
Exceptional Transformations

Eugene Syriani1, Jörg Kienzle1, and Hans Vangheluwe1,2

1 McGill University, Montréal, Canada
2 University of Antwerp, B-2020 Antwerp, Belgium

Abstract. As model transformations are increasingly used in model-driven en-
gineering, the dependability of model transformation systems becomes crucial to
model-driven development deliverables. As any other software, model transforma-
tions can contain design faults, be used in inappropriate ways, or may be affected
by problems arising in the transformation execution environment at run-time. We
propose in this paper to introduce exception handling into model transformation
languages to increase the dependability of model transformations. We first intro-
duce a classification of different kinds of exceptions that can occur in the context
of model transformations. We present an approach in which exceptions are mod-
elled in the transformation language and the transformation designer is given con-
structs to define exception handlers to recover from exceptional situations. This
facilitates the debugging of transformations at design time. It also enables the de-
sign of fault-tolerant transformations that continue to work reliably even in the
context of design faults, misuse, or faults in the execution environment.

1 Introduction

Model transformation is at the heart of model-driven engineering approaches, and it
is therefore crucial to ensure that the transformations are safe to use: when a model
transformation is requested to execute, any exceptional situations that prevent the trans-
formation from executing successfully must be detected and the requester must be made
aware of the problem. Informing the requester about the situation allows for possible re-
actions. What exactly needs to be done depends highly depends on the context in which
the model transformation has been requested.

A model transformation can be seen as an operation on models, taking a model as
input and producing a (possibly implicit) model as output. This is similar to opera-
tions in a programming language, which can have input and output parameters and in
addition can affect the application state stored in objects or variables. In order to ad-
dress exceptional situations that prevent the normal execution of an operation, modern
programming languages introduced exception handling [1].

A programming language or system with support for exception handling allows users
to signal exceptions and to define handlers [1]. To signal an exception amounts to de-
tecting the exceptional situation, interrupting the usual processing sequence, looking
for a relevant handler, and then invoking it. Handlers are defined on (or attached to)
entities, such as data structures or contexts for one or several exceptions. Depending
on the language, a context may be a program, a process, a procedure, a statement, an
expression, etc. Handlers are invoked when an exception is signalled during the exe-
cution or the use of the associated or nested context. Exception handling means to put

L. Tratt and M. Gogolla (Eds.): ICMT 2010, LNCS 6142, pp. 199–214, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

200 E. Syriani, J. Kienzle, and H. Vangheluwe

the system into a coherent state, i.e., to carry out forward error recovery and then to
take one of these steps: transfer control to the statement following the signalling one
(resumption model [2]); or discard the context between the signalling statement and the
one to which the handler is attached (termination model [2]); or signal a new exception
to the enclosing context.

In model transformation, the transformation units (or rules in rule-based transfor-
mations) that compose a transformation have the notion of applicability (of a rule). In
contrast to an operation at the programming language level, the model transformation
may or may not be applied depending on the applicability of its constituting rules. We
must from the beginning clearly distinguish transformation failure from transforma-
tion inapplicability, as we consider these as two distinct outcomes. In graph transfor-
mation for example, a rule r is said to be applicable if and only if an occurrence of
its left-hand side (LHS) is found in the model (encoded as a typed attributed graph).
When r also specifies a negative application condition (NAC), such a pattern shall
not be found given the LHS match. In case of a successful match, the match is re-
placed by the right-hand side (RHS) of r. Thus the result of a successfully applied
rule is the (possible) modification of the graph it received. If no occurrences of the
LHS were found in the input model, the rule is said to be inapplicable and the re-
sulting graph is identical to the input graph. Both a successfully applied rule and a
rule that did not match (inapplicable) describe the regular execution of a transforma-
tion rule. However, as in the case of the execution of an operation in a program, it
is possible that during a model transformation an exceptional situation is encountered
in which it is impossible to continue normal execution. At run-time, there are situa-
tions in which neither an output model can be produced by applying the transformation
in its entirety nor is it possible to determine the non-applicability of the transforma-
tion. In this case the rule is said to have failed. The definition of applicability, inap-
plicability, and failure of rules can also be extended to the level of the transformation.
That is respectively, the transformation has at least one rule that was successfully ap-
plied, no rule in the transformation has been applied, and the last rule to be applied
has failed.

Currently, no model transformation language offers means to reason about such ex-
ceptional situations encountered during model transformations (see related work sec-
tion). This paper is a first attempt to motivate and define the notion of exception and
exception handling in model transformations. Some may argue that it is not needed in a
transformation language and that it is a tool or system issue instead. This contribution
claims however that there are many kinds of exceptional situations that can arise while
transforming a model, and that these should be modelled in the transformation lan-
guage to give the modeller control over how such a situation is to be handled. If applied
rigorously, exception handling leads to the design of safe model transformations.

The remainder of the paper is structured as follows. In Section 2, we analyse what
kind of exceptions can occur in model transformations. Then, in Section 3, we elaborate
on possibilities for handling such exceptions. We also outline the implementation of
transformation exceptions and their handling in our transformation language. Finally,
we put the presented work in perspective in Section 4 and conclude in Section 5.

Exceptional Transformations 201

2 Classification of Exceptions in Model Transformations

Similar to exception class hierarchies used in object-oriented programming languages
to distinguish between different kinds of exceptions, we propose in this paper a classi-
fication of the exceptions that may arise during a model transformation. In a transfor-
mation model, faults may originate from (1) the transformation design, (2) the model
on which a transformation is applied, (3) or the context in which the transformation is
executed. This section provides a non-exhaustive classification of potential exceptions
that may arise during a transformation.

2.1 Terminology

In this subsection we define the terms failure, error, and fault that are used in fault-
tolerant computing, in the context of model transformation. A failure is an observable
deviation from the specification of a transformation. In other words, a failed transfor-
mation either produced a result that, according to the specification, is not a valid output
model for the specified input, or produced no result at all. An error is a part of the trans-
formation state that leads to a failure. The transformation state includes the input and
output models, as well as potentially created temporary models and auxiliary variables.
A fault is a defect or flaw that affects the execution of the transformation. A fault is thus
typically present before the transformation execution, e.g., when there is a flaw in the
design of the transformation, or the fault arises from the fact that a transformation is
applied to a model that it was not designed to work on, or finally the fault resides in the
execution environment. At run-time, a fault can be activated and lead to an error, i.e., an
erroneous state in the transformation, which in turn may be detected if the transforma-
tion language supports it. If it is not handled, however, an error propagates through the
system until the transformation fails.

We define an exception in the context of model transformation as a description of
a situation that, if encountered, requires something exceptional to be done in order
to resolve it. An exception occurrence at run-time signals that such an exception was
encountered.

2.2 Execution Environment Exceptions

Fig. 1. A rule with attribute constraints
written in an action language (on the
left) applied to a specific input model
(on the right). The rule is specified in
MoTif [3] syntax where the left and
right compartments represent the LHS
and RHS respectively.

Execution Environment Exceptions (EEE)
represent exceptional situations that typically
originate from the transformation’s virtual ma-
chine.

Action Language Exceptions
When the transformation language allows the
use of an action language (which can contain a
constraint language such as OCL), a complete
exception tree may be provided for types of ex-
ceptions specific to the action language itself. De-
pending on the capabilities of the action language, these exceptions can come from
arithmetic manipulations, list manipulations, de-referencing null references, etc. For

202 E. Syriani, J. Kienzle, and H. Vangheluwe

example, Fig. 1 illustrates a specific Action Language Exception (ALE), namely
the case of a division by 0.

Fig. 2. A monotonically in-
creasing rule (on the left)
applied to a specific input
model (on the right)

System Exceptions
During the execution of a transformation, the virtual ma-
chine executing the transformation can encounter excep-
tional situations, e.g., it can run out of memory. There are
many reasons that could lead to such a problem, one of
which is a design fault in the transformation itself. Con-
sider a transformation that contains an iteration over a
monotonically increasing rule (that never deletes an ele-
ment nor disables itself) as depicted in Fig. 2. A memory overflow will eventually occur
if an infinite loop or recursion (like a recursive rule as described in [4]) is executed.

Other kinds of System Exceptions (SE) may arise, e.g., I/O Exception when log-
ging is used and the logging device is not writeable. Also, if the access to the model
is provided via web-service functions, for example, the server may be down leading to
communication or access errors.

2.3 Transformation Language-Specific Exceptions (TLSE)

Features specific to a particular transformation language can also be the source of ex-
ceptional situations. For example, ProGReS [5], QVT [6], and to a certain extent, Fu-
jaba [7] allow rules to be parametrized by specific model elements that may be bound to
matches from previous rules. In these languages, executing a rule with unbound param-
eters results in an exceptional situation that needs to be resolved. A similar exceptional
situation arises when a pivot node is passed from one rule to another by connecting
input and output ports in GreAT [8] or even through nesting in MoTif, if the rules are
not appropriately connected.

But there are other kinds of exceptional situations that can arise due to a specific
transformation language design. In languages such as QVT-R, for example, the creation
of duplicate elements is semantically avoided by the concept of key properties. Two
elements are logically the same if and only if their key properties are equal. The key is
used to locate a matched element of the model and a new element is created (with a new
key) when a matched element does not exist. However, if multiple keys with the same
value are found in a model, this indicates that the model is faulty1.

Moreover, exceptions proper to the implementation of the scheduling language can
also be considered. In MoTif, for instance, since the underlying execution engine al-
lows for timed transformations by specifying the duration of an application of a rule,
bad timing synchronization may arise when e.g., rules are evaluated at the same time
(through conditional branching or parallel application). This typically happens due to
the numerical error of floating point operations.

2.4 Rule Design Exceptions

Rule Design Exceptions (RDE) represent errors that stem from a fault in the design
of the transformation model itself.

1 We assume in this paper that the transformation engines are fault-free.

Exceptional Transformations 203

Fig. 3. An inconsistent use of an iterated rule (on the left) with respect to a specific input model
(on the right)

Inconsistent Use Exception
One class of design faults that may happen in a transformation is when rules are con-
flicting with one another. We distinguish the case when a rule conflicts with itself from
when several rules conflict with each other. The former occurs when a rule finds multi-
ple matches on a given input model and is executed several times in a row. This typically
happens during an iteration; e.g., a rule executed in a loop in ProGReS, iterated in a
for-loop or a while-loop in QVT-OM [6], or in case the rule is an FRule or an SRule in
MoTif. This is the case in the example of Fig. 3, where the rule matches the input model
twice, but depending on the order in which the matches are processed, two different
output models are produced. Although the transformation itself is a valid transforma-
tion, the application of the transformation to this particular input model results in a
non-deterministic result and as such is very likely to be incorrect. We consider such a
situation as an inconsistent use of a transformation and propose that in these cases the
transformation should be notified with an Inconsistent Use Exception (IUE).

Synchronization Exceptions
Another class of design fault can happen in the context of parallel execution of model
transformations, a technique often used for efficiency reasons.

Fig. 4. Two conflicting rules to be applied in parallel (on
the left) with respect to a specific input model (on the
right). The two rules are specified in a PRule depicting
that they will be executed concurrently.

Semantically, if a transforma-
tion designer specifies that two
rules should be executed in
parallel, this implies that the or-
der of execution of the transfor-
mation rules is irrelevant. This
optimization can, however, only
work if the two rules are inde-
pendent from one another. For
example, the two rules in Fig. 4
are clearly not independent, as
the application of one disables the application of the other. In fact, executing both
rules in parallel yields two different models that cannot be trivially merged without
knowledge of the application domain. We propose to signal such situations by raising a
Synchronization Exception (YE).

2.5 Transformation-Specific Exceptions

Finally, we believe that a dependable transformation language should also support user-
defined exceptions. Almost all programming languages with support for exception

204 E. Syriani, J. Kienzle, and H. Vangheluwe

handling support user-defined exceptions that allow the programmer to signal
application-specific exceptional conditions to a calling context. Similarly, a transfor-
mation language that supports user-defined Transformation-Specific Exceptions
(TSE) makes it possible for the transformation designer to check desired properties
of the model being transformed at specific points during the transformation execution.
These property checks can take the form of assertions as pre-/post-conditions on a (sub-
)transformation by specifying a constraint on the current state of the model. In case the
assertion fails, the corresponding TSE can be explicitly raised by the transformation
model and signalled to the calling context.

2.6 Using Exceptions in Model Transformations

Fig. 5 summarizes the classification of potential exceptions that may arise during the
execution of a transformation. Some classes of exceptions like ALEs and TLSEs can
be empty for certain model transformation environments, if the design of the transfor-
mation language and action language allows the corresponding problems to be detected
statically. In the domain of programming languages, for example, dynamically typed
languages such as Python define certain types of exceptions (e.g., NoSuchField Ex-
ception) that strongly typed languages do not need to provide. In C++, for instance, a
compiler can always statically determine that the programmer was erroneously trying
to access a field of a class that has not been declared.

We foresee that exceptions are going to be used in two different ways in the context
of model transformation: during transformation development to help eliminate design
faults (debug mode) and when the transformation is applied to different models in or-
der to increase dependability of the transformation at run-time (release mode). Some
exceptions are more likely to occur in debug mode while others are relevant only in
release mode.

Debug Mode. When running a transformation in debug mode, the goal of applying
the transformation to an input model is not so much to obtain an output model that is
subsequently used for other purposes, but to validate that the transformation design is
correct. Debugging a transformation is not trivial and exceptions are very helpful for
debugging, namely to detect logical errors in the design of a transformation.

Fig. 5. The proposed classification of model transformation exceptions in UML class diagrams

Exceptional Transformations 205

If the generated output model does not correspond to what the transformation de-
signer expects, then there must be a flaw in the transformation design that has to be
found. In this case, the modeller can debug the transformation by adding “assertion”
rules at intermediate points in the transformation that check that the previous rule
achieved the desired effect. If not, a user-defined TSE is thrown.

If unhandled, the exception halts the transformation execution and the transforma-
tion modelling environment informs the modeller of the exception kind and point of
occurrence. Using this information, the modeller can more easily locate the rules that
contain design faults.

When transformation rules are run distributed or in parallel to increase performance,
a YE indicates a merging problem of the different output models. The problem occurs
if the rules that are executed concurrently are not independent, i.e., the intersection
of the model elements modified by the rules is not empty. No transformation tool can
provide an automated general merge operation, not only because general graph merging
is undecidable, but also because the correct merging algorithm depends on the specifics
of the transformation and its domain(s). Most likely a YE indicates that the modeller
incorrectly assumed rule independence when he decided to instruct the transformation
engine to use parallel execution.

The occurrence of an IUE on an input model, that the transformation under devel-
opment should be able to handle, indicates that the iterated rule in which the exception
was detected was incorrectly specified. The modeller needs to inspect the information
carried with the exception such as the faulty matched model elements as well as the
context of execution to then correct the faulty rule or revise the transformation design.

An EEE in debug mode can signal various problems to the modeller. It can signal
design flaws, including flaws that are due to the incorrect use of a specific action lan-
guage feature (e.g., UnboundParameter Exception), incorrect expressions specified by
the modeller using the action language (DivisionByZero Exception), or faulty transfor-
mation designs that result in infinite recursion or loops (MemoryOverflow Exception).

Release Mode. In release mode, a transformation that is assumed to work correctly
is applied to an input model with the goal of producing an output model that is used
for a specific purpose. Most likely it is essential that the transformation was applied
successfully and did indeed produce the expected result, otherwise the output model is
unusable. It is therefore important to design reliable transformations that can recover
from exceptional situations and still provide a useful output.

In release mode, a SE such as IOException could signal that the device used for log-
ging transformation related information is currently not writeable, for instance because
the communication link broke down. Instead of immediately halting the transforma-
tion process, a reliable transformation could try to handle this situation. For instance, if
the fault is assumed to be transient, the exception could be handled simply by waiting
for some time and restarting the failed transformation. Alternatively, a different device
could be used to store the log information.

The occurrence of an IUE in release mode signals that the transformation is being
applied to an input model that the transformation was not designed to handle. An ex-
ample of such a situation is given in Fig. 3. This does not mean, however, that the rule
cannot produce a correct output model. Both possible outputs shown in Fig. 3 might be

206 E. Syriani, J. Kienzle, and H. Vangheluwe

correct, or maybe only one of them is. The problem is that the transformation system
cannot guess what the correct behaviour of the transformation should be. One way of
handling the exception could be to obtain user (or external) input from the transforma-
tion environment, i.e., halt the transformation, prompt the user to designate the correct
match or output, and continue with the transformation. Another transparent way of han-
dling could be to apply a different set of rules instead that can produce an appropriate
output model using different rules.

3 Exception Handling in Model Transformation

The previous classification identifies the exceptional situations that can occur during
a model transformation. In order for a transformation to be dependable, the transfor-
mation designer should think of potential exceptions that could occur at run-time and
design a way of addressing them in order to recover. We must therefore define a way that
allows a modeller to reason about exceptions and express exception handling behaviour
at the same level of abstraction as the model transformation itself.

3.1 Modelling Exceptions

In order to be able to reason about exceptions at the transformation level, exceptions
should be treated as first-class entities, i.e., just like any other model element that can
itself be used as an input to a transformation. From a transformation language design
point of view, a transformation exception can be considered as a model conforming to
a distinct meta-model as shown in Fig. 6. An exception is identified by a name and has
a status which can be: active (i.e., the exception instance has not been addressed yet),
handling (i.e., it is currently being handled), or handled (i.e., it has been addressed by
a handler).

Fig. 6. The transformation exception meta-model

In order to enable
proper handling, an
exception must hold rel-
evant information re-
garding its activation
point context: where it
happened, what hap-
pened, and when it hap-
pened. The transformation exception therefore references the transformation unit (the
rule) that triggered its activation. The transformation context depicted in Fig. 6 con-
tains all the information needed to effectively investigate the origin of the exception
occurrence and allow the designer to model an appropriate handler. In our implementa-
tion, for instance, the context contains the stack frame and the state of the packet (see
Section 3.3) at the activation of the exception. In compositional or hierarchical trans-
formation languages such as MoTif, GReAT, or QVT, knowing the exact path to the rule
helps locating the fault in the transformation design, especially if the handler is not in
the same scope as the activation point. The activation point can be specified at the level
of primitive transformation operations supported by the virtual machine instruction set

Exceptional Transformations 207

(e.g., CRUD2) or at the transformation rule that triggered the exception. If the modelling
language makes it possible to isolate the transformation operators (match, rewrite, iter-
ate, etc.) from the virtual machine operations, such as in [9], then the activation point
can be specified in terms of these operations. In addition to the point of activation, the
transformation context should also indicate the state of the transformed (input) model
at the time when the exception was thrown. For instance, in order to handle an RDE
effectively, the input model elements involved in the matcher of the current rule should
certainly be accessible to the handler.

In our proposed meta-model of an exception we also included timing information,
such as the timestamp at which the exception was generated (active) and has been
handled (handled). This can be useful for profiling the transformation and gathering
statistical measures on the handling policy. Moreover, in timed transformations such
as in MoTif, the global (simulated) transformation time as well as the local time of the
transformation rule operator may be useful.

3.2 Detection of Exceptions

Fig. 7. The MoTif framework
and the propagation of ex-
ceptions across different lay-
ers

When a transformation executes, the transformation run-
time and the underlying virtual machine must monitor the
transformation steps to detect the different kinds of excep-
tions presented in Section 2 and signal them appropriately.

For example, the transformation run-time of the Mo-
Tif framework is depicted in Fig. 7. It consists of sev-
eral layers. MoTif, the language that a modeller uses to
express transformations is a shortcut language of MoTif-
Core, which consists of the core elements of the language.
The former language simply defines a more user-friendly
syntax encapsulating the different transformation opera-
tors provided in the latter language. MoTif-Core combines
T-Core [9] and the Discrete EVent system Specification (a.k.a. DEVS), both running
on a model-aware virtual machine. The different classes of exceptions relevant to the
modeller presented in Section 2 are detected at different layers, but must all be propa-
gated to the MoTif-Core layer (and conceptually to the MoTif layer) in order to allow
the modeller to handle them explicitly within the transformation, if unhandled in the
meantime.

Detection of ALEs, such as null de-reference or division by zero, are typically de-
tected at the level of the virtual machine in the MoTif framework. Depending on whether
the action language is interpreted or compiled, certain design faults can even be detected
at compile-time, in which case the corresponding exception never occurs at run-time.
Similarly, the transformation language may prevent the action language from access-
ing model elements that are not explicitly part of the LHS, RHS, or NAC patterns, in
which case null de-referencing can never occur. This may, however, be considered as a
restriction on the expressiveness of the transformation language used and may lead to
excessively large rules.

2 The commonly known Create, Read, Update, and Delete operations on model elements.

208 E. Syriani, J. Kienzle, and H. Vangheluwe

SEs are typically detected by the underlying operating system and the implementa-
tion language which is a Python interpreter in the MoTif case. To properly propagate the
detected exception to the modeller, the exception needs to be caught at the virtual ma-
chine interface and transformed into the corresponding exception model instance shown
in the previous section.

TLSEs are detectable at the level of T-Core, typically by checking pre-conditions
before executing any language constructs. TLSEs are again an example of exceptions
that can be rendered obsolete if the transformation language is compiled and strongly
typed, in which case the compiler should be able to detect unbound parameters and
similar situations. Bad timing synchronization of events can also be detected at the
level of DEVS.

RDEs are also detected at the transformation language level. In algebraic graph
transformation approaches, some RDEs can be detected statically. In grammar-like lan-
guages (a.k.a. unordered graph transformation), rule non-confluence can be detected
through critical pair analysis [10]: verifying if a rule can disable another, i.e., making
it inapplicable. In such languages, this technique can assert parallel and sequential in-
dependence of the rules. Tools such as AGG detect these conflicts by overlapping the
rules (all possible combination of the LHSs, taking NACs into consideration). How-
ever, their current approach is sometimes too conservative leading to false positives
as it does not take into consideration the meta-model constraints (an example is given
in [11]). Moreover, although containing critical pairs of rules, a transformation may
still be semantically correct and avoid the conflicts depending on the matches selected
at runtime. The occurrence of an IUE can usually also not be checked statically since,
most of the time, the input model to which a transformation is applied is not known at
compile time.

Controlled graph transformation languages—which are more general than algebraic
graphtransformationapproaches—consistof(partially)orderedrules,whereruleschedul-
ing is not implicit but modelled explicitly by the transformation designer. In this case,
critical pair analysis is not directly applicable. It must first be adapted to controlled trans-
formations as it may consider a pair of rules in conflict although the conflict does not occur
at run-time because of a particular rule scheduling. For instance, let r1,r2,r3 be a sequence
of rules to be applied in this order such that the critical pair analysis test fails on (r1,r3)
because r1 deletes an element that can be matched by r3. If r2 re-creates those deleted ele-
ments, r3 may still be applicable. In our framework, T-Core primitives such as aresolver
or a synchronizer can be customized to detect IUEs and YEs [9].

Detection of TSEs cannot be done by the transformation framework automatically,
since those situations depend on the semantics of the specific transformation. As men-
tioned in Section 2, they represent user-defined exceptions. Just like in programming
languages that support user-defined exceptions where the programmer is responsible for
detecting the exceptional situation using if statements or assertions, TSEs have to be
detected by the transformation modeller. Fortunately, expressing a condition that needs
to be satisfied by a model (or a condition that should never be satisfied by a model) is
trivial in a transformation language: the condition can simply be expressed as a query
on the input model. In graph transformation systems, this query can be modelled by a
transformation rule consisting solely of a LHS. Depending on the query, either a match

Exceptional Transformations 209

being found or the fact that no matches are found depicts a violation of a constraint. To
signal that, the rule must have the ability to throw an exception, which is described in
the following subsection.

3.3 Extending Rules with Exceptions

In order to allow rules to signal exceptions to the enclosing transformation, we propose
to add exceptional outcomes to rules. Therefore, such an exceptional rule receives a
model as input and has three possible outcomes: a successfully transformed model (in
case of a successful match and execution of the transformation), an unmodified model
(in case the rule is inapplicable on the model), or an exception (when an exceptional
situation occurred). If the rule outputs an exception, there are two possibilities: either
(1) if the error took place in the matching phase, then the input model is not modified, or
(2) if the error took place during the application phase of the rule, then the input model
may have been partially modified. The latter outcome seems to defeat the atomicity
property of a rule. However, as expressed in [12], a partial output may sometimes be
desirable. This feature is certainly very helpful in debugging mode, as the modeller
would like to see a partial result even if not complete to understand at what point the
transformation execution failed in terms of the input model. Nevertheless, if backward
recovery is desired, the transformation language should offer a mechanism to roll-back
to the previous “safe” state of the model, i.e., to the state that was valid before the rule
was applied.

We have integrated the notion of exception in MoTif following the ideas mentioned
above. MoTif is a graph transformation language whose semantic domain is the DEVS
formalism. Among the elements composing the language, MoTif rule blocks represent
transformation rules. They exchange packets3 through input and output ports connected
via channels. Upon receiving a packet from the packet inport, an ARule (atomic rule
block as illustrated by Faulty in Fig. 8) finds the potential matches and then ap-
plies the transformation depicted by the rule it encodes. If the rule is applicable, the
transformed graph is output through the success outport (depicted by a tick); other-
wise the input graph is output through the inapplicable outport (depicted by a cross).
Being an event-based system, we model exceptions as events since they allow inter-
ruption. Transformation exceptions are output through an exception outport (depicted
by a zigzag line). Therefore a rule has three possible outcomes: a new graph when the
transformation is successful, the unmodified graph when the rule is not applicable, or
an exception (modelled as in Section 3.1) if an exceptional situation is detected. In the
latter case, the packet may have been partially modified. On the one hand in the match-
ing phase, information concerning the matched elements may have already been stored
in the packet. On the other hand, if the rewriting phase was already initiated, the in-
put model may have been modified. In any case, the packet is in an inconsistent state
with respect to the atomicity property of graph transformation rules application. The
modeller can choose to output either the recovered packet or the packet as is in the ex-
ception. This is done if the exceptional rule is an XRule, supporting backward recovery
of the packet through checkpointing.

3 A packet consists of the graph to be transformed as well as matching information from previ-
ous rules, all embedded in DEVS events.

210 E. Syriani, J. Kienzle, and H. Vangheluwe

3.4 Modeling the Handler

Unlike current transformation tools such as ATL [13] or Fujaba where exception han-
dling is available only at the level of the code of the implementation of the transforma-
tion language, we believe again that the most appropriate level of abstraction at which
exception handling behaviour should be expressed is at the transformation language
level. This is similar to what is done in programming languages, e.g., in Python, where
exception constructs are provided in Python and not in C (the language in which Python
is implemented). This could be achieved by specifying exception handlers either (1) at
the level of transformation rules (in which case an exception handler would take the
form of a transformation rule that is only applied in exceptional situations), (2) at the
level of the transformation operators (e.g., at the level of T-Core primitives such as the
matcher or the rewriter), (3) or at the level of the primitive model manipulation im-
plementation provided by the virtual machine level (CRUD). For the same reasons that
we detailed in Section 3.1, we consider specifying exception handlers at the same level
of abstraction as the transformation rules themselves as the optimal choice.

We propose two alternatives for how transformation exception handlers can be spec-
ified in a model transformation language. From a pure model transformation point of
view, an exception can be seen as an ordinary model, although its semantics distin-
guishes it from a “normal” model. Hence when a rule emits an exception (model), this
model can serve as input for other rules whose pre-condition looks for a specific ex-
ception type. Given an appropriate meta-model for modelling an exception (such as
partly given in Fig. 6), the meta-model of the LHS pattern of an exception handling rule
(i.e., its domain) would need to involve multiple meta-models: the meta-model of the
input model to transform as well as the meta-model of the transformation exception.
This can be easily accomplished if the transformation language is itself meta-modelled
as in [14].

:Faulty

:NormalFlow

:DefaultHandler
:Handler

Ex1
Ex2

Ex3

def

:Ex1Handler :Ex2Handler :Ex3Handler

Fig. 8. Handling exceptions in the transformation model

Although this solution is el-
egant, our experience showed
that it is not very practical to let
the modeller specify rules that
match elements from the trans-
formation domain and simul-
taneously from the domain of
exceptions. A more pragmatic
solution is to let the exception
produced by a rule be used to in-
fluence the control flow of the transformation, redirecting it to rules designed for han-
dling specific exceptions. To support this, MoTif introduces an explicit handler block
where the modeller may access the information of the exception model and specify
subsequent rules to pursue the exception flow. The handler block acts as a dispatcher
sending the packet contained in the transformation context of the exception through
the outport corresponding to the exception name. Fig. 8 shows the use of the handler
block. The handler block associates the packet with the appropriate exception outport
given a predefined exception tree. Since it is possible that not all the exceptions that can
occur during a model transformation execution have a specific handler rule designed

Exceptional Transformations 211

to address them, a default exception port is provided with the handler block (which
is linked to the top-most exception class in the classification tree presented in Fig. 5,
e.g., TransformationException).

Note that in both models the handling part may itself produce an exception which
can be in turn handled. For example, since the handling process involves further pattern
matching, memory overflows are likely to occur and hence it is necessary to properly
handle such exceptions.

3.5 Control Flow Concerns

When a rule emits an exception, the control flow is redirected to a handler component
which, in release mode at least, handles the exception with the goal of continuing the
transformation. After the exception is handled, there are three options: the enclosing
transformation may resume, restart, or terminate.

Resuming the transformation means to return the flow of control to the place where
it was interrupted by the exception. As depicted by channel (1) in Fig. 9, the transfor-
mation continues in the “normal” flow after the rule that activated the exception. Such
a resumption model allows to express an alternative execution of the transformation.
However, care should be taken if the input model (or even the packet) was modified.
As outlined in Section 3.3, the modeller may choose to recover the model to a state that
was valid before the rule started applying its modifications, if desired.

Fig. 9. Modelling possible control flows
after handling an exception locally at a
sub-transformation level: (1) resume af-
ter the activation point, (2) restart at the
beginning of the enclosing context, and
(3) terminate enclosing context

Restarting the transformation means to re-run
the enclosing transformation from the begin-
ning. As depicted by channel (2) in Fig. 9, the
transformation restarts the “normal” flow be-
fore the rule that activated the exception. This
is certainly an interesting way to tolerate tran-
sient faults. However, restarting the transforma-
tion induces a loop in the control flow which
may lead to dead-locks, in case the fault is of
a permanent nature.

Terminating the transformation means to skip
the entire flow of the transformation in which a
rule raised the exception. As depicted by chan-
nel (3) in Fig. 9, the enclosing transformation
exits the scope of the occurrence of the excep-
tion seamlessly. It ends in a “normal” flow, i.e., in success or not applied mode, and not
in generating an exception. As a result, the outer scope is not aware that an exception
occurred.

Exception Propagation
Up to now, we have considered that it is at the level of a transformation rule that an
exception is generated and subsequently handled at the level of the enclosing transfor-
mation. As mentioned previously, MoTif transformation models are hierarchical, in the

212 E. Syriani, J. Kienzle, and H. Vangheluwe

sense that transformations can be nested. Constructs such as a CRule modularly define
scoped sub-transformations, allowing to compose transformations models.

Just like in programming languages, it is recommended to handle exceptions in a
scope that is as close as possible to the point of activation. In other words, local excep-
tion handling is preferred. However, it is possible that handling an exception locally is
not possible, because the necessary context information that is needed to define a useful
handler is only available in a more global context.

Therefore, unhandled exceptions must be propagated up the transformation hierar-
chy as long as no corresponding handler can be found. Only if an exception propagates
unhandled out of the topmost CRule, the transformation execution must be halted and
debugging information displayed. Nevertheless, at each level, a handler could be spec-
ified to “clean up” any local state before the exception is propagated outside. Note that
once an exception is handled, it can no longer be propagated. If propagation is needed,
the handler must create a new user-defined exception which can refer to the previously
handled exception in its TransformationContext.

4 Related Work

The concept of exceptions exists in programming languages since the 1970s [2]. Several
approaches have been proposed for modelling exceptions in workflow languages [15]
and event-driven languages [16]. However, there has not been any work on modelling
exceptions in model transformation languages. Current tools mostly rely on exceptions
triggered from the underlying virtual machine. As a matter of fact, debugging in tools
such as ATL [17], Fujaba [7], GReAT [8], QVTo [18], SmartQVT [19], or VIATRA [20]
is specific to their respective integrated development editors (IDE).

QVT Operational Mappings (QVT-OM) supports exception handling at the action
language level, an imperative extension of OCL 2.0 [6]. The language allows to handle
exceptions in a try . . . except statement in the same way as in modern programming
languages such as Java, It is however unclear where, when, or how an exception oc-
curs in QVT-OM. User-defined exceptions can be declared and raised arbitrarily4 in the
main operation of a transformation. Moreover, an exception is also raised when a fatal
assertion is not satisfied. However, it is unclear what information exceptions carry and
whether they can be propagated outside the scope of the transformation. Implementa-
tions of QVT-OM such as SmartQVT and QVTo (an Eclipse plug-in into EMF) have
different interpretations from the standard, e.g., allowing map to raise an exception if
the pre-condition is not fulfilled. The advantage of our approach is to (1) explicitly
model the raising of exceptions and (2) explicitly model the control flow subsequent to
the handling of an exception.

Fujaba is a model transformation tool based on graph transformation combined with
Story diagrams [7]. There, exceptions are also not modelled, although present at the
code level. The maybe statements in Story diagrams can be used to handle exceptions in
the transformation, but they are only available for statement activities (i.e., Java code).
The same argument can be used as for the choice of allowing exception handling at the
level of T-Core.

More elaborate details of the presented approach can be found in [21].

4 This fits in the Action Language Exceptions category according to our classification.

Exceptional Transformations 213

5 Conclusion

In this paper, we have motivated the need for providing the concepts of exception and
exception handling at the level of transformations. We have outlined a classification
of potential exceptions that can occur in the context of model transformation. Though
having different uses at different steps of the development of a transformation model,
these transformation exception must be handled by the transformation model itself. We
have discussed the different issues related to the handling of these exceptions.

We have implemented the main concepts of this approach in MoTif. As the prototype
is still in an early stage, we are working on a system which will allow for user friendly
debugging of model transformation.

The same exercise this paper presented for the MoTif framework can be done for the
ATL or QVT-OM languages. We are confident that it is also applicable to transformation
languages at different levels of abstraction such as relational transformations (e.g., QVT-
Relational or Triple Graph Grammars).

Exception handling can become handy when designing a higher-order transforma-
tion. For example in ATL, static verification of well-formed higher-order transformation
rules is quite limited [14]. In this case, with an exception handling mechanism at the
transformation level, the designer may safely rely on the engine to design arbitrarily
complex higher-order transformations.

References

1. Dony, C.: Exception handling and object-oriented programming: Towards a synthesis. In:
ECOOP. SIGPLAN, vol. 25, pp. 322–330. ACM Press, New York (1990)

2. Goodenough, J.B.: Exception handling: Issues and a proposed notation. Communications of
the ACM 18, 683–696 (1975)

3. Syriani, E., Vangheluwe, H.: DEVS as a Semantic Domain for Programmed Graph Transfor-
mation. In: Discrete-Event Modeling and Simulation: Theory and Applications, CRC Press,
Boca Raton (2009)

4. Guerra, E., de Lara, J.: Adding recursion to graph transformation. In: GT-VMT 2007, ECE-
ASST, Braga, vol. 6 (2007)

5. Zündorf, A., Schürr, A.: Nondeterministic control structures for graph rewriting systems.
In: Schmidt, G., Berghammer, R. (eds.) WG 1991. LNCS, vol. 570, pp. 48–62. Springer,
Heidelberg (1992)

6. Object Management Group: Meta Object Facility 2.0 QVT Specification (2008)
7. Fischer, T., Niere, J., Turunski, L., Zündorf, A.: Story diagrams: A new graph rewrite lan-

guage based on UML and Java. In: Ehrig, H., Engels, G., Kreowski, H.-J., Rozenberg, G.
(eds.) TAGT 1998. LNCS, vol. 1764, pp. 296–309. Springer, Heidelberg (2000)

8. Agrawal, A., Karsai, G., Kalmar, Z., Neema, S., Shi, F., Vizhanyo, A.: The design of a lan-
guage for model transformations. SoSym 5, 261–288 (2006)

9. Syriani, E., Vangheluwe, H.: De-/re-constructing model transformation languages. In: GT-
VMT, ECEASST, Paphos (2010)

10. Heckel, R., Küster, J.M., Taentzer, G.: Confluence of typed attributed graph transformation
systems. In: Corradini, A., Ehrig, H., Kreowski, H.-J., Rozenberg, G. (eds.) ICGT 2002.
LNCS, vol. 2505, pp. 161–176. Springer, Heidelberg (2002)

11. Hausmann, J.H., Heckel, R., Taentzer, G.: Detection of conflicting functional requirements
in a use case-driven approach. In: ICSE 2002, pp. 105–115. ACM, Orlando (2002)

214 E. Syriani, J. Kienzle, and H. Vangheluwe

12. Gardner, T., Griffin, C., Koehler, J., Hauser, R.: A review of QVT submissions and recom-
mendations towards the final standard. In: MetaModelling for MDA, pp. 178–197 (2003)

13. Jouault, F., Kurtev, I.: Transforming models with ATL. In: Bruel, J.-M. (ed.) MoDELS 2005.
LNCS, vol. 3844, pp. 128–138. Springer, Heidelberg (2006)

14. Kühne, T., Mezei, G., Syriani, E., Vangheluwe, H., Wimmer, M.: Systematic transformation
development. In: ECEASST, vol. 21 (2009)

15. Brambilla, M., Ceri, S., Comai, S., Tziviskou, C.: Exception handling in workflow-driven
web applications. In: WWW 2005, Chiba, pp. 170–180 (2005)

16. Pintér, G., Majzik, I.: Modeling and analysis of exception handling by using UML state-
charts. In: Guelfi, N., Reggio, G., Romanovsky, A. (eds.) FIDJI 2004. LNCS, vol. 3409, pp.
58–67. Springer, Heidelberg (2005)

17. Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: ATL: A model transformation tool. Science of
Computer Programming, Special Issue on EST 72, 31–39 (2008)

18. Dvorak, R.: Model transformation with operational QVT. In: EclipseCon 2008 (2008)
19. France Telecom R&D: SmartQVT (2008)
20. Varró, D., Balogh, A.: The model transformation language of the VIATRA2 framework.

Science of Computer Programming 68, 214–234 (2007)
21. Syriani, E., Kienzle, J., Vangheluwe, H.: Exceptional transformations. Technical Report

SOCS-TR-2010.2, McGill University, School of Computer Science (2010)

	Exceptional Transformations
	Introduction
	Classification of Exceptions in Model Transformations
	Terminology
	Execution Environment Exceptions
	Transformation Language-Specific Exceptions (TLSE)
	Rule Design Exceptions
	Transformation-Specific Exceptions
	Using Exceptions in Model Transformations

	Exception Handling in Model Transformation
	Modelling Exceptions
	Detection of Exceptions
	Extending Rules with Exceptions
	Modeling the Handler
	Control Flow Concerns

	Related Work
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037002e000d00500072006f00640075006300650073002000500044004600200062006f006f006b00200069006e006e006500720077006f0072006b002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

