation is independent from therdgi@sentation and size. It is in fact
quadratic in terms af. It is the same case for edge deletion as shown in Figure 6(c).

Delete Nodes.From Figure 6(d), node deletion is also quadratic in terms.dflere we see that the “attribute”
representation is slightly more optimal for small to medisized graphs by 30%.

Update Nodes. In Figure 6(e), updating light data represented in theitaite” approach is 30 times slower than the
“object” approach. As for heavy-weight data, either apphois as slow by a factor £0
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Figure 3: The effect of data representation. The graphslateed in log-log scale.




No attribute Light attribute Light object Heavy attribute Heavy object
small Medium Large small Medium Large | Small Medium Large | Small Medium Large | Small Medium Large
[0,10°] [10°,10°[ [10°,10%1| [0,20°] [10°,10°[ [10°,20%]|[0,20] [10°107 [10°,10%1|[0,20° [10°,107 [10°10%|[0,10°[ [10°10° [10°10%]

Operation

Add nodes 5.E-06 2.E-04 5.E-03 | 2E-03 201 3.E+00 | 7.E-04 7.E-02 8.E-01 |6.E-03 2.E-01 3.E+00 | 5.E-03 7.E-02 8.E-01
Add edges 2E-04 2.E02 3.E-01 | 2.E-04 2.E-02 5.E-01 | 2.E-04 2.E-02 5.E-01 |2.E-04 2.E02 3.E-01 |3.E-04 3.E-02 3.E-01
Update nodes | 1.E-04 2.E-02 2,E-01 | 2E-03 201 2,E+00 | 5.E-04 5.E-02 7.E-01 |2.E-03 2.E-01 3.E+00 | 5.E-04 6.E-02 7.E-01
Traverse 2.E-02 A4.E+02 2.E+03 | 5.E-02 6.E402 3.EH05 | 5.E-02 5.E+02 3.E+05 | 3.E-02 4.E+02 2.E+03 [ 9.E-03 6.E+02 2.E+03

Delete edges 2.E-04 4.E-03 3.E-02 | 2.E-04 5.E-03 8.E-02 | 2.E-04 5.E-03 8.E-02 | 2.E-04 5.E-03 3.E-02 | 2.E-04 5.E-03 3.E-02
Delete nodes 4.E-05 3.E-03 4.E-02 | 3.E-05 2.E-03 2.E-02 [3.E-05 1.E-03 1.E-02 |1.E-04 B.E-03 1.E-01 |1.E-04 5.E-03 6.E-02

Figure 4: Average speeds for executing CRUD operations.

Operation LO/LA| HO/HA | HA/LA |HO/LO
Add nodes 3.E-01| 5.E-01 2.E+00 | 3.E+00
Add edges 1.E+00| 1.E+00 9.E-01 | 1.E+00
Update nodes | 3.E-01| 3.E-01 1.E+00 | 1.E+00
Traverse 1.E+00| 1.E+00 4.E-01 | 4.E-01
Delete edges 1.E+00| 1.E+00 | 8.E-01 | 9.E-01
Delete nodes 7.E-01| 7.E-01 | 4.E+00 |4.E+00

Figure 5: Factor effect of using IGraph’s node-level atttdomechanism for all node attributes versus wrapping all
attributes in one object stored using IGraph’s node-lettebate mechanism.

Traverse. Finally, from Figure 6(f), traversal of the graph is indegent from the data representation and size. The
plots are quadratic reflecting the traversal’'s complexity.

3.3 Optimal Representation of Data of Models in IGraph

The previous experiment considered graphs in general.dridifowing experiment, we investigate for an optimal
representation of attributes of AToMPM models. Elementsheke models can hold an arbitrary number of data
(attributes). A typical element of an ATOMPM model includis following data: a universally unique id, two integers,
two booleans, two 50-character long strings, an additib@atharacter long string encoding the type of this elereent,
1000-character long string representing an action or cainsion the element (typical for elements of transformatio
models), and a list of seven 10-character long strings erating all the sub-types of the type of this element Thus
the total size of this typical element is 1,382 bytes, whichn average size according to the previous experiment.
We now consider three different alternatives for repréagrdata in the nodes of IGraph graph:

e Node attribute mechanism used for each of the above atsl{this is theAT approach used previously).

e A python object encapsulating all the attributes, storedras node attribute (this is th@T approach used
previously).

e A hash table holding all the attributes, stored as one nddbuwt (this will be referred to ald T).

In order to determine which oAT, OT, or HT is the optimal representation to use in Himesis, we evaltradi
performance on CRUD operations applied to nodes only, ssection 3.2 has confirmed that data stored in nodes has
no impact on the performance of edge operations.

Create Nodes. Figure 7(a) shows the scales for creatimpdes for each representationx @03 for AT, 5x 103
for OT, and 3x 10 3 for HT.

Update Nodes. Figure 7(b) shows the scales for updating nodes for eackeseptation: % 10~3 for AT, 5x 103
for OT, and 3x 103 for HT. Not surprisingly, this is the same order as for adding nailese, according to
Section 3.2, the addition of nodes takes significantly lese than initializing its attributes (about a3fmes
faster).

4addition of nodes and initialization of its attributes.
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Figure 7: CRUD operations on nodes for each representatidata. The plots are in log-log scale.



Delete Nodes.Figure 7(c) shows the scales for deleting nodes for eacleseptation: 4« 10~ for AT, 8 x 104 for
OT, and 7x 10~4for HT.

Query Nodes. To query nodes, we have investigated for the optimal waytofreng the data from nodes: using the
mechanism built in 1Graph for querying nodes (8& ect method) or programmatically retrieving attribute
values. The results were very conclusive: using the IGragmgmechanism for HT and OT is 1.6 times faster,
and 3.1 times faster if using the IGraph query mechanism ToiTAus we only consider the IGraph mechanism
for querying nodes. Figure 7(d) shows the scales for quergisdes for each representationx 20~ for AT
and 8x 104 for bothOT andHT.

We would like to minimize the time each of the CRUD operatitai®s in a rule. Here, we assume that a rule con-
sists of a left-hand side (LHS) pre-condition pattern graptl a right-hand side (RHS) post-condition pattern graph.
From the observations above, we can write the following fdem representing the time cost of a rule application for
each representation of data:

AT: 90a+90u-+4d+3q
OT: 50a+50u+8d-+8q
HT: 30a+30u+7d-+8q

, Wherea, u,d, andq are the number of times the add, update, delete, and quergtimpe® on nodes happens in a rule,
respectively. Therefore, choosing the optimal represiemtalepends on the solution of the following inequalities:

ChooseHT overOT <« 20(a+u)+d>0 1)
ChooseAT overOT < q>8(a+u)—0.8d 2
ChooseAT overHT < q>12(a+u)—0.6d (€))

Equation 1 is always true since, by definition, a rule appdieteast one of the add, update, or delete operations.
HenceOT will not be considered anymore and equation (2) can be discarThe left-hand side of (3) represents
the operation performed in the matching phase of the rulerggng nodes). The right-hand side of (3) represents the
operation performed in the rewriting phase of the rule (agutlate, delete nodes). Recall that the matching phase
gueries all nodes of the pre-condition pattern as well asaales of the source gra@h(in the worst case). Henapce
O(|V(LHS)|+ V(G)|). Following a similar reasoning, we have tlgat O(|V(RHS—LHS)|) ue O(|V(LHSNRHS))

d € O(|V(LHS—RHS]). On the one hand, in the extreme case where the LHS is emptjhevefore have that
IV(G)| > 12.6|V(RHS]. On the other hand if the RHS is empty, tHefG)| > —13.6|V (LHS)|, which is always true

if both the LHS andG are not empty. Therefore, a sufficient condition for chogdime AT approach is if there are
13 times more nodes in the source graph than in the RHS. Thiaryslikely to hold given that relation-like model
elements are also represented as nodes in Himesis. Moréaveuaring theAT approach reduces attribute access
time for other model manipulations as well. The plot in Fey8rclassifies the performance of each graph operation
performed on a Himesis graph implemented withAfeapproach.

4 Match & Rewrite Operations in Himesis

Model transformation plays a crucial role in model-drivesvelopment. A transformation is commonly expressed
as a set ofransformation rulesA rule consists of a pre-condition pattern and a post-dmrdipattern. The former
depicts a pattern that should occur in the input model andattter depicts how this occurrence shall be modified.
When models are implemented as graphs, the pre-conditiberpapecifies that an instance of this pattern must be a
sub-graph of the input graph. Since pattern matching (apditicular, the sub-graph homomorphism problem) is NP-
Complete [8], there are various exponential-time worseagdutions, for which the average-time complexity can be

5The update and query operations are performed on all thiutis of each node.
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1047 (ms) CRUD operations for AT -

Figure 8: Performance of all operations on Himesis graphs.

reduced with the help of heuristics. These approaches cdivigied in two major categoriesonstraint satisfaction

problemsandsearch plans

On the one hand, search plan techniques [9, 10] define thersedvorder for the nodes of the model to check
whether the pattern can be matched. This is done by comphiéngpst tree of the different search paths and choosing
the less costly one. Complex model-specific optimizati@pstcan be carried out for generating efficient adaptive
search plan [11]. On the other hand, graph pattern matclaindpe described as a constraint satisfaction problem [12],
where the pre-condition elements are variables, the eleneémodel form the domain and typing, and the links and
attribute values form the set of constraints. These teciasignake use of backtracking algorithms [13] for finding a
sub-graph of the input graph that is isomorgHizthe pre-condition graph. The algorithm explores thecespace in
a depth-first order. Well-known algorithms such as Ulima] pnd VF2 [15] are some of the most efficient examples
for solving the sub-graph isomorphism problem as a comdtsatisfaction problem. In Himesis, we implement the
pattern matching algorithm on top of these two algorithms.

4.1 An Efficient Sub-graph Isomorphism Algorithm

The matching algorithm of Himesis combines a variation efW2 algorithm together with the refinement strategy
of Ullmann’s algorithm, as outlined in Algorithm 1.

8n fact, it is homomorphic since the pattern graphs desaiivestraints on the attributes of the source graph.
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Algorithm 1 ext end(state)
1: if mappi ngl sConpl et e(state)then
2:  storeMat ch(state)

3: end if

4: for p, sin suggest Mappi ng(state)do

5:  if areConpati bl e(p, s)then

6: if areSyntacti cal | yFeasi bl e(p, s)then
7: if areSemant i cal | yFeasi bl e(p, s)then
8: statest or eMappi ng(p, S)

o ext end(state)

10: stateundoMappi ng(patternNode, s)
11 end if

12: end if

13:  endif

14: end for

The procedurext end augments the state of the algorithm with all possible magpfrom the pattern graph to
the source graph. In the following, we calhzappingthe one-to-one correspondence between a pattern node and a
source node. We denote byraatchthe set of mappings in which all source nodes form a graphisi@momorphic
to the pattern graph. Lines 4-14 recursively compute furthappings given the current state of the algorithm. The
statestores the following information:

e MP andMS are the mapping sets holding the pattern nodes and the spades respectively in the current
mappings,

o TE,andTS, hold the set of adjacent nodes to respectivdfyandMS following outgoing edges, at any time;

e T” and TS hold the set of adjacent edges coming in respectifiyandMS following incoming edges, at any
time;

o Th i =TENTE andTS, i = TSN 5. The latter six sets are called tregminal sets

Each step of the search computes a partial mapping of thesraukverifies that it is does not violate the topology
of the pattern graptsuggest Mappi ng suggests a potential mapping of a source rexdéh a pattern node (the
pair (p,s) is also known as the candidate pair in [15]). The choice oftieis done in the following order: first from
(Tihout Tou)» then from(TE, TS, then from(TiP, T.>), and finally from all other nodes.

Afterwards,ar eConpat i bl e verifies if it is worth continuing this mapping. This is dong bomparing the
number of incident edges afand p (this is known as the refinement step in [14]). The compatybdheck verifies
that:

Out(p)| < [Out(s)| A [In(p)| < [In(s)| (4)

whereln(n) andOut(n) respectively represent the set of incoming and outgoingcadit edges of a node This is
similar to the refinement step of Ullmann’s algorithm.

Then comes the feasibility checlkat eSynt acti cal | yFeasi bl e ensures that the topology of the current
mapping corresponds to a sub-graph of the pattern graphk.ighione by looking at the number of incident edges
when(p,s) is added to the current set of mappini™(andM>).

Let InOut(n) = In(n)+Out(n), for any noden,

let  Out,=Out(p)NTE, and Out = Out(s) N TS,
let Inp=In(p)NTP and Ing=In(s)N T,
let Allp=MPUTZ,UTP and Alls=MSUTR,UTS.
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Then the following must be true to ensure syntactic feasimif sandp:

Ou| < |out|A
Inp| < [Ing| A (5)
|Outy| + |Inp| + [INOut(p) — All,| < |Outs| + |Ing| + [InOut(s) — Allg|

The last test ensures that the semanticsagirresponds to the semanticspfin our case, semantic information of the
nodes is encoded in their attributes, but the deails of thetionar eSenmant i cal | yFeasi bl e will be elaborated
later on. Whers andp satisfy all of the above conditionép, s) is considered a valid mapping and is stored in the state
(line 8). The algorithm then continues looking for remamimappings. When all valid mappings have been computed
(lines 1-3), the corresponding match is stored. The algoribacktracks to the previous state when either a complete
match is found or if the current partial match (set of mappimgM” andMS) does not allow for any further valid
mapping. Note that a nice property of this algorithm is that state in the search tree is visited exactly once.
Algorithm 2 allows to compute all matches between a pattesplyP and a source gragh Furthermore, an initial
set of mappings can be specified to prune the search treeudsst by the procedurext end. This initial mapping
can also be seen as the initial context in which the matclnmgst be computed: it restricts specific pattern nodes to
be mapped exactly to predefined source nodes.

Algorithm 2 conput eMappi ngs(S, P, context)

1:

2
3
4:
5
6

state«~—init State(S, P)
. for p, sin contextdo

stateupdat e(p, S)

end for
. ext end(state)
. return stateget Mat ches()

Performance Evaluation of the Implementation

Let us first analyse the space complexity of éhe end procedure. The state of the algorithm is encoded irsthee
variable. It holds the two partial mapping sets as well asiallterminal sets. Thus the number of nodes stored in
the state is at most % |V (P)| + 3 x [V(S)| which is linear in terms of the nodes of the source and pageaphs.
Moreover, since IGraph stores the nodes as integeaiteis therefore quite compact. Additionally, the experiments
below have shown that the algorithm performs better if thacahcy list (encoded as a hash table) is memoized as
well. The size of this hash table is in the worst cseP)| + [V (S)|? for fully connected, directed, simple graphs.

We now compare the time performance of éhe end algorithm of Himesis with VF2’s sub-graph isomorphism
algorithm. We have chosen the IGraph implementation of \&-Benchmark which is in direct correspondence with
original implementation. Note that Himesis is implemenite®ython whereas VF2 was implemented in C. Accord-
ing to http://shootout.alioth.debian.org/u32g/benchamnp?test=all&lang=python&lang2=gcc, Python is in gex
slower than C by an average factor of 23, which is not integrat the results presented here. In these experiments, we
gathered the computation time with respect to the numbeo@ésn of the source graph. The source graph represents
random valid class diagrams encoded as Himesis graphs.vErgge number of class diagram elements is shown in
Figure 9(d) For each source graph we have run the algorithsixopattern graphs which sizes range from 2 to 12
nodes. For both the source and pattern graphs, the numbdges$ é the same order as the number of nodes (which
is typical in class diagrams). Each data point of the plotSigure 9 represents the average time over the six pattern
graphs.

Figure 9(a) shows the performance of both algorithms foririgidhe first match only. For small graphs, VF2 is
about 25 times faster than Himesis. For medium graphs, V&@idée as fast as Himesis. However at arour2>210°
nodes, both perform as fast. At this point, Himesis takes ¥ by a factor of 6 for large graphs.
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sec Find First Match sec Find All Matches
18003 18005
18008
1E402 f.—.
L]
16108 /
18201
1802
18200 18001
18000
1e01
1e01
1202
1802
1E-03 + T n 1E-03 T T ™ n
10 100 1000 10,000 100,000 1,000,000 10 100 1000 10,000 100,000 1,000,000
B imesis —5—VF2 B imesis —5—VF2
(@) (b)
sec No Matches Found
18008
18103
18202
18201
18200
1e01
102
Nodes Edges | Class | Attribute | Associations | Matches| All | First | None
— ‘ : ‘ n small  [0,10°] 399 51 45 51 729J0.016] 0.04] 0.034
10 00, 1000 10,000 100,000 1,000,000 Medium [1(]3,105[ 33,727] 4133 4,249 4,196| 83,766 0.067] 0.125] 0.348|
il s Large [10°,10°]|304,552| 38,158 38,312 37,019 891,171f 2.929] 5.006] 22.305

(©)

(d)

Figure 9: Average of sub-graph isomorphism matching owestk pattern graphs..
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Figure 9(b) shows the performance of both algorithms forifigdall matches. For small graphs, VF2 is about
60 times faster than Himesis. For medium graphs, VF2 is 5dtifaster than Himesis. However at aroun@ 1 10°
nodes, both perform as fast. At this point, Himesis takes W¥#& by a factor of 5 for large graphs.

Figure 9(c) shows the performance of both algorithms whematch exists. For small graphs, VF2 is about 24
times faster than Himesis. The medium graph category mudiMmed in two. For graphs with £0and 1¢ nodes,
VF2 is 3.6 times faster than Himesis. As for graphs with 40d 1@ nodes, Himesis takes over by a factor of 2.2. The
break even point is around7lx 10* nodes. At this point, Himesis takes over VF2 by 3 times fogdagraphs.

The table in Figure 9(d) summarizes these observationscé&lbbw Himesis outperforms VF2 significantly for
large graphs.

4.2 Pattern Matching

The transformation kernel of ATOMPM i&Core [16]. In T-Core, the pre- and post-condition patterns of a rule are
encoded as Himesis graphs. A pre-condition is composed o$itiye condition graph (LHS) and optional negative
condition graphs (NACs). Proposition (6) defines the sermosumif a rule withn NACs: if an occurrence of the LHS
is found in the source graph before the rule is applied ané wéthe NACs is found, then an occurrence of the RHS
must be found in the source graph after the rule has beeredp@limore formal definition based on category theory
can be found in [17].

LHSA-NAG A -NAGA...A=NAG, = RHS (6)

In Himesis, a nod&\ of a pattern graph holds the following information:
e A universally unique identifier: such identifiers are enduiebe unique at all time.

e The typet of the model elemenl encodes: this represents the absolute path (across patkddkee name of
the type element.

e A boolean flagstmspecifying whether a source node mappedl tmust of typet or a sub-type of.
e The setst of all sub-type oft.

e The identifier of a binding pivo(t_< (for pre-condition graphs): if specified, it predefines whsource node that
was assigned to the pivetmust be matched tN.

e The identifier of a pivot assignmeﬁt if specified, it indicates that the source node mappédwoll be assigned
to the pivotx.

o Alabel global to the scope of the rule. Node labelling in tifedent pattern graphs of the rule is used as follows.
In the LHS, a label allows one to distinguish between two sooiethe same type that must be mapped to
different source nodes. A label present in both the LHS aadrRtHS or in both the LHS and a NAC corresponds
to the same matched source node. A label present in a NAC bint the LHS allows one to distinguish between
two nodes of the same type that must be mapped to differentsoodes.

e Each attribute of the meta-model element correspondingstsubject to the RAM procedure [18]. In the LHS
and the NAC, the node is assigned one constraint per a#rifiilte constraint can be of arbitrary complexity,
but can only refer to source nodes bound to the corresporgiittgrn (LHS xor NAC). In the RHS, the node
is assigned an action code per attribute. The action can asbitfary complexity, but can only refer to source
nodes bound to the LHS pattern.

The size of the data stored in each pattern node is 1,342,byitéout taking into consideration the meta-model
attributes. Additional information is stored at the grapltern level: the set of all meta-models involved in theqoatt

as well as an additional constraint (for a LHS or a NAC) oract{for an RHS). The constraint and action follow the
same conditions as for pattern node attributes.

’Because in ATOMPM, rules can involve many meta-models @sgnmulti graph grammars [19].
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Up to now, we have described an efficient solution for findirgyl-graph of the source graph isomorphic to the
pattern graph. However, this is not sufficient for patternahiag as this only takes into account the topology of the
pattern graph. Constraints and NACs must be taken into deration as well. Therefore, Algorithm 3 specifies a
procedure that extends the previous sub-graph isomorgdosution for pattern matching purposes. But we must first
modify theext end procedure to handle constraints on meta-model attribitegedl as node typing. The type of a
pattern nodep and a source nodemust correspond. This requirement must be verified as eafypssible to reduce
the search space. We therefore modify the functioeConpat i bl e in Algorithm 1. More specifically, condition
(4) must now take into considerations the types of the cateigair(p,s) as specified in (7), such that the typesof
is the same as the type pfor one of its sub-types. (4) can then be rewritten as:

|Out(p)| < |Out(s)|A|In(p)| < [In(s)| A ((st = p.t) V (p.stmAst € p.st)) (7)

Additionally, the functionar eSermant i cal | yFeasi bl e must ensure that the attributes heldsieach satisfy the
corresponding meta-model attribute constraintp.ilso, to help the algorithm find a match as soon as possible,
we have parametrized tlsuggest Mappi ng function with a priority mechanism to suggest a candidaie Qaur
implementation allows to specify an arbitrary order of artieral set. By defaultsuggest Mappi ng will suggest an
unmatched pattern node such that its type occurs the |dastiofthe graph. This heuristic ordering can be modularly
extended with further knowledge of the pattern graph anddlece graph in our implementation.

The pattern matching algorithm in Himesis is described igotithm 3. The procedureat ch takes a source
graphG and the LHS pattern graph as input. Pivot bindings may alsspeeified in thecontext The procedure can
be divided in three cases. In the following, we consider achasvalid if the source nodes in the mappings of the
match satisfy the constraint of the pattern graph.

No NACs. When there are no NACs specified in the pre-condition patteen only lines 1,12-14 are applied. This
simply calls theconput eMappi ngs procedure and returns the valid matches.

Unbound NACs. We denote a NAC as unbound if none of its nodes has a labelntriesthe corresponding LHS.
If the pre-condition has unbound NACSs, it suffices to find oakdvNAC match to prevent the pre-condition
pattern from successfully finding any matches. Lines 3-1tidge this behaviour. FirsG is matched on the
NAC with the provided context. If no valid match is found, fh@cedure then tries to find matches for the LHS
as in the previous case. Otherwise, no match is output.

Bound NACs. All other NACs are bound to the LHS. Sincenput eMappi ngs is the most costly procedure, we
want to avoid computing mappings twideg., the common part between the LHS and a NAC. Thus the idea is
to first match the common part between the LHS and a NAC, thatinte the matching along the NAC, and
finally, if no valid NAC matches were found, continue from thatch of the common part along the LHS.

A NAC having a common part with the LHS means that there is agsaph of the LHS that overlaps with
the NAC. We denote this intersection as a pre-condition lygledbridge. In general, computing the bridge
would require to find the maximum common sub-graph (MCS) betwthese two graphs. Solving the MCS
isomorphism problem is NP-Complete. However, making ughefabels in the Himesis pattern graphs reduces
the complexity to linear-time. Therefore the bridge candmstructed as follows: if a node has a label present in
nodes of both the LHS and the NAC, then this node is part of tlige. Also, every edge in the smallest graph
between the LHS and the NAC whose source and target nodes tire bridge is part of the bridge. However,
recall that pattern nodes also hold a constraint for eacla-meidel attribute. Thus, each meta-model attribute
of a bridge node is computed as the conjunction of the cooretipg attribute constraint in the LHS and the
corresponding attribute constraint in the NAC. Note thatowstraint is added on the pattern graph of the bridge
as in the LHS or NAC cases. It easy to show that the time coritplek constructing the bridge between the
LHS and an NAC iO(V + E), whereV = max|V (LHS)|, |V (NAC)|) andE = min(|[E(LHS)|,|E(NAC)|)8.

In the mat ch procedure, line 24 computes the bridgevith the largest number of nodes. Since a bridge can
be statically computed, all bridges had already been prpated and integrated in the corresponding NACs (at

8V should also be multiplied by the maximum number of meta-rhatiébutes, which is small in practice.
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Algorithm 3 mat ch(G, LHS, context)

1:
2:
3:
4.

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44
45:

© ©® N o g

validMatches«— 0
moreNACs«+ False
for NAC in LHS.get NACs() do
bridge«+ NAC.get Bri dge()
if V(NAC.get Bri dge()) > Othen
moreNACs«+ True
else
for nacMatchin conput eMappi ngs(G, NAC, context)do
if NAC.checkConst rai nt (hacMatch)then
return 0
end if
end for
end if
end for
if not moreNACsthen
for IhsMatchin comput eMappi ngs(G, LHS, contextdo
if LHS.checkConst rai nt (IhsMatch)then
validMatches« validMatchesu {lhsMatch
end if
end for
return validMatches
end if
maxNAC + LHS.get NACw t hMaxBri dge()
B +— maxNACget Bri dge()
for bMatchin conput eMappi ngs(G, B, context)do
for maxNACMatchingin conput eMappi ngs(G, maxNAC, bMatchu context)do
if not maxNACcheckConst r ai nt (maxNACMatching)then
goto 20
end if
end for
for lhsMatchin conput eMappi ngs(G, LHS, bMatchU context)do
if LHS.checkConst rai nt (IhsMatch)then
for NAC in LHS.get NACs() do
if NAC # maxNACandV (NAC.get Bri dge()) > Othen
for nacMatchin conput eMappi ngs(G, NAC, IhsMatchu context)do
if not NAC.checkConst rai nt (hacMatch)then
validMatches« validMatchesu {lhsMatch
end if
end for
end if
end for
end if
end for
end for
return validMatches
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compile-time). On line 25¢ is matched orB with the provided context. Then on lines 26-3B,is matched
on the NAC corresponding . To prune the search space of this matching, the bridge mgggire provided
as context together with the initial context. Those mappiace valid since the nodes Bare in the NAC as
well. If a valid match for this NAC is found, then the currenaitoh ofB is discarded and the next one is tried.
When a match oB is found such that it does not induce a valid match, we m&cim the LHS with again the
bridge mappings provided as context together with theaihitbntext. Each valid match of the LHS represents
a potential valid match of the procedure. However, there begdditional bound NACs with a bridge having
less nodes thaB. In this case, lines 33-41 ensure that only the valid matofieke LHS that do not satisfy
the remaining NACs are stored. Note that when applyingctheput eMappi ngs procedure orG with the
remaining NACs, the LHS mappings are provided as contexdthay with any pivot node bound in the LHS
that were given in the initial context. Finally on line 45 lpthe valid matches are output.

4.3 Rewriting the Matches

A rule is successfully applied when proposition (6) is $edits The pre-condition satisfaction is ensured by the patte
matching algorithm described previously. One way to satisé post-condition is to modify the matched nodes in the
source graph adequately. To transform (or rewrite) the Inegtca Himesis RHS pattern graph is provided with a
compiledexecut e function. Given the LHS and the RHS pattern graphs, the tigrof a matchM = {(p,s)|p €
LHSAse G} can be statically determined. For edghs) € M we perform the following steps in that order:

1. If the label ofp is present in both the LHS and the RHS, thefollows theupdate operationEach attribute of
sis set according to the action specified in the correspondiieta-model attribute of the RHS node that has the
same label ap.

2. LetC represent the graph whose node labels are present in the RHBtNK. Also edges o€ are constructed
in a similar way as for the bridgége., E(C) = {(ni,n;j)[ni,n; € V(C) A (ni,n;j) € E(RHS)}. Then the nodes and
edges ofc must follow thecreate operationFor each node (or edge)WC) (or E(C)), a corresponding source
node (edge) is created in the source graph. Furthermoraittifites of the new nodes are initialised according
to the action specified in the corresponding meta-modebatér of the respective node @

3. If the label ofp is present in LHS but not in the RHS, th@mmust follow thedelete operationremoves from
the source graph. Note that in IGraph, deleting a node autcatig deletes its adjacent edges.

4. If pis assigned a pivot identifier, thenx will be mapped tcs.

5. Finally, after all nodes have been processed, we applgidtien specified in the RHS on the source nodes that
are inM as well as those created frdin

Since the rewriting phase is compiled, its run-time comipjeis linear: O(|V (LHS)| + |E(LHS)| + |V(RHS)| +
|[E(RHS)|) Note that according to graph transformation literature],[2dmesis’ transformation procedure follows
the Single-Pushout (SPO) approach in contrast with the [@eRbshout (DPO) approach. On the one hand, the iden-
tification issue of the gluing condition in DPO is avoidedrtka to the labelling mechanism in place. That is because
every node in each pattern graph is unique and thus may beaddppexactly one node in each matching. On the
other hand, we have explicitly chosen to sustain the dagguiges issue. That is if a matched source node must
be deleted, all its adjacent edges will be deleted too. Tassthe advantage of reducing the number of rules in the
transformation.

5 Related Work

The nameHimesiswas first introduced in [21]. In his masters thesis, Provesicdbed an efficient framework for
graph-subgraph isomorphism. The implementation of Athamil is based on his work. However, his approach does
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not address pattern matching as used in model transfomsa#dso, there is no evaluation of the performance of each
CRUD operation as done in this paper.

To compare our implementation of Himesis with other grapimgformation approaches, we provide our results
for a standard graph transformation benchmark:Dimtributed Mutual Exclusion Algorithrbenchmark presented
by Varré in [22]. Although some measurements were repornidgtie original paper, Geiss et al. [10] provide a more
complete spectrum of measurements with more tools. In ther [paper, the measurements were carried out on an
AMD Athlon 3000+ with 1GB of RAM. To reuse these results, weltiplied® Geiss’ figures by 0.684 to match the
processor’s speed specified in Section 2.

The tools used for this comparison are the following. Gr@&T. SP [10], FUJABA [23], and PROGRES [24]
are transformation tools using search plan techniqueséomatching phase. An approach from Varr6 [25] (hereafter
referred to as VarroDB) to execute graph transformatiorectly in a relational database. GrGen.NET PSQL which,
in contrast with GrGen.NET SP, also stores the graphs iresioakl database. Finally, AGG [12] is the only tool that
uses a CSP for the matching phase All experiments, wererpgztbwithout any of the optimizations suggested by the
benchmark as no measurement for these cases were avaiathle bther tools. As Himesis provides a framework for
manipulating graphs, we integrated itTCore, in combination with Python. More specifically, theCore matcher
calls the procedureat ch form Algorithm 3 and th&-Core rewriter calls theexecut e method of the corresponding
RHS graph to perform the rewriting.

For the Short Transformation Sequence experiment (ST8uw&il10(a) shows thatCore performs averagely
compared to the other tools. It however performs on averagérbes better thanGG, which is the only other tool
whose matching phase is also implemented as a CSP. For therfysAs Possible experiment (ALAP), Figure 10(b)
shows that, once mor&;Core performs averagely compared to the other tools. It howeggiopms on average 9.2
times better tha\GG. For the Long Transformation Sequence experiment (LT®)othly results available are for
N=1,000 (N processes with one resource). Figure 10(c) skiat3-Core performs quite well compared to the other
tools. It now performs on average over 100 times better A and about as fast as GrGen.NET using ProgresSQL.
The table in Figure 10(d) summarizes the results.

6 Conclusion

This paper contributes in providing an efficient framewook AToMPM. Himesis, the framework we developed
based on IGraph, allows one to efficiently manipulate moedetoded as graphs. The primitive CRUD operations are
very fast even for models with up to 4@lements. Moreover, we have described the implementafitimegpattern
matching algorithm used to perform model transformatidme Tomparison of performance with other existing tools
and approaches show that Himesis is indeed an efficient yvanke

One reason for the average performance results for grapkforanation tasks may be that Himesis is entirely
implemented in Python. Future plans are to implement the atgorithms in a faster target language, such as C.
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