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Abstract

Model transformation is at the heart of current model-driven engineering research. Today’s research
in model transformation focuses on the scalability of the approaches to solve industrial problems. The
current state-of-the-art in model transformation includes a plethora of techniques and tools. Neverthe-
less, industrial adoption of model transformation requires a diversity of model transformation languages
optimally suited for particular transformation tasks. This is why my dissertation contributes to the engi-
neering of model transformation languages, providing a framework to build such languages. The devel-
opment of this framework is driven by multi-paradigm modelling principles. I illustrate the use of the
framework by designing and implementing a novel model transformation language.
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1 Introduction

Model-Driven Engineering (MDE) [1] is now considered a well-established development methodology.
MDE, and in particluar, domain-specific modelling, is an approach that allows one to manipulate models
at the level of abstraction of the application domain the model is intended for, rather than at the level of
computing. MDE considers models and transformations as first-class entities. A model represents an ab-
straction of a real system, focusing on some of its properties. Models are used to specify, simulate, test,
verify, and generate code for applications. In software language engineering terms, a model conforms
to ameta-model. A meta-model defines the abstract syntax and static semantics of a (possibly infinite)
set of models. A model is thus typed by its meta-model that specifies its permissible syntax, often in
the form of constraints1. MDE allows to manipulate these models through the use ofmodel transforma-
tion. A model transformation transforms a source model into a target model, both conforming to their
respective meta-model. Although a model transformation isdefined at the meta-model level, it is never-
theless applied on models. The Object Management Group (OMG) has proposed the the Model-Driven
Architecture (MDA), which promotes model transformation at the heart of MDE. The Query, Views, and
Transformations (QVT) language [4] is a recent addition to the OMG’s set of standards.

Today’s research in the field of MDE focuses on the applicability and scalability of its solutions to
industrial problems. Complementary to MDE, Multi-Paradigm Modelling (MPM) [5] addresses these
issues and formulates a domain-independent framework. Onekey aspect of MPM is multi-abstraction.
A model abstraction is a view on a system exhibiting some of its properties while hiding others. Multi-
abstraction is thus the ability to express models at different levels of abstraction. MPM realizes that
systems can be represented in different modelling languages or formalisms. MPM, in particular multi-
abstraction and multi-formalism modelling, is enabled by the use of meta-modelling and model transfor-
mation.

1.1 Model Transformation

Given a formalism, the meta-model allows to precisely specify the abstract syntax of the formalism and
thus modelling environments can be generated from it. Modeltransformation can providesemanticsto
models in the formalism. When the transformation is endogenous (the source and target meta-models are
the same), the transformation is typically asimulationof the formalism. In this case, a model transfor-
mation describes the operational semantics of the languagein the formalism.Refactoringis another form
of endogenous transformation, typically used for optimizing or evolving the design of models. When a
transformation is exogenous (different source and target meta-models), it is typically used totranslate
models from one formalism into another. For example, modelsin a domain-specific modelling formalism
may be transformed into Petri-Nets or Statecharts models. In this case, the meaning of a model is given
by a translational semantics into a behaviourally equivalent model. When two models are related, they
can each co-evolve and thus the initial relationship may nothold anymore. Model transformation can be
used tosynchronizemodels, specifying a bidirectional transformation or relation between different mod-
els.Code generationis another form of exogenous model transformation, considering programs as trees
and thus as models. It can also be used to allow the integration of a model in a software application and
to make the model executable. Other model transformations are useful to serialize models to persistent
storage.

1A common representation of meta-models uses the Unified Modelling Language (UML) Class Diagram notation [2] with
Object Constraint Language (OCL) constraints [3].
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1.2 Thesis Proposition

Despite a robust theoretical foundation, model transformation still suffers from scaling and correctness
problems in an industrial context. The growing interest in model transformation has lead to a plethora of
model transformation languages expressed in different paradigms,e.g.,template-based, rule-based, triple
graph grammars, with or without explicit control flow [6]. They are supported by various implementations
such asAGG [7], ATL [8], AToM3 [9], GReAT [10], MOFLON [11], QVT [4], VMTS [12], just to name
a few. They provide tremendous value for developers, but in each implementation the transformation
paradigm is hard-coded to be used as is [13].

In my research, I propose to contribute to the engineering ofmodel transformation languages at the
foundation level, following MPM principles. This, by modelling everythingexplicitly at the most appro-
priate level(s) of abstraction using the most appropriate formalism(s). In this approach, the model trans-
formation language is modelled at the syntactic level (abstract and concrete). Moreover, the semantics
of such transformation models is also modelled through the use of meta-modelling and model transfor-
mation. The aim is to increase the developer’s productivity, by raising the level of abstraction at which
transformations can be specified and by lowering the mismatch between model transformation languages
and their application domain,i.e., minimizing accidental complexity. I therefore provide a framework
for building such model transformation languages and illustrate its applicability by designing and imple-
menting a new model transformation language2 following the MPM principles for the core algorithms,
the transformation language building blocks, and the transformation formalism. The presented approach
focuses on the expressiveness of model transformation.

The remainder of this proposal is organized as follows. Section 2 presents an overview of my disserta-
tion. Then, in Section 3, I outline the contributions I have already completed, whereas Section 4 describes
the remaining work to be done. In Section 5, I discuss the mostrelevant related work and finally conclude
in Section 6.

2 Overview of the Proposed Solution

In this section, I present an overview of the development of the proposed thesis. The proposed solution
first focuses on the foundation of model transformation and then on the elaboration of a novel model
transformation language.

2.1 A Basis for Model Transformation

A model transformation language consists of two components: patternsandscheduling. A transformation
is specified in the form of patterns, the fundamental unit of atransformation. For example, in rule-based
model transformation (e.g.,graph transformation), the transformation unit is a rule. Atransformation
rule uses patterns aspre-conditionsandpost-conditions. The pre-condition pattern determines the appli-
cability of a rule: it is usually described with a left-hand side (LHS) and optional negative application
conditions (NACs). The LHS defines the pattern that must be found in the input model to apply the rule.
The NAC defines a pattern that shall not be present, inhibiting the application of the rule. The right-hand
side (RHS) imposes the post-condition pattern to be found after the rule was applied. An advantage of
using rule-based transformation paradigms is that it allows to specify the transformation as a set of op-
erational rewriting rules instead of using imperative programming languages. Model transformation can

2More precisely, it is a graph transformation language.
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thus be specified at a higher level of abstraction (hiding theimplementation of the matching algorithms),
closer to the domain of the models it is applied on.

When a model transformation is executed, the rule scheduling describes in what order the rules will
be applied (inter-rule management). In declarative transformation approaches, the rule scheduling is im-
plicit and transparent to the modeller who defines a relationbetween meta-models. On the other hand,
operational transformations require an explicit scheduling of the transformation rules. According to MPM
principles, both patterns and rule scheduling must be explicitly modelled. Once a meta-model for the pat-
tern language is defined, an environment for specifying individual transformation rules can be generated.
The methodology I propose allows to automatically build customized pattern specification languages
based on the domain of application (input and output meta-models) of the transformation [14]. It is
defined as a systematicprocedurefor explicitly modelling transformation languages. Domain-specific
modelling combined with multi-formalism modelling makes us realize that certain formalisms are more
appropriate for use in particular applications than others. Applying this philosophy to transformations by
systematically and explicitly modelling them rigorously allows to automatically use the same generators
for visual modelling environments to generate model transformation environments. This empowers a do-
main expert to specify the transformation himself,e.g.,enhancing the business models with a specific
behaviour.

In controlled graph transformation, rule scheduling is often described in a control flow language.
Once more, if the scheduling language is meta-modelled, themodeller has control over the order in which
the rules can be applied, which increases the expressiveness of the transformation language enormously.
Having completely meta-modelled the transformation language, a model transformation can itself be con-
sidered as a model, which can in turn be transformed. As a side-effect, this enables to provide a “clean”
environment for designinghigher-order transformations3 (HOT) [15]. The performance of the automatic
synthesis of model transformation environments can be analysed with respect to two criteria: the time
and space complexity of the procedure, as well as the usability of a completely modelled environment.

We can examine model transformation languages at a lower level of abstraction: the primitive building
blocks that compose these languages. The pre- and post-condition patterns are examples of transforma-
tion rule primitives. From an operational point of view, we must also consider the execution of a rule.
This operation is often encapsulated in the form of an algorithm (with possibly local optimizations). Nev-
ertheless, it always consists of amatching phase, i.e.,finding elements of the input model that satisfy the
pre-conditions and of atransformation phase, i.e.,applying the rule such that the resulting model satis-
fies the post-conditions. Therefore we can explicitly distinguish between these two phases by aMatcher
and aRewriter as primitives. The process of de-constructing model transformation languages into their
primitives enables one to identify further primitive rule operators [16]. For example, one that allows iter-
ation over the matches found by theMatcher or one that detects conflicts between different matches—the
latter is useful to prevent the concurrent modification of the same model element at the granularity of the
matches as opposed to the granularity of the rule [17]. I havedesigned theT-Core module which encap-
sulates a minimal collection of graph transformation primitives. It also includes control flow primitives
and constructs allowing one to compose the primitive building blocks (such as theComposer).

T-Core becomes useful and applicable when combined with a well-formed programming or mod-
elling languages. It then becomes a complete model transformation language. The level of abstraction
T-Core is defined at allows one to re-construct existing transformation languages and even design new
ones [18]. For example, when combined with a minimalistic language only supporting sequencing,
branching, and looping we are able to reproduce the expressiveness of common graph transformation

3Higher-order transformations have many applications, such as in language evolution: whenever the definition of a language
evolves (meta-model evolution), all associated transformations have to be adapted. This can be partially automated byusing a
higher-order transformation generated from the modifications made to the language.
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languages, such asFUJABA [19]. More expressive transformation languages can be built, for example
supporting amalgamated rules [20]. Integration with common programming languages, such as Python,
opensT-Core to the programming world as well.

From the implementation point of view, I focus on the efficient design of theMatcher andRewriter,
integrating various optimization techniques from patternmatching and graph transformation theory. Con-
sequently,T-Core provides, on the one hand, a common platform to compare different model transfor-
mation languages. On the other hand, consistently applyingMPM principles and an MDE approach to
the foundation of model transformation languages has lead to the description of a transformation core
(T-Core). T-Core allows for the design of families of languages. Hence, the implementation ofT-Core
offers a ready-to-use framework to build transformation languages.

2.2 A Modular Timed Graph Transformation Language

To demonstrate the power of this multi-paradigm framework for engineering model transformation lan-
guages, I combineT-Core with the Discrete Event System Specification formalism(DEVS). This gives
birth to a very expressive novel model transformation language, allowing to model asynchronous trans-
formation models, complemented with the dimension of time.DEVS is a discrete-event modelling and
simulation formalism that allows for highly modular, hierarchical modelling of timed, reactive systems.
Therefore, control structures such as sequence, choice, and iteration are easily modelled in DEVS. Non-
determinism and parallel composition also follow from DEVS’ semantics. Moreover, its modularity and
expressiveness are well-suited to encapsulate graph transformation building blocks [21]. DEVS thus al-
lows modelling the control flow of transformations.

The combination ofT-Core with DEVS results in a novel model transformation languageMoTif-Core.
It consists of embedding every model transformation primitive from T-Core onto DEVS. For example,
The Matcher and theRewriter are each encoded inside anatomic DEVSmodel. The events that DEVS
models can send and receive embed the progress of the transformation, calledpacket(the input graph
and additional information on the flow of the transformation). The behaviour is as follows. When a
MoTif-Core element receives a packet, it processes it according to itsT-Core semantics. Afterwards, it
outputs the packet which can then be received by anotherMoTif-Core element. Note that, because of
the use of DEVS, the modeller can specify the time to elapse before an atomic DEVS outputs an event.
However, another event can be received in the meantime and interrupt the process. As atomic DEVS
models behave as independent processes, the packets exchanged can not be shared among them. This
is why the formal definition ofMoTif-Core specifies that copies of packets are stored in the state of
individual atomic DEVS models. The actual implementation relaxes this constraint by storing references
to packets for space efficiency trade-off.Coupled DEVSmodels allow to specify a parallel composition of
sub-models (atomic or coupled). Sub-models are assumed to be independent processes, concurrent with
the rest. Therefore, mapping theComposer primitive from T-Core to a coupled DEVS model provides
encapsulation constructs with parallel capabilities toMoTif-Core. TheMoTif-Core language thus allows
to specify modular, timed, and asynchronous graph transformation models.

MoTif-Core transformations are executed by a DEVS simulator. Since theMPM philosophy is to
modeleverything, I explicitly model the DEVS simulator as a modelconforming to theDEVS formalism.
The simulation framework associates anatomic solverand acoordinatorwith each atomic and coupled
DEVS respectively found in the DEVS model to execute. In the DEVS model of the DEVS simulator,
solvers and coordinators are modelled as atomic DEVS models, and the simulation protocol is encoded
in their behaviour. Since the protocol is identical to simulate a DEVS model in a distributed environment,
MoTif-Core transformations can therefore be executed in a distributedfashion.

Although MoTif-Core is a model transformation language with enriched expressiveness, it is not

5



ideally usable for a non-DEVS expert. This is why I introducethe model transformation languageMoTif.
It allows to design the transformation rules and the controlstructure at a higher level of abstraction with
MoTif-Core components.MoTif is designed such that everyMoTif model has an equivalentMoTif-Core
model. The meta-model ofMoTif specifies its syntax: how the modeller can specify transformations. The
semantics is defined in terms of the semantics ofMoTif-Core, which is mapped onto DEVS. In order to
have a complete and closed system, the translation of aMoTif model to its correspondingMoTif-Core
model is itself specified as a model transformation. Furthermore, this higher-order transformation4 is
entirely specified as aMoTif model.

MoTif is a completely modelled transformation formalism (both its syntax and its semantics). Nev-
ertheless, this does not narrow the expressiveness of the language. On the contrary, it is as expressive
as common transformation languages. Furthermore,MoTif extends the domain of applicability of model
transformations, as it allows to express timed and asynchronous transformations. Another aspect of the
performance evaluation ofMoTif is that it can deal with large host graphs, given that it can berun dis-
tributed, without the modeller having to modify the transformation model. Although this dissertation
focuses on expressiveness, it is still necessary to analysethe time performance ofMoTif transformation
compared to other very efficient languages (such asFUJABA or GrGen.NET [22]).

The ultimate goal of my dissertation is to gear model transformation towards industrial-strength us-
ability. The dependability of model transformation systems then becomes crucial to model-driven devel-
opment deliverables. As any other software, model transformations can contain design faults, be used
in inappropriate ways, or may be affected by problems arising from the transformation execution en-
vironment at runtime. I therefore introduce exception handling into model transformation languages to
increase the dependability of model transformations. Since MoTif-Core is an event-driven language, in-
terruption can easily be modelled, making it a good candidate to incorporateexceptions[23]. Following
MPM principles, the solution treats exceptions as models too. TheMoTif-Core (and thusMoTif) language
can be extended to support explicit exception handlers for transformation exception. This improves, on
the one hand, the development process of a transformation model by providing debugging abilities to the
tools implementing model transformation languages. On theother hand, it also improves the quality of
the model transformation software delivered in the contextof industrial applications.

Since theMoTif framework is entirely modelled following the MPM principles, model checking,
model verification, and model-based testing techniques canbe applied to analyse the behaviour of trans-
formation models. Safety, liveness, and invariant properties can thus be proven. Note that my research
enables analysis of transformations. The actual development of such analyses is however outside the
scope of this thesis.

2.3 Applications

A common benchmark comparing the expressiveness of model transformation languages is theClass
Diagram to Relational Database Model System(CD2RDBMS) [24]. This is a non-trivial transformation
converting UML class diagram models into relational database models. One of the challenges of the
CD2RDBMS case-study is to compute the transitive closure with respect to inheritance hierarchies in
UML and meaningfully represent its semantics in relationaldatabases.

The AntWorld Simulation[25] is a case-study considered as a performance benchmark.It consists
of letting ants wander around in an area looking for food to bring back to their hill. While ants are in
exploration mode, the area expands gradually. Furthermorenew ants are generated as food is brought
back to the hill. On the one hand, it focuses on the use of locality, i.e., the ability of applying different

4This is a HOT as it relates between transformation models. Itis specified using the meta-models ofMoTif andMoTif-Core.

6



rules on the same location of the input model. On the other hand, it focuses on the performance related
to the size of the models transformation languages can handle, as many elements are created from the
transformation.

Additionally, I propose a case-study that illustrates an application of using DEVS as a semantic do-
main for timed model transformation. It shows how the explicit notion of time allows for the simulation-
based design of reactive systems and, in particular, computer games such as thePacman Game[26].
Modelling the dynamic behaviour of this game inMoTif allows the modelling of player behaviour, in-
corporating data about human players’ behaviour and reaction times. Thus, a model of both player and
game is obtained, which can be used to evaluate the playability of a game design through simulation.

Finally, I propose a case-study that shows the application of model transformation for aspect-oriented
modelling technology. I show howAspect Weavingcan be accomplished when usingMoTif to model that
operation. This case-study focuses on the expressiveness of the transformation language as well as on its
usability in anewdomain of application. Since a solution already exists withKermeta [27], I compare
the two approaches both from expressiveness and efficiency points of view.

3 Past Contributions

In this section, I summarize the various original contributions I have worked on up to this date. This
describes in more detail the work outlined in Section 2.

3.1 Systematic Modelling of Transformations

In collaboration with several participants of the CAMPaM workshop in 2009, I have realized that despite
the pivotal significance of transformations for model-driven approaches, there have not been any attempts
to explicitly model transformation languages yet. The paper [14], published at the MoDELS MPM work-
shop in the same year, presents a novel approach for the specification of transformations, by treating
model transformation languages as domain-specific languages. That is, for each pair of domains (the
meta-models involved in the transformation), the meta-model of the rules are (quasi-)automatically gen-
erated to create a language tailored to the transformation.This allows, on the one hand, transformation
developers to change the design of their transformation languages by modelling, rather than program-
ming. Also, they may use environments to create transformations that are customized with respect to the
input and output languages involved. The goal of this paper is to systematically support developers in
creating transformation languages by means of semi-automated meta-modelling.

The solution proposes to adapt transformation languages totheir specific input and output languages.
This is done by explicitly specifying a meta-model for the pre-condition and post-condition patterns
of the transformation language based on the input and outputmeta-models. The required meta-model
metamorphosis is obtained by theRAM process: Relaxation, Augmentation, and Modification of the in-
volved meta-models. The relaxation step weakens meta-model constraints in the UML class diagram
and in the constraint language (e.g.,expressed in OCL). this allows partial models to represent patterns.
The augmentation step adds transformation-specific features to the meta-model of the patterns. For ex-
ample, its allows to connect different model elements from different meta-models,i.e.,multi-formalism
patterns. The modification step increases the expressiveness of the patterns: arbitrary constraints can be
specified on pre-condition attributes and arbitrarily complex computations can be used to set values of
post-condition attributes.

Figure 1 depicts how a transformation from modelM1 to modelM2 (from formalismsF1 and F2

respectively) is defined with this approach. We callT1−2 the (transformation) model that defines this
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Figure 1: Schema of domain-specific transformation languages

mapping. The two models conform to their respective meta-modelsMM1 andMM2. Applying the RAM
technique,domain-specific pattern languagesare generated from these meta-models, namelyDSPL1 and
DSPL2 respectively. The meta-models of the patterns (specific to this transformation), combined with the
meta-model of the transformation control logic language (e.g.,MoTif), form thetransformation language
TL1−2. The transformationT1−2 is thus a model conforming to its meta-modelTL1−2.

One of the main advantages of explicitly modelling the transformation language is to easily define
higher-order transformations. A subsequent extension of this work, published in the workshop proceed-
ings of MoDELS 2009 [15], made use of the explicit modelling of transformation languages (both its
pattern language and its control-flow language) to easily specify higher-order transformations in a re-
usable way.

3.2 De-/Re-Constructing Model Transformation Languages

The approach I propose in [28], in collaboration with Hans Vangheluwe, is to express model transfor-
mation at the level of their primitive building blocks. De-constructing and then re-constructing model
transformation languages by means of a small set of most primitive constructs offers a common basis
to compare the expressiveness of transformation languages. It may also help in the discovery of novel
(possibly domain-specific) model transformation constructs by combining the building blocks in new
ways. Furthermore, it allows transformation language engineers to focus on maximizing the efficiency of
the primitives in isolation, leading to more efficient transformations overall. Lastly, once re-constructed,
different transformation languages can seamlessly interoperate as they are built on the same primitives.

This is why T-Core is introduced as a collection of transformation language primitives for model
transformation5. This comprises primitive rule operations (such asmatchingandrewriting) and control-
flow primitives (such as ruleselectionandsynchronization). Inter- and intra-rule conflict detection and
resolution are also available at the primitive level. This allows, to ensure consistent application of rules
executed in iteration or concurrently.

Being sufficiently minimal,T-Core primitives are meant to be composed by means of well-formed
programming or modelling languages. Figure 2 illustrates examples of such combinations. In [28],T-
Core was combined with a very simple language that allowed to re-construct full-fleshed existing graph
transformation languages as well as more complex ones as mentioned in Section [21].

5The complete definition ofT-Core can be found in [18].
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Figure 2: CombiningT-Core with other languages allows to re-construct existing and new languages

3.3 Programmed Graph Rewriting with DEVS

Jointly with Hans Vangheluwe, I have published a series of articles on how to express controlled graph
transformation in terms of the DEVS modelling and simulation formalism. The chronology shows the
evolution of the concept preliminary prototypes starting back in 2007 until a formal definition and a
complete multi-paradigm integration in theMoTif framework.

The first paper, published at AGTIVE 2007 [21], introduces the DEVS formalism to describe and
execute graph transformation control structures. In this approach, graphs are embedded in events and
individual transformation rules are embedded in atomic DEVS models. Rules can be grouped in encap-
sulation units (coupled DEVS models). The paper demonstrates that the various graph transformation
scheduling paradigms can be modelled in this approach. DEVScan therefore express unordered, layered,
priority-based, and programmed graph transformations.

A subsequent publication at ICMT 2007 [26] explores the notion of time in graph transformation, as
DEVS is inherently a timed formalism. This allows one to model a time-advance for every rule as well as
to interrupt (pre-empt) rule execution. We then demonstrate how the explicit notion of time allows for the
simulation-based design of the well-known game of Pacman. Its dynamics is modelled with programmed
graph transformation based on DEVS. This also allows the modelling of player behaviour, incorporating
data about human players’ behaviour and reaction times. Thus, a model of both player and game is
obtained which can be used to evaluate, through simulation,the playability of a game design. The paper
proposes a playability performance measure and varies parameters of the Pacman game. For each variant
of the game thus obtained, simulation yields a value for the quality of the game. This allows us to choose
an “optimal” (from a playability point of view) game configuration. The user model is subsequently
replaced by a visual interface to a real player and the game model is executed using a real-time DEVS
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simulator. An extended version of this paper has been submitted to the journal of Software and Systems
Modelling.

Having emerged interest in the discrete simulation community, Hans Vangheluwe and I published a
chapter in a book entitledDiscrete-Event Modelling and Simulation: Theory and Applications[29]. The
chapter formalizes graph transformation control structures by expressing them in terms of DEVS models.
This is done by mapping the structure and the behaviour ofMoTif constructs in terms of atomic and
coupled DEVS models. It further elaborates on advantages ofusing this approach. Moreover, the chapter
also shows how this use of DEVS as a semantic domain for controlled rule-based graph transformation
allows for simulation and ultimately synthesis of applications. The latter is based on our solution to an
extended version of the AntWorld Simulation benchmark found in [25].

3.4 Introduction of Exceptions in Model Transformation

A submitted paper to ICMT 2010 was recently accepted. This joint work with Jörg Kienzle and Hans
Vangheluwe introduces the concept of exception handling inthe context of model transformation. This al-
lows one to increase the dependability of model transformation languages. This manuscript first analyses
and classifies the different kinds of exceptions that can occur in model transformations. Some are more
closely related to the execution environment. Those exceptions typically originate from the transforma-
tion’s virtual machine. For example, such an exception can take the form of a memory overflow, because
of infinite recursion or loops in the transformation’s control specification, or a null pointer exceptions,
because of incorrect expressions specified in the action language of transformation rules. Some excep-
tions cannot be generalized to all transformation paradigms and thus are more transformation-language
specific. A more subtle class of errors are what we have calledrule design exceptions. These exceptions
are due to inconsistent specification of transformation rules. For example, when non-independent rules
are applied concurrently or in iteration, the result may lead to non-deterministic, unsafe, or erroneous
outputs. The category of transformation-specific exceptions covers domain-specific, application-specific,
and user-defined exceptions.

The novelty of this work lies in that we explicitlymodelexceptions and hencemodelexception
handling in the transformation language. For that, transformation rules are made exception-aware. The
outcome of such rules is either a successfully transformed model (in case of a successful match and exe-
cution of the transformation), or an unmodified model (in case the rule is inapplicable on the model), or
an exception (in case an exceptional situation occurred). Also, with appropriate control-flow support, the
transformation modeller can directly specify how to handlethe possible exceptions that can occur. We
discuss alternative handler designs either in the form of a transformation rule or by an explicit customiz-
able handler. Furthermore, the modeller can also specify ifthe transformation should resume, restart, or
terminate after an exception is handled. In hierarchical transformation languages (such asMoTif) where
sets of rules can be modularly encapsulated, the propagation of exceptions to a more global context is
also modelled.

3.5 Further Work

In [25], I presented my solution to the AntWorld Simulation case-study. The solution used an early
prototype ofMoTif and therefore did not succeed very well in performance efficiency. Nevertheless,
because of its expressiveness,MoTif/AToM3 won the price for the best usability solution.

In [28], I propose a review of different model transformation approaches. I first focus on the algebraic
foundation of graph transformations and the algorithms used for performing these transformations (more
specifically, optimizations on the matching algorithms). Then I present a survey of existing controlled

10



graph transformation languages. They express an operational abstraction for model transformations. Fi-
nally, other model-to-model relations (declarative abstraction) are also described.

In [30], I formally define theMoTif-Core formalism as a combination ofT-Core with DEVS. Ev-
ery rule primitive and control flow primitive inT-Core is embedded in the an atomic DEVS model. For
example, The pre-condition pattern (LHS and NACs) and the matching algorithm of theMatcher are
embedded in the external transition of anatomic DEVSmodel. In fact, the pattern is stored in the state of
the DEVS model, but evaluated (finding matches) on the packetreceived when the transition is triggered.
The post-condition (RHS) and the rewriting algorithm of theRewriter are also embedded in an atomic
DEVS model in a similar way. Upon reception of a packet, the external transition function triggers the
execution of theT-Core primitive. The resulting packet is subsequently output by the output function of
the DEVS model. Instead of using theT-Core Composer, a coupled DEVS model directly encodes the
composition of sub-models. The structure and the semanticsof MoTif-Core are thus defined. Neverthe-
less, because of the asynchronous nature of this formalism,it is necessary to prove its soundness. That is,
whenever a packet is received by aMoTif-Core entity, a packet will be output from that entity. This guar-
antees a proper flow of execution of aMoTif-Core transformation and hence ensures its termination from
the control structure point of view. This technical report also introduces the meta-model ofMoTif. Its
semantics is defined in terms ofMoTif-Core, sinceMoTif is a shortcut language. It consists of predefined
combinations ofMoTif-Core entities encapsulated in aComposer.

In [31], we (with the collaboration of Hans Vangheluwe and Amr Al-Mallah) propose to explicitly
model the structure and behaviour of a distributed simulator for the DEVS formalism, in terms of a DEVS
model. That is because discrete-event simulators, and in particular distributed simulators, are typically
realized using different implementation languages and hardware platforms (processing as well as net-
work resources). This hampers realistic performance comparisons between simulator implementations.
Furthermore, details of the distributed algorithms used are commonly present in the form of code rather
than explicitly modelled which hampers re-use and rigorousanalysis. The approach first represents a
DEVS simulator in a DEVS model. It is then extended to a distributed DEVS simulator together with
preliminary fault-tolerance capabilities. From this model, we can synthesize or build a distributed DEVS
simulator, implemented on a dedicated middleware. In a modelling and simulation-based approach, we
show how the DEVS model of a distributed DEVS simulator is calibrated to behave optimally for the
given input model.

4 Anticipated Contributions

What remains to be done is the implementation and the performance analysis of the solution described
in Section 2. Although I have already built prototypes for the different publications listed in Section 3, a
complete design and efficient implementation of theMoTif framework still remains.

1. The RAM process is already implemented. What remains is toevaluate the usability of a completely
modelled environment for designing model transformation.

2. I plan to implementT-Core as a module based on a model-centric virtual machine. The APImust
be usable with a modelling language (such as DEVS) or a programming language (such as Python).
The advantage of the latter is to make model transformation technologies available to non-model
driven paradigms.

3. More precisely, I will elaborate on the implementation ofthe two crucial operations in graph trans-
formation:matchingandrewriting. As graph pattern matching is known to be NP-complete in the
worst case, I will attempt to incorporate existing very efficient techniques in graph pattern matching
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that improve the average case performance (e.g., [32, 33]). However, there are also other techniques
used by different graph transformation tools. Advanced search plans [34, 22] have been proposed
by pruning the search space of the matching with heuristics.Incremental matching [35] sacrifices
memory efficiency for time efficiency by loading the whole input graph in memory. Another ap-
proach is to map the graph pattern matching problem to a constraint satisfaction problem [36] and
then solve the equations/constraints.

4. I will indicate howQVT Operational [4] can be implemented usingT-Core.

5. I will implement the compiler expressingMoTif-Core in terms of DEVS. It will be based on the
prototype designed from the mapping elaborated in [30].

6. OnceMoTif-Core’s meta-model and compiler are complete, I will implement the entireMoTif
framework on top of our model-centric virtual machine6. The design ofMoTif will support handling
of transformation exceptions as well as the specification ofhigher-order transformations.

7. I will then complete the comparison ofMoTif to other transformation languages.

8. As there are many layers in theMoTif framework, I foresee potential bottlenecks in the performance
and will address these concerns.

9. I will also assess the feasibility of runningMoTif transformations in a distributed environment.

Once the framework is designed, implemented, and tested, I will illustrate the application of both a
transformation language based onT-Core and Python, as well as applications ofMoTif.

1. I will solve the CD2RDBMS benchmark and compare my resultsto others. The solution will be
designed inMoTif.

2. I will refine the solution I proposed for the AntWorld Simulation tool contest. It will however be
implemented combiningT-Core and the object-oriented programming language Python.

3. I will re-implement the Pacman Game case-study using the presented implementation ofMoTif.

4. Finally, I will provide a solution for the Aspect Weaving case-study to demonstrate the expressive-
ness of an entirely modelled transformation languageMoTif.

I plan to complete the first nine points concerning the implementation of the model transformation
framework by Fall 2010. I intend to cover the four case-studies by the end of the year 2010. Finally, I
expect to write my dissertation during Winter 2011.

5 Related Work

5.1 Existing Graph Transformation Languages

In the sequel, I compare the approaches of some of the relevant scalable graph transformation tools that
exist today7.

5.1.1 ProGReS

The Programmed Graph Rewriting System (ProGReS) was the first fully implemented environment to
allow programming through graph transformations [37, 38, 39]. The control mechanism is a textual im-
perative language. A rule inProGReS has a boolean behaviour indicating whether it succeeded or not.

6It is a completely redesigned environment for AToM3 [9] on which I will also work on.
7This is by no means an exhaustive list.
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Among the imperative control structures it provides, rulescan be conjuncted using the& operator. This
allows applying a sequence of rules in order. Branching is supported by thechoose construct, which
applies the first applicable rule following the specified order. ProGReS allows non-deterministic execu-
tion of transformation rules.and andor are the non-deterministic duals of& andchoose respectively by
selecting in a random order the rule to be applied. With theloop construct, it is possible to loop over
sequences of (one or more) rules as long as it succeeds.

A sequence of rules can be encapsulated in atransaction following the usual atomicity, isolation,
durability, and consistency (ACID) properties. The underlying database system where the models are
stored is responsible for ensuring the first three properties. An implicit back-tracking mechanism ensures
consistency however. Hence,ProGReS offers two kinds of back-tracking: data back-tracking (with undo
operations) and control flow back-tracking [40]. When a ruler ′ fails in a sequence in the context of
a transaction, the control flow will back-track to the previously applied ruler. The data back-tracking
mechanism undoes the changes performed by the transformation of r. If r is applicable on another match,
it applies the transformation on it and the process continues with the next rule (possiblyr ′). If r has no
further matches, two cases arise. Ifr was chosen non-deterministically from a set of applicable rules,
a non-previously applied rule is selected from this set. Otherwise, the process back-tracks recursively
to the rule applied beforer. Sequences and transactions can be named allowing recursive calls. The
module concept provides a two-level hierarchy in the control flow structure by encapsulating a sequence
of transactions.

5.1.2 AToM3

AToM3 is a tool for meta-modelling, multi-formalism modelling, and model transformation [9]. Model
transformation can be performed on models conforming to a product of meta-models8. Since models
are represented as abstract syntax graphs (ASGs), model transformation is performed through graph
transformation. It was the first tool to provide a meta-modelling layer in graph transformations.

The control mechanism is limited to a priority-based transformation flow. The transformation system
is a graph grammar consisting of graph transformation rulesthat can be assigned priorities. The rules
are applied following the priority ordering: if a rule with higher priority fails, then the rule with the next
lower priority is tried. If a rule succeeds, the transformation process starts back at the highest priority
rule. These iterations go on until no more rules are applicable. When more than one rule with the same
priority is applicable, one of them is chosen randomly, or the user chooses one interactively, or they are
applied in parallel. For the latter option,AToM3 does not support overlapping rules conflict detection. It
is also possible to divide transformations in layers by sequencing graph grammars – without priorities.

5.1.3 GReAT

GReAT (for Graph Rewriting And Transformation language) is the model transformation language for
the domain-specific modelling tool GME [10].GReAT’s control structure language uses a proprietary
asynchronous dataflow diagram notation where a production is represented by a “block” (calledExpres-
sion in [10]). Expressions have input and output interfaces (inportsandoutports). They exchange pack-
ets: node binding information. The in-place transformation of the host graph thus requires only packets
to flow through the transformation execution. Upon receiving a packet, if a match is found, the (new)
packet will be sent to the output interface. Inport to outport connections depict sequencing of expressions
in that order.

8Cross meta-modelling is commonly referred as multi-formalism modelling.
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Two types of hierarchical rules are supported. ABlockforwards all the incoming packets of its inport
to the target(s) of that port connection (i.e., the first inner expression(s)of theBlock). On the other hand,
a ForBlocksends one packet at a time to its first inner expression(s). When theForBlockhas completely
processed the packet, the next packet is sent iteratively. Branching is achieved usingTestexpressions.Test
is a special composite expression holdingCaseexpressions internally. ACaseis given in the form of a
rule with only a LHS and a boolean condition on attributes. Anincoming packet is tested on eachCase
and every time theCasesucceeds, it is sent to the corresponding outport. If aCasehas itscut behaviour
enabled, the input will not be tried with the subsequentCases. When an outport is connected to more than
one inport or if multipleCasessucceed in aTest(also one-to-many connection), the order of execution
of the following expressions is non-deterministic. To achieve recursion, a composite expression (Block,
ForBlock, or Test/Case) can have an internal connection to a parent or ancestor expression (in terms of
the hierarchy tree).

5.1.4 VMTS

The controlled graph rewriting system ofVMTS is provided by the VMTS Control Flow Language
(VCFL) [41], a stereotyped UML Activity Diagram. In this abstract statemachine a transformation rule
is encapsulated in an activity, calledstep. Sequencing is achieved by linking steps; self loops are allowed.
Branching in VCFL is adecision stepconditioned by an OCL expression. Chains ofstepscan thus be
connected to thedecision. However at most one of the branches may execute. Thestepsconnected to the
decisionshould then be non-overlapping (this is checked at compile-time). A branch can also be used to
provide conditional loops and thus support iteration.

Stepscan be nested in ahigh-level step. A primitive step ends with success when the terminating state
is reached and with failure when a match fails. However, in hierarchical steps, when a decision cannot be
found at the level of primitive steps, the control flow is sentto the parent state or else the transformation
fails. As in GReAT, recursive calls tohigh-level stepsis possible. Afork connected to astepallows for
parallelism and ajoin synchronizes the parallel branches. Semantically, parallelism is possible inVMTS
but it is not yet implemented [41].

5.2 Other Model Transformation Approaches

Model transformation approaches are not restricted to graph transformation. First, I describe how rela-
tional database systems can resolve model transformation using similar concepts as graph transformation.
Then I describe a hybrid approach (mixing declarative and imperative aspects) provided by one of today’s
most used model transformation tool.

5.2.1 Model Transformation in Relational Databases

Graph transformation as described in the previous sectionsis performed in memory. This approach scales
up to some point as long as both models and transformation process fit in memory. However, for very
large models (of the order of 106 elements) it is preferable to store them in a database. For that rea-
son, Varró et al. propose in [42] a model transformation approach performed in a relational database
management system (RDBMS). Once models are stored appropriately in an RDBMS, the transformation
specification consists of views and query statements.

Here, we assume that meta-models are initially specified in asubset of UML class diagrams and
models in UML Communication diagrams. The transformation,however, requires the models to be rep-
resented in a RDBMS in the following way. From the meta-model, one table per class is generated with

14



a column for a unique identifier. Additionally, one column iscreated per attribute and per many-to-one
association. Many-to-many associations are represented as tables on their own with a column for the
source and another for the target. Foreign keys ensure the constraint dependencies for association ends
and inheritance. Models are stored as rows filling these tables.

The transformation rules follow the SPO graph transformation approach. A rule is divided in two
parts: thematching phaseand themodification phase. For the matching phase, the pre-condition LHS⊎

NAC (weaving overlapping elements) of the rule is considered. The LHS is stored as a single view,LHS-
view, in the RDBMS. An inner join is added for every object (node) and every association instance (edge)
in the LHS. They are filtered according to the edge constraints of the structure of the pattern. Additional
filters are used for specifying the exact matching conditions (total injective graph morphism). Finally, the
selection projects only the joined columns. Similarly,NAC-viewsare created for each NAC pattern of the
rule. LHS⊎ NAC is stored as a separate view. A left outer join of each NAC-view is performed on the
LHS-view and the join condition depicts the overlapping elements. To prevent the NAC to be positively
matched, the filters of the view force a null value on the columns of the join conditions. Finally, the
selected columns are those of the LHS-view.

The modification phase of a transformation rule is encapsulated in a transaction consisting of a se-
quence of INSERT, DELETE, and UPDATE statements. This phasestarts by deleting edges if LHS−
RHS 6= /0. An UPDATE statement removes the foreign key of the source ofa many-to-one association. A
DELETE statement removes a many-to-many association as well as any node. Additional DELETE and
UPDATE statements are required to ensure the deletion of dangling edges. Then insertions come into
place if RHS−LHS 6= /0. An INSERT statement creates a many-to-many association aswell as new node
object. An UPDATE statement creates a many-to-one association. In the RDBMS approach, a model el-
ement can have an attribute as a one-to-one association between them. This is why there is no UPDATE
statement that modifies the value of an attribute.

An advantage of this approach is that a single rule may be applied in parallel on all its matches. This
is achieved by applying the modification phase on all the rowsreturned by the pre-condition view of the
rule. Both matching and modification phases can be optimizedwith the underlying database system used.
For example, to perform SPO-like deletion, it may suffice to allow cascading deletes on associations, if
they are represented accordingly in the database. Althoughapplying a transformation in a RDBMS is less
efficient than in memory, an optimization in time can be gained by properly creating indexes on columns
where a matching occurs.

5.2.2 ATL

The ATLAS Transformation Language (ATL) is a hybrid model transformation language combining
declarative and imperative constructs [8, 43]. It is a programming language with its own compiler and
virtual machine. AnATL transformation is defined from (possibly several) read-only source meta-models
to one write-only target meta-model.

The transformation specification consists of a set of rules and possibly helpers and external modules.
The helpers are similar to OCL helpers: they serve as wrappers in the context of source models elements
(since the target model is not navigable).Operation helpers, taking input parameters, act as functions.
Attribute helpersdecorate the source model by enriching it with a derived subset of its structure.

A declarative rule is called amatched rule, since it is transparent from the internal matching and
scheduling algorithms ofATL. A matched rule is composed of a source and a target pattern. The source
pattern specifies a set of pairs(t,g) wheret is a type from the source meta-model andg is an OCL boolean
guard. The target pattern is a set of pairs(t ′,b) wheret ′ is a type from the target meta-model andb is
a binding initializing the attributes or references oft ′. (t ′,b) can be replaced by anaction blockwhere
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ATL imperative statements are used to build the target model elements. A rule may refer to other rules.
Standardrules are applied once for every match,lazyrules are applied as many times as they are referred
to, andunique lazyrules are lazy rules but reuse the target elements they created when applied multiple
times. Declarative rules support inheritance as means of reuse and polymorphism. A subrule may only
match a subset of the match of its parent, but can extend the creation of target elements. Acalled ruleis
an imperative procedure which can be invoked from a rule (matched or called) and is implemented either
using theATL imperative language constructs or any other language (but the latter has limited support).

Although declarative rules resemble graph transformationrules with a LHS and a RHS, the procedural
semantics of anATL transformation is quite different from the execution of a graph transformation system
on a source model. The transformation starts with a first passthrough all the guards to evaluate the
helpers. The transformation is executed in the second pass.First, a called rule marked asentry point
is applied if present, which may trigger subsequent rule applications. Then all the matches from all
the standard matched rules are computed. Afterwards, for every match, the target elements are created
without evaluating the bindings. At the same time, a traceability link between the rule, its matched source
elements, and the new target elements is established internally. Secondly, all initializations (including
bindings) are resolved following theATL resolve algorithm. If referenced, lazy rules are applied too. Then
action blocks evaluations follow. The algorithm ends by invoking the called rule marked asend point, if
present. The order of execution of the standard rules is non-deterministic. Nevertheless, determinism and
termination of the algorithm is ensured, provided that no lazy or called rules are used.

The Eclipse Modelling Framework (EMF) has adoptedATL as its language and tool support for model
transformation. However,ATL lacks of a formal foundation, unlike graph-based transformation.

6 Conclusion

In this proposal, I outlined a novel approach for the engineering of model transformation languages,
driven by multi-paradigm modelling principles. The core ofthis approach consists of three different
model transformation formalisms. At the foundation level,the meta-modelled languageT-Core presents
a collection of most primitive model transformation language constructs. This offers a common basis for
specifying model transformation formalisms to allow uniform comparison and interoperability possibili-
ties between them.MoTif-Core combinesT-Core with DEVS. This permits to express new dimensions to
transformation models with asynchrony and time. Both the language and its execution framework (DEVS
simulator) are modelled. SinceMoTif-Core is not an ideal formalism from a usability point of view, the
elaboration of a model transformation language suited for its domains of application is required. I argue
thatMoTif fills this abstraction gap.

Although the focus of my dissertation is on improving the expressiveness of the model transforma-
tion paradigm, I will conduct performance analyses to compare theMoTif framework to other model
transformation engineering approaches.
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