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Abstract

Model transformation is at the heart of current model-drieagineering research. Today’s research
in model transformation focuses on the scalability of thprapches to solve industrial problems. The
current state-of-the-art in model transformation inclhudeplethora of techniques and tools. Neverthe-
less, industrial adoption of model transformation recaiaediversity of model transformation languages
optimally suited for particular transformation tasks. §td why my dissertation contributes to the engi-
neering of model transformation languages, providing enéwaork to build such languages. The devel-
opment of this framework is driven by multi-paradigm moutejlprinciples. | illustrate the use of the
framework by designing and implementing a novel model fansation language.

*Progress Committee: Hans Vangheluwe (supervisor), Jéeg#e, and Clark Verbrugge
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1 Introduction

Model-Driven Engineering (MDE) [1] is now considered a weditablished development methodology.
MDE, and in particluar, domain-specific modelling, is anmgagh that allows one to manipulate models
at the level of abstraction of the application domain the ehdglintended for, rather than at the level of
computing. MDE considers models and transformations asdiss entities. A model represents an ab-
straction of a real system, focusing on some of its promeriModels are used to specify, simulate, test,
verify, and generate code for applications. In softwarglege engineering terms, a model conforms
to ameta-modelA meta-model defines the abstract syntax and static sersanftia (possibly infinite)
set of models. A model is thus typed by its meta-model thatips its permissible syntax, often in
the form of constraints MDE allows to manipulate these models through the useadel transforma-
tion. A model transformation transforms a source model into getamodel, both conforming to their
respective meta-model. Although a model transformatiafef;ed at the meta-model level, it is never-
theless applied on models. The Object Management Group (0#& proposed the the Model-Driven
Architecture (MDA), which promotes model transformatidritee heart of MDE. The Query, Views, and
Transformations (QVT) language [4] is a recent additiorne®MG's set of standards.

Today'’s research in the field of MDE focuses on the appliggtdind scalability of its solutions to
industrial problems. Complementary to MDE, Multi-Paradiglodelling (MPM) [5] addresses these
issues and formulates a domain-independent framework.k&yaspect of MPM is multi-abstraction.
A model abstraction is a view on a system exhibiting somesopibperties while hiding others. Multi-
abstraction is thus the ability to express models at diffetevels of abstraction. MPM realizes that
systems can be represented in different modelling languagéormalisms. MPM, in particular multi-
abstraction and multi-formalism modelling, is enabledty tise of meta-modelling and model transfor-
mation.

1.1 Modd Transformation

Given a formalism, the meta-model allows to precisely dpdbie abstract syntax of the formalism and
thus modelling environments can be generated from it. Mtrdalsformation can providgemanticgo
models in the formalism. When the transformation is endogerfthe source and target meta-models are
the same), the transformation is typicalliaulationof the formalism. In this case, a model transfor-
mation describes the operational semantics of the langnabe formalism Refactorings another form

of endogenous transformation, typically used for optingzor evolving the design of models. When a
transformation is exogenous (different source and targgasmodels), it is typically used toanslate
models from one formalism into another. For example, madedsdomain-specific modelling formalism
may be transformed into Petri-Nets or Statecharts modekhis case, the meaning of a model is given
by a translational semantics into a behaviourally equintabeodel. When two models are related, they
can each co-evolve and thus the initial relationship mayhotit anymore. Model transformation can be
used tosynchronizenmodels, specifying a bidirectional transformation or tielabetween different mod-
els.Code generatiois another form of exogenous model transformation, comsiggrograms as trees
and thus as models. It can also be used to allow the integrafia model in a software application and
to make the model executable. Other model transformationsiseful to serialize models to persistent
storage.

LA common representation of meta-models uses the Unified Moglé.anguage (UML) Class Diagram notation [2] with
Object Constraint Language (OCL) constraints [3].



1.2 ThesisProposition

Despite a robust theoretical foundation, model transftionastill suffers from scaling and correctness
problems in an industrial context. The growing interest wdel transformation has lead to a plethora of
model transformation languages expressed in differeridigms,e.g. template-based, rule-based, triple
graph grammars, with or without explicit control flow [6]. 8are supported by various implementations
such asAGG [7], ATL [8], AToM3 [9], GReAT [10], MOFLON [11], QVT [4], VMTS [12], just to name

a few. They provide tremendous value for developers, buthémplementation the transformation

paradigm is hard-coded to be used as is [13].

In my research, | propose to contribute to the engineeringadel transformation languages at the
foundation level, following MPM principles. This, by modiay everythingexplicitly at the most appro-
priate level(s) of abstraction using the most appropriateélism(s). In this approach, the model trans-
formation language is modelled at the syntactic level fabstand concrete). Moreover, the semantics
of such transformation models is also modelled through Heeai meta-modelling and model transfor-
mation. The aim is to increase the developer’s productitityraising the level of abstraction at which
transformations can be specified and by lowering the midmzgtveen model transformation languages
and their application domain.e., minimizing accidental complexity. | therefore provide arfrework
for building such model transformation languages andtilie its applicability by designing and imple-
menting a new model transformation languagmlowing the MPM principles for the core algorithms,
the transformation language building blocks, and the faansation formalism. The presented approach
focuses on the expressiveness of model transformation.

The remainder of this proposal is organized as follows.i8e& presents an overview of my disserta-
tion. Then, in Section 3, | outline the contributions | halready completed, whereas Section 4 describes
the remaining work to be done. In Section 5, | discuss the metestant related work and finally conclude
in Section 6.

2 Overview of the Proposed Solution

In this section, | present an overview of the developmenhefgroposed thesis. The proposed solution
first focuses on the foundation of model transformation domsh ton the elaboration of a novel model
transformation language.

2.1 A Basisfor Modéd Transformation

A model transformation language consists of two compong@atsernsandscheduling A transformation

is specified in the form of patterns, the fundamental unit whasformation. For example, in rule-based
model transformatione(g.,graph transformation), the transformation unit is a ruletrasformation
rule uses patterns ase-conditionsandpost-conditionsThe pre-condition pattern determines the appli-
cability of a rule: it is usually described with a left-hanides (LHS) and optional negative application
conditions (NACs). The LHS defines the pattern that must bedan the input model to apply the rule.
The NAC defines a pattern that shall not be present, inhipttie application of the rule. The right-hand
side (RHS) imposes the post-condition pattern to be foutet #ie rule was applied. An advantage of
using rule-based transformation paradigms is that it altmspecify the transformation as a set of op-
erational rewriting rules instead of using imperative pamgming languages. Model transformation can

2More precisely, it is a graph transformation language.



thus be specified at a higher level of abstraction (hidingrtiementation of the matching algorithms),
closer to the domain of the models it is applied on.

When a model transformation is executed, the rule schegldigscribes in what order the rules will
be applied (inter-rule management). In declarative tianshtion approaches, the rule scheduling is im-
plicit and transparent to the modeller who defines a reldbemveen meta-models. On the other hand,
operational transformations require an explicit schedyif the transformation rules. According to MPM
principles, both patterns and rule scheduling must be @lglmodelled. Once a meta-model for the pat-
tern language is defined, an environment for specifyingviddal transformation rules can be generated.
The methodology | propose allows to automatically buildtouszed pattern specification languages
based on the domain of application (input and output metdetsd of the transformation [14]. It is
defined as a systematirocedurefor explicitly modelling transformation languages. Domabpecific
modelling combined with multi-formalism modelling makes nealize that certain formalisms are more
appropriate for use in particular applications than oth&pplying this philosophy to transformations by
systematically and explicitly modelling them rigorouslioass to automatically use the same generators
for visual modelling environments to generate model tramsétion environments. This empowers a do-
main expert to specify the transformation himselfy.,enhancing the business models with a specific
behaviour.

In controlled graph transformation, rule scheduling ioftlescribed in a control flow language.
Once more, if the scheduling language is meta-modelledntiaeller has control over the order in which
the rules can be applied, which increases the expressiwef#ise transformation language enormously.
Having completely meta-modelled the transformation lagg) a model transformation can itself be con-
sidered as a model, which can in turn be transformed. As aedfdet, this enables to provide a “clean”
environment for designinbigher-order transformatior’s(tHOT) [15]. The performance of the automatic
synthesis of model transformation environments can beyaedlwith respect to two criteria: the time
and space complexity of the procedure, as well as the ugatila completely modelled environment.

We can examine model transformation languages at a lowardéabstraction: the primitive building
blocks that compose these languages. The pre- and postionnuhtterns are examples of transforma-
tion rule primitives. From an operational point of view, weushalso consider the execution of a rule.
This operation is often encapsulated in the form of an aligori(with possibly local optimizations). Nev-
ertheless, it always consists ofratching phasd.e., finding elements of the input model that satisfy the
pre-conditions and of aansformation phase.e., applying the rule such that the resulting model satis-
fies the post-conditions. Therefore we can explicitly digtiish between these two phases byagcher
and aRewriter as primitives. The process of de-constructing model t@ansdtion languages into their
primitives enables one to identify further primitive rulperators [16]. For example, one that allows iter-
ation over the matches found by thwatcher or one that detects conflicts between different matches—the
latter is useful to prevent the concurrent modification efshhme model element at the granularity of the
matches as opposed to the granularity of the rule [17]. | kimgigned th@-Core module which encap-
sulates a minimal collection of graph transformation ptives. It also includes control flow primitives
and constructs allowing one to compose the primitive bagdslocks (such as th@omposer).

T-Core becomes useful and applicable when combined with a wethéar programming or mod-
elling languages. It then becomes a complete model trangfiwn language. The level of abstraction
T-Core is defined at allows one to re-construct existing transfdiondanguages and even design new
ones [18]. For example, when combined with a minimalistisglzZage only supporting sequencing,
branching, and looping we are able to reproduce the expegsss of common graph transformation

3Higher-order transformations have many applicationshsiscin language evolution: whenever the definition of a laggu
evolves (meta-model evolution), all associated transftions have to be adapted. This can be partially automatedcing a
higher-order transformation generated from the modificetimade to the language.
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languages, such &JJABA [19]. More expressive transformation languages can be, hail example
supporting amalgamated rules [20]. Integration with commmgramming languages, such as Python,
opensT-Core to the programming world as well.

From the implementation point of view, | focus on the effitidasign of theMatcher andRewriter,
integrating various optimization techniques from pattaatching and graph transformation theory. Con-
sequently,T-Core provides, on the one hand, a common platform to comparereliffenodel transfor-
mation languages. On the other hand, consistently applViRiy! principles and an MDE approach to
the foundation of model transformation languages has ledtet description of a transformation core
(T-Core). T-Core allows for the design of families of languages. Hence, thel@ementation ofl-Core
offers a ready-to-use framework to build transformatiomglzages.

2.2 A Modular Timed Graph Transfor mation Language

To demonstrate the power of this multi-paradigm frameworkehgineering model transformation lan-
guages, | combing-Core with the Discrete Event System Specification formal({@&VS). This gives
birth to a very expressive novel model transformation laggy allowing to model asynchronous trans-
formation models, complemented with the dimension of tiDEVS is a discrete-event modelling and
simulation formalism that allows for highly modular, hiezhical modelling of timed, reactive systems.
Therefore, control structures such as sequence, choidaetemation are easily modelled in DEVS. Non-
determinism and parallel composition also follow from DE¥8mantics. Moreover, its modularity and
expressiveness are well-suited to encapsulate grapHdraraion building blocks [21]. DEVS thus al-
lows modelling the control flow of transformations.

The combination of-Core with DEVS results in a novel model transformation langustypif-Core.

It consists of embedding every model transformation prugifrom T-Core onto DEVS. For example,
The Matcher and theRewriter are each encoded inside atomic DEVSnodel. The events that DEVS
models can send and receive embed the progress of the traasfin, calledpacket(the input graph
and additional information on the flow of the transformajiofihe behaviour is as follows. When a
MoTif-Core element receives a packet, it processes it according ®dtee semantics. Afterwards, it
outputs the packet which can then be received by anadtlodif-Core element. Note that, because of
the use of DEVS, the modeller can specify the time to elapg@adan atomic DEVS outputs an event.
However, another event can be received in the meantime aedupt the process. As atomic DEVS
models behave as independent processes, the packets gadham not be shared among them. This
is why the formal definition oMoTif-Core specifies that copies of packets are stored in the state of
individual atomic DEVS models. The actual implementatielaxes this constraint by storing references
to packets for space efficiency trade-@bupled DEV$nodels allow to specify a parallel composition of
sub-models (atomic or coupled). Sub-models are assumealit@bpendent processes, concurrent with
the rest. Therefore, mapping tkd@mposer primitive from T-Core to a coupled DEVS model provides
encapsulation constructs with parallel capabilitiemtdif-Core. TheMoTif-Core language thus allows
to specify modular, timed, and asynchronous graph tramsfbon models.

MoTif-Core transformations are executed by a DEVS simulator. SinceMB#& philosophy is to
modeleverything, | explicitly model the DEVS simulator as a modeahforming to thedEVS formalism.
The simulation framework associatesaomic solverand acoordinatorwith each atomic and coupled
DEVS respectively found in the DEVS model to execute. In tHEVIS model of the DEVS simulator,
solvers and coordinators are modelled as atomic DEVS mgaletsthe simulation protocol is encoded
in their behaviour. Since the protocol is identical to siatela DEVS model in a distributed environment,
MoTif-Core transformations can therefore be executed in a distribiaiguion.

Although MoTif-Core is a model transformation language with enriched expressiss, it is not



ideally usable for a non-DEVS expert. This is why | introdtice model transformation languayeTif.

It allows to design the transformation rules and the corgticture at a higher level of abstraction with
MoTif-Core componentsMoTif is designed such that everoTif model has an equivaleMoTif-Core
model. The meta-model Mo Tif specifies its syntax: how the modeller can specify transitions. The
semantics is defined in terms of the semanticklofif-Core, which is mapped onto DEVS. In order to
have a complete and closed system, the translationvdTf model to its correspondinyloTif-Core
model is itself specified as a model transformation. Furtivee, this higher-order transformatfois
entirely specified as BoTif model.

MoTif is a completely modelled transformation formalism (bothsyntax and its semantics). Nev-
ertheless, this does not narrow the expressiveness of igadge. On the contrary, it is as expressive
as common transformation languages. Furthermaogiif extends the domain of applicability of model
transformations, as it allows to express timed and asymciu® transformations. Another aspect of the
performance evaluation efioTif is that it can deal with large host graphs, given that it camumedis-
tributed, without the modeller having to modify the tramsfiation model. Although this dissertation
focuses on expressiveness, it is still necessary to antdigsime performance dfloTif transformation
compared to other very efficient languages (SUCRWABA or GrGen.NET [22]).

The ultimate goal of my dissertation is to gear model trams&tion towards industrial-strength us-
ability. The dependability of model transformation syssaifmen becomes crucial to model-driven devel-
opment deliverables. As any other software, model transfitions can contain design faults, be used
in inappropriate ways, or may be affected by problems ayigiom the transformation execution en-
vironment at runtime. | therefore introduce exception hiagdinto model transformation languages to
increase the dependability of model transformations. SineTif-Core is an event-driven language, in-
terruption can easily be modelled, making it a good canditlaincorporateexceptiong23]. Following
MPM principles, the solution treats exceptions as modelsTtheMoTif-Core (and thusMoTif) language
can be extended to support explicit exception handlersrémsformation exception. This improves, on
the one hand, the development process of a transformatiolelrbyg providing debugging abilities to the
tools implementing model transformation languages. Orother hand, it also improves the quality of
the model transformation software delivered in the conbtéxtdustrial applications.

Since theMoTif framework is entirely modelled following the MPM princiglemodel checking,
model verification, and model-based testing techniquedeaapplied to analyse the behaviour of trans-
formation models. Safety, liveness, and invariant propertan thus be proven. Note that my research
enables analysis of transformations. The actual developwiesuch analyses is however outside the
scope of this thesis.

2.3 Applications

A common benchmark comparing the expressiveness of mafarmation languages is ti@ass
Diagram to Relational Database Model Syst6BiD2RDBMS) [24]. This is a non-trivial transformation
converting UML class diagram models into relational dasgbmodels. One of the challenges of the
CD2RDBMS case-study is to compute the transitive closuté vespect to inheritance hierarchies in
UML and meaningfully represent its semantics in relatiatathbases.

The AntWorld Simulatior{25] is a case-study considered as a performance benchihadnsists
of letting ants wander around in an area looking for food fadback to their hill. While ants are in
exploration mode, the area expands gradually. Furthermeneants are generated as food is brought
back to the hill. On the one hand, it focuses on the use ofitgcak., the ability of applying different

4This is a HOT as it relates between transformation modeis specified using the meta-models\d Tif andMoTif-Core.



rules on the same location of the input model. On the othed hafocuses on the performance related
to the size of the models transformation languages can daadimany elements are created from the
transformation.

Additionally, | propose a case-study that illustrates apliaption of using DEVS as a semantic do-
main for timed model transformation. It shows how the exphiotion of time allows for the simulation-
based design of reactive systems and, in particular, cangames such as tlRacman Gamg26].
Modelling the dynamic behaviour of this gamentoTif allows the modelling of player behaviour, in-
corporating data about human players’ behaviour and matitnes. Thus, a model of both player and
game is obtained, which can be used to evaluate the playadiila game design through simulation.

Finally, | propose a case-study that shows the applicationaalel transformation for aspect-oriented
modelling technology. | show howspect Weavingan be accomplished when usikig Tif to model that
operation. This case-study focuses on the expressiveh#ss tbansformation language as well as on its
usability in anewdomain of application. Since a solution already exists Wighmeta [27], | compare
the two approaches both from expressiveness and efficienoisof view.

3 Past Contributions

In this section, | summarize the various original contridas | have worked on up to this date. This
describes in more detail the work outlined in Section 2.

3.1 Systematic Modelling of Transfor mations

In collaboration with several participants of the CAMPaMrisghop in 2009, | have realized that despite
the pivotal significance of transformations for model-drivapproaches, there have not been any attempts
to explicitly model transformation languages yet. The pgp4], published at the MODELS MPM work-
shop in the same year, presents a novel approach for thdisaton of transformations, by treating
model transformation languages as domain-specific largguabhat is, for each pair of domains (the
meta-models involved in the transformation), the meta-ehofithe rules are (quasi-)automatically gen-
erated to create a language tailored to the transformaliois. allows, on the one hand, transformation
developers to change the design of their transformatioguages by modelling, rather than program-
ming. Also, they may use environments to create transfoomgathat are customized with respect to the
input and output languages involved. The goal of this papéo isystematically support developers in
creating transformation languages by means of semi-adéaohmaeta-modelling.

The solution proposes to adapt transformation languagigeiiospecific input and output languages.
This is done by explicitly specifying a meta-model for the4sondition and post-condition patterns
of the transformation language based on the input and outetd-models. The required meta-model
metamorphosis is obtained by tRAM processRelaxation, Augmentation, and Maodification of the in-
volved meta-models. The relaxation step weakens metalncodstraints in the UML class diagram
and in the constraint language.q.,expressed in OCL). this allows partial models to represattems.
The augmentation step adds transformation-specific fesiiorthe meta-model of the patterns. For ex-
ample, its allows to connect different model elements fraffieicint meta-modeld,e., multi-formalism
patterns. The modification step increases the expressisarighe patterns: arbitrary constraints can be
specified on pre-condition attributes and arbitrarily c@rpgomputations can be used to set values of
post-condition attributes.

Figure 1 depicts how a transformation from modi#l to modelM, (from formalismsF; and F,
respectively) is defined with this approach. We ¢&ll, the (transformation) model that defines this



Transformation Language TL,.,

DSPL1 + Control flow + DSPL2
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Figure 1: Schema of domain-specific transformation langsag

mapping. The two models conform to their respective metdetsiMM; andMM,. Applying the RAM
techniquedomain-specific pattern languagaee generated from these meta-models, naf8lpL; and
DSPL; respectively. The meta-models of the patterns (specifisisaitansformation), combined with the
meta-model of the transformation control logic languagjg.(MoTif), form thetransformation language
TL1_». The transformatioff;_» is thus a model conforming to its meta-moddl; .

One of the main advantages of explicitly modelling the tfammeation language is to easily define
higher-order transformations. A subsequent extensiohisiwork, published in the workshop proceed-
ings of MODELS 2009 [15], made use of the explicit modellinfgtransformation languages (both its
pattern language and its control-flow language) to easigcifp higher-order transformations in a re-
usable way.

3.2 De-/Re-Constructing Model Transfor mation Languages

The approach | propose in [28], in collaboration with Hanaiyfzeluwe, is to express model transfor-
mation at the level of their primitive building blocks. Deststructing and then re-constructing model
transformation languages by means of a small set of mosttpéntonstructs offers a common basis
to compare the expressiveness of transformation languégesay also help in the discovery of novel
(possibly domain-specific) model transformation conggrdryy combining the building blocks in new
ways. Furthermore, it allows transformation language reegis to focus on maximizing the efficiency of
the primitives in isolation, leading to more efficient triorsnations overall. Lastly, once re-constructed,
different transformation languages can seamlessly ipggate as they are built on the same primitives.

This is why T-Core is introduced as a collection of transformation languagmitives for model
transformatioR. This comprises primitive rule operations (suchmaatchingandrewriting) and control-
flow primitives (such as rulselectionandsynchronizatioh Inter- and intra-rule conflict detection and
resolution are also available at the primitive level. THievas, to ensure consistent application of rules
executed in iteration or concurrently.

Being sufficiently minimal,T-Core primitives are meant to be composed by means of well-formed
programming or modelling languages. Figure 2 illustratemngples of such combinations. In [28},
Core was combined with a very simple language that allowed toorestruct full-fleshed existing graph
transformation languages as well as more complex ones asometh in Section [21].

5The complete definition of-Core can be found in [18].
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Figure 2: Combining-Core with other languages allows to re-construct existing amd la@guages

3.3 Programmed Graph Rewriting with DEVS

Jointly with Hans Vangheluwe, | have published a series télas on how to express controlled graph
transformation in terms of the DEVS modelling and simulatformalism. The chronology shows the
evolution of the concept preliminary prototypes startiraghin 2007 until a formal definition and a
complete multi-paradigm integration in tMoTif framework.

The first paper, published at AGTIVE 2007 [21], introduces BDEVS formalism to describe and
execute graph transformation control structures. In thjgr@ach, graphs are embedded in events and
individual transformation rules are embedded in atomic 3ENodels. Rules can be grouped in encap-
sulation units (coupled DEVS models). The paper demorstritat the various graph transformation
scheduling paradigms can be modelled in this approach. Deavi$herefore express unordered, layered,
priority-based, and programmed graph transformations.

A subsequent publication at ICMT 2007 [26] explores thearotif time in graph transformation, as
DEVS is inherently a timed formalism. This allows one to mialgme-advance for every rule as well as
to interrupt (pre-empt) rule execution. We then demonstnatv the explicit notion of time allows for the
simulation-based design of the well-known game of Pacnmaulyhamics is modelled with programmed
graph transformation based on DEVS. This also allows theattind of player behaviour, incorporating
data about human players’ behaviour and reaction timess,Thunodel of both player and game is
obtained which can be used to evaluate, through simulatenplayability of a game design. The paper
proposes a playability performance measure and varieseseas of the Pacman game. For each variant
of the game thus obtained, simulation yields a value for traity of the game. This allows us to choose
an “optimal” (from a playability point of view) game confication. The user model is subsequently
replaced by a visual interface to a real player and the ganmiehi® executed using a real-time DEVS



simulator. An extended version of this paper has been stamirtid the journal of Software and Systems
Modelling.

Having emerged interest in the discrete simulation comtyuHians Vangheluwe and | published a
chapter in a book entitleDiscrete-Event Modelling and Simulation: Theory and Agpgtiions[29]. The
chapter formalizes graph transformation control stri@guoy expressing them in terms of DEVS models.
This is done by mapping the structure and the behaviowafif constructs in terms of atomic and
coupled DEVS models. It further elaborates on advantagasiog this approach. Moreover, the chapter
also shows how this use of DEVS as a semantic domain for dmttraule-based graph transformation
allows for simulation and ultimately synthesis of applicas. The latter is based on our solution to an
extended version of the AntWorld Simulation benchmark tbim[25].

3.4 Introduction of Exceptionsin Model Transformation

A submitted paper to ICMT 2010 was recently accepted. Thig jpork with Jorg Kienzle and Hans
Vangheluwe introduces the concept of exception handlitigartontext of model transformation. This al-
lows one to increase the dependability of model transfdomdanguages. This manuscript first analyses
and classifies the different kinds of exceptions that camiorcmodel transformations. Some are more
closely related to the execution environment. Those eiaeptypically originate from the transforma-
tion’s virtual machine. For example, such an exception aa the form of a memory overflow, because
of infinite recursion or loops in the transformation’s cahtspecification, or a null pointer exceptions,
because of incorrect expressions specified in the actiaquéage of transformation rules. Some excep-
tions cannot be generalized to all transformation paradignd thus are more transformation-language
specific. A more subtle class of errors are what we have calleddesign exceptiong hese exceptions
are due to inconsistent specification of transformatioesuFor example, when non-independent rules
are applied concurrently or in iteration, the result maydléanon-deterministic, unsafe, or erroneous
outputs. The category of transformation-specific excagtmovers domain-specific, application-specific,
and user-defined exceptions.

The novelty of this work lies in that we explicitlynodel exceptions and henamodel exception
handling in the transformation language. For that, tramsftion rules are made exception-aware. The
outcome of such rules is either a successfully transformedketr(in case of a successful match and exe-
cution of the transformation), or an unmodified model (inectee rule is inapplicable on the model), or
an exception (in case an exceptional situation occurreldp,Avith appropriate control-flow support, the
transformation modeller can directly specify how to hartike possible exceptions that can occur. We
discuss alternative handler designs either in the form mrasformation rule or by an explicit customiz-
able handler. Furthermore, the modeller can also speciheitransformation should resume, restart, or
terminate after an exception is handled. In hierarchi@igformation languages (suchnsTif) where
sets of rules can be modularly encapsulated, the propagatiexceptions to a more global context is
also modelled.

3.5 Further Work

In [25], | presented my solution to the AntWorld Simulatioase-study. The solution used an early
prototype ofMoTif and therefore did not succeed very well in performance efiwy. Nevertheless,
because of its expressivenes®Tif/AToM® won the price for the best usability solution.

In [28], | propose a review of different model transformatepproaches. I first focus on the algebraic
foundation of graph transformations and the algorithmsl fiseperforming these transformations (more
specifically, optimizations on the matching algorithmshem | present a survey of existing controlled
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graph transformation languages. They express an opeshtabstraction for model transformations. Fi-
nally, other model-to-model relations (declarative aogion) are also described.

In [30], | formally define theMoTif-Core formalism as a combination afCore with DEVS. Ev-
ery rule primitive and control flow primitive il-Core is embedded in the an atomic DEVS model. For
example, The pre-condition pattern (LHS and NACs) and th&imag algorithm of theMatcher are
embedded in the external transition of@omic DEVSnodel. In fact, the pattern is stored in the state of
the DEVS model, but evaluated (finding matches) on the paekeived when the transition is triggered.
The post-condition (RHS) and the rewriting algorithm of thewriter are also embedded in an atomic
DEVS model in a similar way. Upon reception of a packet, theemal transition function triggers the
execution of thel-Core primitive. The resulting packet is subsequently outputh®sydutput function of
the DEVS model. Instead of using theCore Composer, a coupled DEVS model directly encodes the
composition of sub-models. The structure and the semaattigw Tif-Core are thus defined. Neverthe-
less, because of the asynchronous nature of this formatigsmecessary to prove its soundness. That is,
whenever a packet is received biaTif-Core entity, a packet will be output from that entity. This guar-
antees a proper flow of execution oftaTif-Core transformation and hence ensures its termination from
the control structure point of view. This technical repddoaintroduces the meta-model BloTif. Its
semantics is defined in termsMbTif-Core, sinceMoTif is a shortcut language. It consists of predefined
combinations oMoTif-Core entities encapsulated inGomposer.

In [31], we (with the collaboration of Hans Vangheluwe and iMst-Mallah) propose to explicitly
model the structure and behaviour of a distributed simufatdhe DEVS formalism, in terms of a DEVS
model. That is because discrete-event simulators, andrircgar distributed simulators, are typically
realized using different implementation languages andware platforms (processing as well as net-
work resources). This hampers realistic performance casge between simulator implementations.
Furthermore, details of the distributed algorithms usedcammonly present in the form of code rather
than explicitly modelled which hampers re-use and rigoranglysis. The approach first represents a
DEVS simulator in a DEVS model. It is then extended to a disted DEVS simulator together with
preliminary fault-tolerance capabilities. From this mbaee can synthesize or build a distributed DEVS
simulator, implemented on a dedicated middleware. In a flindeand simulation-based approach, we
show how the DEVS model of a distributed DEVS simulator isleated to behave optimally for the
given input model.

4 Anticipated Contributions

What remains to be done is the implementation and the pegfocen analysis of the solution described
in Section 2. Although | have already built prototypes far thifferent publications listed in Section 3, a
complete design and efficient implementation of MeTif framework still remains.

1. The RAM process is already implemented. What remainsagdtuate the usability of a completely
modelled environment for designing model transformation.

2. | plan to implement-Core as a module based on a model-centric virtual machine. ThaRt
be usable with a modelling language (such as DEVS) or a pnugiag language (such as Python).
The advantage of the latter is to make model transforma#ohrtologies available to non-model
driven paradigms.

3. More precisely, | will elaborate on the implementatiortrad two crucial operations in graph trans-
formation: matchingandrewriting. As graph pattern matching is known to be NP-complete in the
worst case, | will attempt to incorporate existing very eéiit techniques in graph pattern matching
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that improve the average case performamce.([32, 33]). However, there are also other techniques
used by different graph transformation tools. Advancedcteplans [34, 22] have been proposed
by pruning the search space of the matching with heuridiicsemental matching [35] sacrifices
memory efficiency for time efficiency by loading the whole imgraph in memory. Another ap-
proach is to map the graph pattern matching problem to aonssatisfaction problem [36] and
then solve the equations/constraints.

4. | will indicate howQVT Operational [4] can be implemented usingCore.

5. 1 will implement the compiler expressingoTif-Core in terms of DEVS. It will be based on the
prototype designed from the mapping elaborated in [30].

6. OnceMoTif-Core’s meta-model and compiler are complete, | will implemerg #ntire MoTif
framework on top of our model-centric virtual macHin&he design ofoTif will support handling
of transformation exceptions as well as the specificatidmgtier-order transformations.

7. 1 will then complete the comparison B Tif to other transformation languages.

8. Asthere are many layers in th Tif framework, | foresee potential bottlenecks in the perfaroea
and will address these concerns.

9. 1 will also assess the feasibility of runninvpTif transformations in a distributed environment.

Once the framework is designed, implemented, and testedl, illustrate the application of both a
transformation language based B@ore and Python, as well as applicationsMb Tif.

1. I will solve the CD2RDBMS benchmark and compare my redaltsthers. The solution will be
designed irMoTif.

2. 1 will refine the solution | proposed for the AntWorld Siratibn tool contest. It will however be
implemented combining-Core and the object-oriented programming language Python.

3. 1 will re-implement the Pacman Game case-study using rieeepted implementation dfoTif.

4. Finally, I will provide a solution for the Aspect Weavingse-study to demonstrate the expressive-
ness of an entirely modelled transformation langusg&if.

| plan to complete the first nine points concerning the imm@etation of the model transformation
framework by Fall 2010. | intend to cover the four case-gtaddy the end of the year 2010. Finally, |
expect to write my dissertation during Winter 2011.

5 Related Work

5.1 Existing Graph Transformation Languages

In the sequel, | compare the approaches of some of the reélsgalable graph transformation tools that
exist today.

5.1.1 ProGReS

The Programmed Graph Rewriting SystePnoGReS) was the first fully implemented environment to
allow programming through graph transformations [37, 38, he control mechanism is a textual im-
perative language. A rule iRroGReS has a boolean behaviour indicating whether it succeededtor n

8t is a completely redesigned environment for AT&[@] on which | will also work on.
"This is by no means an exhaustive list.
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Among the imperative control structures it provides, rudas be conjuncted using tl8eoperator. This
allows applying a sequence of rules in order. Branching petied by thechoose construct, which
applies the first applicable rule following the specifiedesr@roGReS allows non-deterministic execu-
tion of transformation rulesind andor are the non-deterministic duals &andchoose respectively by
selecting in a random order the rule to be applied. Withltgp construct, it is possible to loop over
sequences of (one or more) rules as long as it succeeds.

A sequence of rules can be encapsulatedtinamsact i on following the usual atomicity, isolation,
durability, and consistency (ACID) properties. The ungied database system where the models are
stored is responsible for ensuring the first three properfi@ implicit back-tracking mechanism ensures
consistency however. HenderoGReS offers two kinds of back-tracking: data back-tracking fwiindo
operations) and control flow back-tracking [40]. When a ntldails in a sequence in the context of
a transaction, the control flow will back-track to the preisty applied ruler. The data back-tracking
mechanism undoes the changes performed by the transfomudti. If r is applicable on another match,
it applies the transformation on it and the process consimi¢h the next rule (possibly). If r has no
further matches, two cases ariser livas chosen non-deterministically from a set of applicables,

a non-previously applied rule is selected from this set.e@iise, the process back-tracks recursively
to the rule applied before. Sequences and transactions can be named allowing rexwadig. The
module concept provides a two-level hierarchy in the carfiioay structure by encapsulating a sequence
of transactions.

512 AToM3

AToM? is a tool for meta-modelling, multi-formalism modellingadimodel transformation [9]. Model
transformation can be performed on models conforming toodymt of meta-modefs Since models
are represented as abstract syntax graphs (ASGs), modsfainaation is performed through graph
transformation. It was the first tool to provide a meta-miiagllayer in graph transformations.

The control mechanism is limited to a priority-based transfation flow. The transformation system
is a graph grammar consisting of graph transformation riflas can be assigned priorities. The rules
are applied following the priority ordering: if a rule withdier priority fails, then the rule with the next
lower priority is tried. If a rule succeeds, the transforimatprocess starts back at the highest priority
rule. These iterations go on until no more rules are apdiécalvhen more than one rule with the same
priority is applicable, one of them is chosen randomly, erdlser chooses one interactively, or they are
applied in parallel. For the latter optioAToM? does not support overlapping rules conflict detection. It
is also possible to divide transformations in layers by seging graph grammars — without priorities.

5.1.3 GReAT

GReAT (for Graph Rewriting And Transformation language) is thedeidransformation language for
the domain-specific modelling tool GME [10EReAT’s control structure language uses a proprietary
asynchronous dataflow diagram notation where a produdiogprresented by a “block” (calldekpres-
sionin [10]). Expressions have input and output interfadepdrts andoutporty. They exchange pack-
ets: node binding information. The in-place transformaitd the host graph thus requires only packets
to flow through the transformation execution. Upon recgvanpacket, if a match is found, the (new)
packet will be sent to the output interface. Inport to outgonnections depict sequencing of expressions
in that order.

8Cross meta-modelling is commonly referred as multi-foismlmodelling.
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Two types of hierarchical rules are supportedBlackforwards all the incoming packets of its inport
to the target(s) of that port connection (i.e., the first mearession(s)of thBlock). On the other hand,
a ForBlock sends one packet at a time to its first inner expression(sgrvitieForBlock has completely
processed the packet, the next packet is sent iterativedpdBing is achieved usinggstexpressionsTest
is a special composite expression holdDgseexpressions internally. £aseis given in the form of a
rule with only a LHS and a boolean condition on attributes.idadoming packet is tested on eaClase
and every time th€asesucceeds, it is sent to the corresponding outportdaaehas itscut behaviour
enabled, the input will not be tried with the subsequeasesWhen an outport is connected to more than
one inport or if multipleCasessucceed in dest(also one-to-many connection), the order of execution
of the following expressions is non-deterministic. To &kl recursion, a composite expressiBiotk
ForBlock or Test/Casgecan have an internal connection to a parent or ancestoessipn (in terms of
the hierarchy tree).

514 VMTS

The controlled graph rewriting system wMTS is provided by the VMTS Control Flow Language
(VCFL) [41], a stereotyped UML Activity Diagram. In this abact statemachine a transformation rule
is encapsulated in an activity, callstép Sequencing is achieved by linking steps; self loops acsvaidl.
Branching in VCFL is adecision stegonditioned by an OCL expression. Chainssté#pscan thus be
connected to thdecision However at most one of the branches may execute stépsconnected to the
decisionshould then be non-overlapping (this is checked at contpiie). A branch can also be used to
provide conditional loops and thus support iteration.

Stepscan be nested inlsigh-level stepA primitive step ends with success when the terminatinggsta
is reached and with failure when a match fails. However, @ndrichical steps, when a decision cannot be
found at the level of primitive steps, the control flow is senthe parent state or else the transformation
fails. As in GReAT, recursive calls tdigh-level stepss possible. Afork connected to atepallows for
parallelism and goin synchronizes the parallel branches. Semantically, gdisat is possible ivMTS
but it is not yet implemented [41].

5.2 Other Model Transformation Approaches

Model transformation approaches are not restricted tolgtamsformation. First, | describe how rela-
tional database systems can resolve model transformating similar concepts as graph transformation.
Then | describe a hybrid approach (mixing declarative amkirative aspects) provided by one of today’s
most used model transformation tool.

5.2.1 Modd Transformation in Relational Databases

Graph transformation as described in the previous sedsgrerformed in memory. This approach scales
up to some point as long as both models and transformatioregsdfit in memory. However, for very
large models (of the order of ¥@&lements) it is preferable to store them in a database. Roréa-
son, Varrg et al. propose in [42] a model transformation apgin performed in a relational database
management system (RDBMS). Once models are stored apgiedpiin an RDBMS, the transformation
specification consists of views and query statements.

Here, we assume that meta-models are initially specified snbset of UML class diagrams and
models in UML Communication diagrams. The transformatlumyever, requires the models to be rep-
resented in a RDBMS in the following way. From the meta-mpdet table per class is generated with
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a column for a unique identifier. Additionally, one columrcreated per attribute and per many-to-one
association. Many-to-many associations are represertédbées on their own with a column for the
source and another for the target. Foreign keys ensure tistramt dependencies for association ends
and inheritance. Models are stored as rows filling thesesabl

The transformation rules follow the SPO graph transforomafipproach. A rule is divided in two
parts: thematching phasand themodification phase~or the matching phase, the pre-condition LHS
NAC (weaving overlapping elements) of the rule is considefidne LHS is stored as a single viewk S-
view, in the RDBMS. Aninner join is added for every object (noda)l avery association instance (edge)
in the LHS. They are filtered according to the edge conssahthe structure of the pattern. Additional
filters are used for specifying the exact matching condgtigatal injective graph morphism). Finally, the
selection projects only the joined columns. SimilaNC-viewsare created for each NAC pattern of the
rule. LHSw NAC is stored as a separate view. A left outer join of each NA€W is performed on the
LHS-view and the join condition depicts the overlappingmedats. To prevent the NAC to be positively
matched, the filters of the view force a null value on the calarof the join conditions. Finally, the
selected columns are those of the LHS-view.

The modification phase of a transformation rule is encapstllan a transaction consisting of a se-
guence of INSERT, DELETE, and UPDATE statements. This pltegs by deleting edges if LHS
RHS+ 0. An UPDATE statement removes the foreign key of the sour@rfny-to-one association. A
DELETE statement removes a many-to-many association dasahy node. Additional DELETE and
UPDATE statements are required to ensure the deletion dflidignedges. Then insertions come into
place if RHS- LHS ## 0. An INSERT statement creates a many-to-many associatiaeihas new node
object. An UPDATE statement creates a many-to-one asgmtidh the RDBMS approach, a model el-
ement can have an attribute as a one-to-one associatioedretivem. This is why there is no UPDATE
statement that modifies the value of an attribute.

An advantage of this approach is that a single rule may beepbpi parallel on all its matches. This
is achieved by applying the modification phase on all the n@tigrned by the pre-condition view of the
rule. Both matching and modification phases can be optimittdthe underlying database system used.
For example, to perform SPO-like deletion, it may sufficeltovacascading deletes on associations, if
they are represented accordingly in the database. Althapglying a transformation in a RDBMS is less
efficient than in memory, an optimization in time can be gdibg properly creating indexes on columns
where a matching occurs.

522 ATL

The ATLAS Transformation LanguageTL) is a hybrid model transformation language combining
declarative and imperative constructs [8, 43]. It is a paogming language with its own compiler and
virtual machine. AmTL transformation is defined from (possibly several) readrsolurce meta-models
to one write-only target meta-model.

The transformation specification consists of a set of rutespmssibly helpers and external modules.
The helpers are similar to OCL helpers: they serve as wrappéhe context of source models elements
(since the target model is not navigabl®peration helperstaking input parameters, act as functions.
Attribute helperdecorate the source model by enriching it with a derived etutisits structure.

A declarative rule is called enatched rule since it is transparent from the internal matching and
scheduling algorithms ofTL. A matched rule is composed of a source and a target patteensdurce
pattern specifies a set of paitsg) wheret is a type from the source meta-model &id an OCL boolean
guard. The target pattern is a set of pdirsb) wheret’ is a type from the target meta-model amis
a binding initializing the attributes or referencestof(t’,b) can be replaced by aaction blockwhere
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ATL imperative statements are used to build the target modeiegles. A rule may refer to other rules.
Standardrules are applied once for every matldzyrules are applied as many times as they are referred
to, andunique lazyrules are lazy rules but reuse the target elements theyedredien applied multiple
times. Declarative rules support inheritance as meansuserand polymorphism. A subrule may only
match a subset of the match of its parent, but can extend ¢a¢i@n of target elements. éalled ruleis
an imperative procedure which can be invoked from a rule¢h®at or called) and is implemented either
using theATL imperative language constructs or any other language l{puatter has limited support).

Although declarative rules resemble graph transformatiées with a LHS and a RHS, the procedural
semantics of aATL transformation is quite different from the execution of agr transformation system
on a source model. The transformation starts with a first gassigh all the guards to evaluate the
helpers. The transformation is executed in the second pass, a called rule marked amntry point
is applied if present, which may trigger subsequent ruldiegmons. Then all the matches from all
the standard matched rules are computed. Afterwards, fmyaaatch, the target elements are created
without evaluating the bindings. At the same time, a traitigabink between the rule, its matched source
elements, and the new target elements is established aliter8econdly, all initializations (including
bindings) are resolved following thET L resolve algorithmif referenced, lazy rules are applied too. Then
action blocks evaluations follow. The algorithm ends byoking the called rule marked &nd point if
present. The order of execution of the standard rules isdeb@rministic. Nevertheless, determinism and
termination of the algorithm is ensured, provided that rzg lar called rules are used.

The Eclipse Modelling Framework (EMF) has adoptadl. as its language and tool support for model
transformation. HoweveATL lacks of a formal foundation, unlike graph-based transédiom.

6 Conclusion

In this proposal, | outlined a novel approach for the engingeof model transformation languages,
driven by multi-paradigm modelling principles. The coretbis approach consists of three different
model transformation formalisms. At the foundation levleé meta-modelled languadeCore presents
a collection of most primitive model transformation langaaonstructs. This offers a common basis for
specifying model transformation formalisms to allow unifocomparison and interoperability possibili-
ties between thenMoTif-Core combinesl-Core with DEVS. This permits to express new dimensions to
transformation models with asynchrony and time. Both thglage and its execution framework (DEVS
simulator) are modelled. Sind¢oTif-Core is not an ideal formalism from a usability point of view, the
elaboration of a model transformation language suitedtéodl@mains of application is required. | argue
thatMoTif fills this abstraction gap.

Although the focus of my dissertation is on improving the regsiveness of the model transforma-
tion paradigm, | will conduct performance analyses to campgheMoTif framework to other model
transformation engineering approaches.
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