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Abstract. Despite the pivotal significance of transformations for model-
driven approaches, there have not been any attempts to explicitly model
transformation languages yet. This paper presents a novel approach for
the specification of transformations by modeling model transformation
languages as domain-specific languages. For each pair of domain, the
metamodel of the rules are (quasi-)automatically generated to create a
language tailored to the transformation. Moreover, this method is very
efficient when the transformation domains are the transformation rules
themselves, which facilitates the design of higher-order transformations.

1 Introduction

Model-driven approaches are gaining popularity both in the form of being based
on standard modeling languages, such as the UML, as well as domain-specific
modeling languages. In both instances, the aim is to increase developer pro-
ductivity, in the case of the former by raising the level of abstraction at which
systems can be specified and in the case of the latter by lowering the impedance
mismatch between a modeling language and its application domain [1].

There are still many open problems with respect to the economic development
of domain-specific modeling languages, but their definition is well understood.
This shifts the focus on transformations which have a number of applications
among which are: (1) establishing transformation chains from high-level to low-
level specifications, (2) providing semantics for a source language by mapping it
to a target language, and (3) creating a consistent mapping between two or more
models. A number of transformation paradigms exists, e.g., template-based, rule-
based, triple graph grammars, with or without explicit control flow [2]. They are
supported by various implementations such as Atl [3], AToM

3 [4], GReAT [5],
Moflon [6], Qvt [7], Vmts [8]. They provide tremendous value for developers,
but in each implementation the transformation paradigm is hard-coded to be
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used as is. The implementations do not provide a way to interrogate or mod-
ify transformation definitions as first-class transformation models [9]. This is
surprising as there are a number of benefits to be gained when treating transfor-
mations as first-class citizens [10,11] which are explicitly modeled and amenable
to introspection and modification.

In the following, we first introduce our running example which we use as the
basis of our subsequent discussions. In Sect. 3, we investigate the automated con-
struction of customized pattern specification languages, using the components
relaxation, augmentation, and modification, exploring and discussing alternative
solutions. This provides a systematic procedure for explicitly modeling transfor-
mation languages. As a consequence, this enables to “cleanly” design higher-

Fig. 1. (a) FSA & (b) Petri Net Metamodels

order transformations. In
Sect. 4, we present two
higher-order transforma-
tions – for automati-
cally enhancing transfor-
mations with correspon-
dence links and adding
source-level animation for
simulations respectively –
which exhibit two differ-
ent forms of separation of
transformation concerns.
Before we conclude, we
compare our transforma-
tion definitions with those
required in an Atl con-
text and discuss further
related work in Sect. 5.

2 Running Example

Fig. 2. (a) FSA to (a) Petri Net Mapping

The example that we will use in the
remainder of the paper to illustrate
our arguments is a typical case of
a domain-specific language being as-
signed a semantics by translating it
into a target formalism with known
semantics. In order to define the se-
mantics of statecharts and/or perform
reachability analyses on them, one can
translate them to Petri nets [4]. An-
other reason for considering this par-
ticular translation is that one can
use Petri nets as a common semantic
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domain for statecharts, sequence diagrams, and activity diagrams. For the pur-
poses of this paper, however, we restrict ourselves to translating finite state
automata, rather than statecharts, into Petri nets. The resulting transformation
definitions of this translation are much simpler but still rich enough to illustrate
our arguments. Figure 1 shows both metamodels.

2.1 Finite State Automata as Language Recognizers

More specifically, we interpret our state automata to be language recognizers, i.e.,
they either accept input sequences as belonging to respective regular languages
or not. The top part of Fig. 2 shows a sample input sequence (“yees”) and a
finite state automaton accepting the language y(e)∗s. In our example, we want to
simulate the execution of the finite state automaton in the context of receiving
the events from the input sequence in order to ascertain whether the input
sequence is a sentence of the language. To this end, we translate such scenarios
into corresponding Petri nets (see bottom part of Fig. 2).

2.2 Translating Finite State Automata to Petri Nets

Fig. 3. Translating States to Places

Figure 3 shows an excerpt of the
transformation rules that are re-
quired to translate a finite state au-
tomaton plus an input sequence into
a Petri net that can be used to sim-
ulate the automaton execution. In
particular, Figure 3 shows a sub-
set of the rules that translate fi-
nite automaton states into Petri net
places. The rest of the rules deal-
ing with the translation are simi-
lar to those shown and are not of
further significance for the purposes
of this paper. Note that we are us-
ing AToM

3 [4] and MoTif [12] and
thus use concrete syntax for describ-
ing single push-out graph transfor-
mation rules, employing numerical
labels to indicate identity of ele-
ments.

We are well aware of the ten-
sion between the “must transition”
and “may fire” semantics of finite
state automata and Petri nets, re-
spectively. In timed Petri nets, this
difference may lead to a situation where a finite state automaton does not change
states anymore even though it should, just because the Petri net used for sim-
ulating it does not fire transitions anymore, even though it could. However, the
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place/transition nets we assume do not create this mismatch and a simulator for
them will fire enabled transitions.

2.3 Petri Net Semantics

We simulate Petri net execution by using a small set of transformation rules, from
Petri nets to Petri nets, which realize an operational semantics of Petri nets (see
Fig. 4). We are able to express the operational semantics in just four simple rules
because we use MoTif (Modular Timed graph transformation language) control
structures, which are based on discrete event-based control structures [12].

Fig. 4. Operational Semantics for Petri Nets

The respective con-
trol structure is shown
in Fig. 5. The con-
trol structure shown
in Fig. 5 makes it par-
ticularly easy to find
an enabled Petri net
transition, i.e., one
which can fire. Such
a transition needs suf-
ficiently many tokens
at each of its incom-

ing transitions. One naive solution for finding enabled transitions is to just spec-
ify all possible patterns to be found as subgraph isomorphisms. Alternatively,
this can be solved provided that the pattern specification language uses inten-
tional specifications to allow referring to subgraphs of arbitrary size. However,
the most elegant solution is to iterate through all transitions until one has been
found that does not satisfy the pattern of a non-firing transition. The backward
channel in Fig. 5 from the success port (depicted by a check mark) of NonFir-
ingTransition to the next port (depicted by two filled triangles) of FindTransition
ensures the iteration through all transitions, skipping those which cannot fire.
Hence the forward channel from the fail port (depicted by a cross) of NonFiring-
Transition to the graph port (depicted by a triangle) of the FireTransition block.

Fig. 5. Semantics
Control Structure

The latter’s content are the two rightmost rules of Fig. 4.
They are applied to all matching patterns within the
subgraph that has been passed to FireTransition. Circles
around output ports indicate that a pivot model (matched
model element) is passed to the next port (i.e., next and
fail ports). Therefore, FireTransition will fire exactly the
transition which has been first found by FindTransition and
subsequently has not been rejected by NonFiringTransition.

In Sect. 4, we will use a higher-order transformation to
extend the control structure shown in Fig. 5 to include an
animation component. First, however, we will describe and
discuss the explicit modeling of transformation definitions
as an enabler of customized transformation development
environments and higher-order transformations.



244 T. Kühne et al.

3 Explicit Transformation Modeling

Metamodeling1, i.e., the explicit specification of a language’s well-formedness
constraints, has become popular because of a number of associated advantages:
(1) the specification is not hidden in the code of a tool, making it easier to un-
derstand and correct, (2) the specification can be altered by users of the tool
instead of requiring a new tool release, and (3) one can reason about the specifi-
cation and the models it describes. The same advantages apply if metamodeling
is not only applied to modeling language definitions, but also to transformation
definitions. While there is a considerable initial investment to be made in explic-
itly modeling a transformation language including its semantics, the prospect to
more easily experiment with language features, customize them for certain pur-
poses, and allow transformations to be reasoned about and/or modified makes
that investment worthwhile.

Clearly, in order to enable the last aspect mentioned above, the transformation
language’s mapping approach, e.g., rule-based graph transformation, needs to be
explicitly modeled. Section 4 elaborates on this and additionally motivates why
a transformation language’s control part should also be explicitly modeled.

Unlike the mapping and control aspects of a transformation language, its
pattern specification sublanguage depends on other languages. The input and
output languages of a transformation determine which pattern specifications for
left-hand side (LHS) and right-hand side (RHS) can be considered well-formed.
The underlying assumption here is that the pattern specification language should
not be generic to fit all possible input and output languages, but specifically
tailored to the input and output languages involved.

3.1 Generic versus Customized Pattern Specification Languages

The most economic approach to providing a pattern specification language is to
offer a generic one. Most tools do not use concrete syntax for specifying trans-
formation patterns and thus are able to use the same generic (often UML object-
diagram-inspired) pattern specification syntax for all possible input/output
languages. They often also have an underlying generic (often MOF-like) repre-
sentation format which can be used to represent elements from any input/output
language.

There are good reasons, however, to consider using a pattern specification
language which is customized to the input/output languages involved:

– One may use pattern specification visualizations which are adapted to the
languages involved. Even if no concrete syntax is used, one may still want
to customize the syntax, e.g., to adequately visualize connector elements.

– A customized syntax allows excluding patterns from being specified that do
not have a chance of matching subgraphs in the host graphs. For instance,
in the context of Petri nets, a pattern consisting of an arc linking two places
will never be matched on any valid Petri net instance (i.e., conforming to
the meta-model in Figure 1).

1 Linguistic metamodeling [1], to be precise.
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A generic pattern specification language will allow any pattern to be expressed
whether or not it will be able to match subgraphs from the input language(s) or
generate subgraphs conforming to the metamodel(s) of the output language(s).
Just as a plain domain-specific modeling tool has advantages for its users, guid-
ing them to produce meaningful models, a customized transformation pattern
specification tool also aids in avoiding meaningless pattern specifications.

Whether this customization is achieved by changing the representation format
for each generated transformation definition environment or by just exchanging
a language definition against which generic pattern specifications are checked is
immaterial to the user, but a tool builder decision. In the following, we assume
that, in one way or another, pattern specifications can be checked for confor-
mance to a pattern specification language definition. As a result, a method needs
to be identified that enables these conformance checks in an economic manner,
while offering the transformation language user maximum benefits.

3.2 Metamodels versus Conformance Checks

Unfortunately, providing a customized pattern specification language is not as
easy as simply reusing the corresponding input/output metamodels. First, de-
manding a full adherence of pattern specifications to original language definitions
is not practical. If all minimal multiplicity requirements of language definitions
were enforced, one could not specify useful patterns such as findTransition of
Fig. 4, which refer to model fragments, ignoring minimal multiplicity require-
ments. Second, one may want to provide several levels of rigor with respect to
checking the well-formedness of pattern specifications. While the transformation
designer edits a pattern specification, one most certainly does not want to en-
force all well-formedness constraints. It also should be possible to save ill-formed
sketches to be worked on later. This does not mean, however, that the complete
absence of all potential well-formedness checks is always the best choice in such
cases. Table 1 lists potentially useful levels of conformance checking rigorousness.
There are two ways to enable the use of such levels of conformance:

1. either one creates modified language definitions and performs a normal con-
formance check against them, or

2. one uses original language definitions, but accordingly modified conformance
checks.

Table 1. Levels of Conformance

Level of rigor Description

Free form no constraints at all

Valid elements elements are typed by the metamodel

Valid multiplicities (relaxed) multiplicity constraints are enforced

Valid constraints (a subset of) metamodel constraints are enforced
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The second option has a number of advantages:

– one can simply use the original language definitions; there is no need to
create multiple variants of them.

– switching between conformance levels does not require the switch of a meta-
model; the latter is quite feasible though with an appropriate architecture.

– the alternative (1. above) cannot use a standard conformance check anyhow
(see Sect. 3.3 and Sect. 5).

However, there are also a number of disadvantages:

– some generic way to extend languages defined by metamodels is required;
pattern specification languages require additional features beyond the orig-
inal input/output languages (see Sect. 3.3). Customized metamodels can
easily incorporate these.

– custom conformance checks are harder to reason about than custom meta-
models; in the absence of a fully modeled action language, conformance
checks will be implemented in some programming language making it harder
to see and analyze what relation they actually implement.

– conformance checks are harder to customize by users; transformation design-
ers can be expected to alter the transformations that yield tailored meta-
models but may not be able to re-program conformance checks.

– swapping conformance checks means that the transformation development
will remain the same; swapping metamodels opens up the possibility to use
them for the automated generation of dedicated development environments
with differing sets of control elements.

Finally, there is another motivation for supporting more than one mode of well-
formedness checking which can only be enabled by using multiple metamodel
versions: Typically, transformation definitions comprise layers of rules in the
sense that one will expect all rules from one layer to have matched, and then
match no more, before the next layer of rules will be used. This layering often
exists independently of whether or not it is dealt with explicitly. In particular
with in-place transformations, the input and output languages change from layer
to layer. The first layer’s input language is the source language while its output,
the input to the next layer, will typically contain generic links which are not
part of the source language (see Sect. 3.3). The last layer’s output language is
the target language, whereas all preceding layers will produce either augmented
versions of it or mixtures between the source and target languages. The avail-
ability of a series of adapted metamodels may aid the transformation developer
to understand what the layers involved are and assign rules to them accordingly.

We have not yet pursued the idea of using a series of transformation layer inter-
face language definitions and it would be challenging to automate the generation
of these intermediate language definitions. Luckily, however, automating the cre-
ation of customized pattern specification languages from original input/output
language definitions can be automated very well.
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3.3 Semi-automated Metamodeling

Fig. 6. Rule Metamodel

The previous section motivated the use
of variants of original metamodels for
defining the well-formedness of pattern
specifications. In this section, we dis-
cuss how one can create such variants
systematically and thus automate the
process.

Figure 6 depicts how rules refer
to precondition and postcondition pat-
terns and the pattern element they
contain. When adapting transformation
languages to specific input and output languages, one needs to tailor these pre-
condition and postcondition patterns so that they are fit to be used for the
respective input and output languages. We obtain the required tailored pattern
specification metamodels by starting with the original language metamodels and
then subjecting them to a number of changes. The required metamodel meta-
morphosis has three distinct components: relaxation, augmentation, and modi-
fication. Figure 7 shows an excerpt of the result of applying these steps to the
finite state machine metamodel of Fig. 1.

Relaxation

Fig. 7. Generated Pattern Specification Metamodel

Original language
definitions cannot be
used as is for defining
the well-formedness
of pattern specifi-
cations. First, often
transformation de-
signers aim to match
for any one-of-many
element types, e.g.
one-of-many “con-
nection” kinds. Such
generalizations are
typically present in
original language
definitions but as
abstract concepts
which cannot be
instantiated. One
relaxation step there-
fore is to turn such
abstract concepts
into concrete ones.
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Second, as mentioned before, enforcing minimal multiplicity constraints would
be completely impractical. A further relaxation step is, therefore, to reduce all
minimal multiplicities to zero (see Fig. 7 for the relaxation of State multiplicities
and Sect. 5 for a more elaborate discussion).

Third, only a subset of explicitly formulated original constraints (e.g., using
Ocl) can be active for the purpose of checking pattern specification well-for-
medness. All constraints concerned with ensuring completeness of models are
potentially unsuitable for the inherent fragment-like nature of specification pat-
terns. The relaxation process could automatically filter out constraints with the
help of a corresponding naming scheme for constraints or manually provided
augmentations, but we currently believe any further automation will be difficult
to achieve. This is why we refer to the metamodel generation as semi-automated.

A potential further relaxation is to raise all maximum multiplicities to “un-
bounded” in order to allow intermediate results that can be helpful to drive the
transformation process, despite the fact that they would be ill-formed as end
results. However, we argue that purposefully violating well-formedness require-
ments in this way amounts to “hacking” and should be avoided. We recommend
using so-called generic links for these purposes instead.

Augmentation
To be fit as pattern specification metamodels, input/output metamodels also
need to be augmented with features required for transformation purposes.

In Fig. 7, all types are made descendants of MT Element so that they inherit
features that all elements that may appear in a pattern specification must have,
e.g., a way to label them for identity matching. The generated metamodels also
feature additional generic nodes and links which are often necessary to drive
the transformation (e.g., see the generic connectors between states and places in
Fig. 3). Elements which are used in negative application conditions (NACs) or
the LHS of rules (subtypes of MTpre element) also need a flag feature that tells
the pattern matcher whether to look for exact types or allow subtype matching
as well. The remaining differences between the original and generated metamodel
elements are all modifications of existing features.

Modification
The modifications that need to be applied to original metamodel elements de-
pend on whether we want to obtain precondition (i.e., NAC and LHS) or post-
condition (i.e., RHS) pattern specifications.

For precondition pattern specifications we need to replace the respective types
of attributes to the type “constraint”. This allows the transformation designer
to specify constraints for element features, such as MTpre name=”NEXT” (see
Fig. 3). For postcondition pattern specification we need to allow actions rather
than constraints, so that the transformation designer can set values of attributes,
among other potential actions. In rule NextPlace of Fig. 3, the “=” in the RHS
part of the rule is an assignment action rather than an equality check. Note that
the same naming and modification scheme is applied to classes, associations, and
role names.
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Finally, we sometimes need to modify the concrete syntax of language el-
ements whose size or natural layout is not conducive for specifying patterns.
Also, elements which are normally not rendered at all, such as instances of for-
merly abstract classes or association ends, need to be assigned some concrete
syntax so that they may be referred to in a visual manner.

We have implemented a prototype of this procedure. A new metamodel is
created as partly shown in Figure 7. In the relaxation step, we did not consider
the (OCL) constraints of the respective metamodels yet and they thus have
been maintained. In the augmentation step, the first two levels of the inheritance
hierarchy of Figure 7 correspond to concepts from the meta-metamodel of
AToM

3/MoTif. Finally in the modification step, our prototype did not take into
account issues related to layout in the concrete syntax of the pattern elements.

Summarizing, this section has discussed various alternatives for enabling
transformation designers to make use of customized pattern specification lan-
guages and environments. We proposed the semi-automated generation of cus-
tomized metamodels based on the components of relaxation, augmentation, and
modification.

Fig. 8. Schema of domain-
specific transformation lan-
guages

Figure 8 depicts how a transformation from
model M1 to model M2 is defined with this ap-
proach. Following the Finite State Automata to
Petri Nets example, we call TFSA−PN the (trans-
formation) model mapping MFSA to MPN , respec-
tively the models depicted by Fig. 2 (a) and (b). The
two models conform to their metamodels MMFSA

and MMPN , respectively. Applying the technique
described in this section, domain-specific pattern
languages are generated from these metamodels,
namely PLFSA and PLPN respectively. The meta-
models of the patterns (specific to this transformation) combined with the meta-
model of the transformation control logic language, in our example MoTif, form
the transformation language TLFSA−PN . The transformation TFSA−PN is thus
a model conforming to its metamodel TLFSA−PN . One of the big advantages of
such explicit transformation language modeling is the possibility to easily define
higher-order transformations.

4 Higher-Order Transformations

There is ample motivation for transforming transformations by means of higher-
order transformations. Promising application areas include:

Language evolution: Whenever the definition of a language evolves, any asso-
ciated transformations have to be adapted. This adaptation process may some-
times be semi-automated by using a higher-order transformation generated from
the modifications made to the language.

Transformation optimization: Optimizing transformations could modify
transformations so that they and/or their results are more efficient.
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Transformation definition: In some cases, one can obtain a translational se-
mantics from an operational semantics by use of a higher-order transformation,
so that one has ease of definition plus advanced analysis opportunities [13]. One
may also define the meaning of transformations using high-level constructs by
mapping them onto standard transformations [14].

Separation of transformation concerns: Instead of putting all functionality
into one transformation, one can split concerns over many transformations and
integrate them by sequentially adding them with higher-order transformations
to a base transformation. Often one may use multi-stage transformations for the
same effect, but sometimes this is not a viable option (see Sect. 4.2). Separating
transformation concerns from each other does not only reduce the complexity
of an otherwise monolithic transformation but also opens up the opportunity to
reuse (higher-order) transformations.

4.1 Source-Level Animation

In conjunction, the “Finite State Automaton to Petri Net” and operational Petri
net semantics transformations presented in Sect. 2 simulate a language recognizer
but without visualizing the execution at the source level of state automata. In
order to add source-level animation, we need to add update rules (see Fig. 9) to
the operational Petri net semantics. AToM

3 then automatically takes care of
updating the respective concrete syntax.

Fig. 9. Animation Rules

Having explicitly modeled all artifacts, we are now in a position to define a
higher-order transformation which automatically adds the update rules to the
operational semantics transformation. Block “1” at the bottom of the LHS pat-
tern in Fig. 10 is a parameter to the higher-order transformation AddAnimation
and contains all the update rules of Fig. 9. We perform the parameter passing
by using the block as a pivot model. The RHS of higher-order transformation
AddAnimation simply links the update block into the main loop of the original
semantics control structure (see Fig. 5), making sure this happens only once at
the top level (hence the NAC).
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Fig. 10. H-O Transformation: Animation

Figure 11 shows the result
of applying higher-order trans-
formation AddAnimation to the
original control flow shown in
Fig. 5. Note that being able
to modify an explicit repre-
sentation of a transformation’s
control structure allowed us
to design AddAnimation in a
way that makes it reusable. As
long as one designs other op-
erational semantics definitions
with a similar overall main

loop and provides corresponding update rules as a parameter to AddAnimation,
the latter can be reused as is.

Fig. 11. Final Petri Net
Control Flow

Had we designed the operational semantics trans-
formation to perform a single step only, it would have
been possible to add animation using a multi-stage
transformation approach as well (i.e., sequential ex-
ecution of transformations). The transformation we
discuss next, however, cannot be easily expressed by
a multi-stage approach.

4.2 Correspondence Links

Animation update rules make use of correspondence
links between finite state automata and Petri net mod-
els (see element “4” of Fig. 9). These correspondence
links sometimes coincide with the intermediate generic
links used in the “Finite State Automaton to Petri
net” transformation, but the latter are not a reliable
source for establishing correspondence. Furthermore,
they are typically removed as part of the transforma-
tion in order not to waste memory space.

We can, however, automate the insertion of relevant
correspondence links by adding correspondence associations between certain lan-
guage elements at the metamodel level, i.e., by creating a “meta-triple” [15] (see
Fig. 12). With this additional information, a higher-order transformation that
extends the “Finite State Automaton to Petri net” transformation with the fea-
ture of establishing correspondence links, can be defined with a simple, single
rule (see Fig. 13). This rule transforms translation rules such that they auto-
matically insert corresponding links between respective input-output language
element pairs. Note that Petri net places are linked to both state automaton
states and events. It is therefore crucial to have the context of the original trans-
lation rule that creates an output language element based on the presence of an
input language element. The rule in Fig. 13 specifically matches such creation
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patterns. Establishing the correct links between corresponding input-output ele-
ments without this contextual knowledge would, in general, be impossible. This
demonstrates that higher-order transformations cannot be subsumed by multi-
stage transformations.

Fig. 12. Correspondence Meta Triple

Our correspondence higher-
order transformation is not
directly reusable because Mo-

Tif does not support parame-
terization of rules yet. Because
of this limitation we could not
formulate a generic version of
the transformation that can be
tailored to a particular appli-
cation by passing in the names
of metamodel elements of in-
put/output language types.
However, the transformation is
reusable with respect to its

structure. Another application can simply be obtained by a manual renaming of
the input/output language types.

Fig. 13. H-O Transformation: Correspondence Links

5 Related Work

The need to relax conformance rules occurs in other areas as well. Levendovszky
et al. capture domain-specific design patterns which also inherently are frag-
ments of proper models [16]. Instead of creating a relaxed version of the meta-
model, they use relaxed conformance, i.e., “relaxed instantiation”. This allows
them to use one original language definition to check both proper models and
design patterns. Since they only need to support this one variant of conformance
checking, this is a viable approach. In general, however, the explicit modeling
of transformations may require a multitude of conformance levels, making the



Explicit Transformation Modeling 253

relaxation of metamodels a more attractive option (see Sect. 3.2). Levendovsky
et al., furthermore, observe that simply setting all minimal multiplicities to zero
will allow the formulation of fragments which cannot be completed to proper
models. They suggest detecting such fragments by using constraint solving. This
approach is applicable in our context as well and could be realized by adding
corresponding constraints to the relaxed metamodels.

Varró and Pataricza seem to have been the first to suggest higher-order
transformations for improving the performance and maintainability of first-order
transformations [17] (see Sect. 4).

Schürr’s triple graph grammars are designed to support correspondence links
between models from declarative rules [18]. In contrast to our respective higher-
order transformation, a Tgg transformation designer is more flexible in defining
different correspondence links per rule. However, this also bears the risk that
some correspondence links are forgotten or incorrectly established. A higher-
order transformation like ours automates the process of establishing the required
links and will be comparatively simple to correctly define, even for more advanced
cases. Moreover, we may generate correspondence links with arbitrary amounts
of additional information in contrast to the fixed format links of Tggs.

Jouault used Atl to define a higher-order transformation for automatically
generating traceability links [19]. Unlike our correspondence link higher-order
transformation, however, Jouault’s TraceAdder transformation adds trace-
ability links between all elements rather then correspondence links. Traceability
links can sometimes be used for tracking correspondences as well but not in
general. Furthermore, while traceability links come for free as they do not need
pattern specifications that only match relevant correspondences, they may use
up a lot of memory albeit the majority of them is not being used in correspon-
dence mapping applications. The main problem with using Atl for specifying
higher-order transformations is that a higher-order Atl transformation has ac-
cess to the transformation definition (e.g., to the FSA-to-PN transformation),
but not to the latter’s respective input and output languages (the FSA and PN
metamodels). All matching patterns and output patterns for the input/output
languages of the transformation are therefore unchecked as they occur on a
purely textual basis only. This results in even mundane syntactic errors going
unnoticed. This problem is aggravated by the fact that the result of the higher-
order transformation must be tested dynamically in order to detect the errors.
Sometimes the only means to detect errors is to examine the first-order trans-
formation’s output. Having detected errors in the output, one then has to trace
back the errors to the first-order transformation and from there back to the
higher-order transformation. While there will always be a class of errors that
will require this extended backward reasoning, our approach can avoid this com-
plicated procedure for purely syntactical errors.

6 Conclusion

Although we discussed our work and developed our artifacts in the context of
AToM

3/MoTif, our ideas and results are by no means confined to the specifics
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of this combination. Our proposal to explicitly model transformation definitions
is applicable to a wide range of transformation approaches.

While it is not necessary to explicitly model all aspects of transformation defi-
nitions, we have illustrated that there are benefits associated with each such step.
First, the explicit modeling of pattern specifications allowed the semi-automatic
generation of customized pattern specification language definitions based on the
components of relaxation, augmentation, and modification. It thus provided a
cost-effective way to obtain customized transformation development environ-
ments. Second, the explicit modeling of transformation control structures allowed
the modular addition of new behavior, such as source-level animation. Third, the
explicit modeling of transformation rules allowed the automated enhancement
of transformation rules, e.g., the insertion of correspondence links. With the
latter application of a higher-order transformation we have demonstrated that
such higher-order transformations cannot be replaced by a multi-stage approach
using first-order transformations only.

This paper builds on our previous work [20] by demonstrating how our ap-
proach can facilitate higher-order transformations. The higher-order transfor-
mations we presented not only help to reduce the complexity of the base-
transformations they are applied to, but are also reusable. The transformations
we presented are furthermore applicable in a wide range of similar contexts. This
and their reusability is a direct result of explicitly modeling all aspects of trans-
formations including their control flow aspects. In contrast to Atl higher-order
transformations, ours can be fully checked for well-formedness violations.

Summarizing, we provided further motivation for the utility of higher-order
transformations, demonstrated the benefits of explicitly modeling transforma-
tions and proposed ways to economically enable their definition.
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A., Nagl, M., Zündorf, A. (eds.) AGTIVE 2007. LNCS, vol. 5088, pp. 136–151.
Springer, Heidelberg (2008)

13. de Lara, J., Vangheluwe, H.: Automating the transformation-based analysis of
visual languages. In: Formal Aspects of Computing, Special section on FASE (2008)
(to appear)

14. Gorp, P.V., Keller, A., Janssens, D.: Transformation language integration based on
profiles and higher-order transformations. In: Gašević, D., Lämmel, R., Van Wyk,
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