
Using MoTif for the AntWorld Simulation Tool Contest

Eugene Syriani and Hans Vangheluwe

McGill University, School of Computer Science, Montréal, Canada,
{esyria,hv}@cs.mcgill.ca

Abstract. The AntWorld Simulation case study proposed at the GraBaTs 2008 workshop tool contest
reflects the ability of graph transformation tools to employ local search. This paper provides a solution
using the Modular Timed graph transformation language MoTif.

1 Introduction
The Modular Timed Graph Transformation language (MoTif) allows to model and execute model
transformations. On the one hand, it provides a graphical user interface for the description of the graph
transformation rules in a declarative way and on the other hand, a modelling environment to define the
control structure of the transformation. For more information on MoTif, the reader is suggested to read
[1] where the essence of the language is overviewed and to [2] where it was used for simulation-based
design.
This paper is a solution to case no. 2 (AntWorld Simulation case study) of the GraBaTs 2008 tool
contest using MoTif as the graph transformation language. The full description of the case study can
be found at [3]. This case study stresses local rule application and we show how this can be done with
MoTif.
In Section 2, the essential parts of the solution as well as performance results are presented. In Section
3, we summarize this work and outline some advantages of this approach.

2 Solution
In our approach we define a domain-specific modelling environment for the AntWorld formalism in the
modelling tool AToM3 [4]. Hence a meta-model needs to be defined.

2.1 The Meta-Model

As shown in Figure 1, the formalism consists of Ants and GridNodes. An Ant element can go on a
GridNode which can also be a Hill. GridNodes can hold pheromones and food parts. Ants can be in
“carry mode”. The grid nodes are connected in circles centred at the hill in a very specific way. Our
solution realizes that by differentiating between connections in the same circle and to the next circle
for neighbouring grid nodes. Furthermore, different strategies for the generation of the grid are used
depending if it is a node along the two main axis. This is why we distinguish between main axis nodes
and the other grid nodes. A node counter is also needed to decide which generated node food will hold
food parts. Using AToM3 as a modelling environment provides concrete syntax for each meta-model
element as illustrated in the rules specification.

2.2 The Transformation Rules

The graph transformation rules in MoTif consists of three parts: the left-hand side (LHS), the right-hand
side (RHS) and the negative application condition (NAC). For example, the ConnectNodesInSameCircle



Fig. 1. AntWorld Meta-Model

rule (figure 2) states that whenever two neighbouring nodes1 (N and M) are on the same circle and are
each linked to a GridNode (labelled respectively 1 and 2) on the next circle, a connection toSameCircle
must be drawn between these latter nodes in the same direction as the N and M are connected.
However GridNode 1 may not be the source of a link to a node on the same circle nor GridNode be the
target of a similar link. Also, node N must be bound by the pivot that this rule receives and M will
be the pivot of the next rule. This internal dependencies between rules is the essence of how local
rule application is achieved in MoTif. For this particular case, the next rule that will be executed is
again ConnectNodesInSameCircle (see the control structure in the next sub-section). This makes the
connecting step between generated nodes ordered in a clockwise direction. If the pivot nodes were not
provided, every legal pair of nodes will be connected randomly. Therefore we not only apply rules locally
for ants but also at the level of the grid generation, as we will see in the next sub-section.

Fig. 2. The ConnectNodesInSameCircle rule

The complete list of the rules used for the simulation is provided in Appendix A.
Once all the rules are defined in AToM3, we compile them to be callable by the MoTif simulator.

2.3 The Control Structure

We have seen how the rules can be sequenced implicitly by pivot passing. At the control structure level,
we express the order of execution of the rules by means of sequencing, branching, looping or in parallel.
MoTif provides some primitive blocks to achieve that. A CRule block encapsulates sub-rule blocks in a

1 We use the term nodes in the general sense (i.e.: including GridNode, MainAxisNode and Hill) because subtype
matching is toggled when an element is flagged with the {Abs} label, short for abstract.



highly modular way interfacing via some inports (GraphIn at the top left, AbortIn at the top right and
Next on the side) and outports (SuccessOut on the bottom left and FailOut on the bottom right). An
ARule refers to a compiled rule and applies the rule atomically. A rule application is done in two phases:
first the matching (where all the possible matching are found) and then the transformation on one or
more matches. When an outport has a small round on the summit of its triangular shape, it means
that along with the transformed graph, in the case of success, the pivot information is sent. In the case
of of failure the received pivot is passed to the next rule. The other block used in this transformation
system is the Synchronizer which allows the synchronization of matches found in parallel on different
rules.
At each round, the graph (or input model) is received by the GGRule CRule (Figure 3(a)). First in a
priorities fashion, first the AntMovements rules are applied, then the GenerateCycle rules and finally
the EndOfRound rules.
We will give a high-level description of the transformation without going in the details since figures
3(b), 4(a) and 4(b) are straight forward. For the complete specification, the full listing is provided in
Appendix B.
First we look for an ant to grab a food part, if it succeeds this ant moves one step towards the hill.
Then the graph is sent back to the GrabFood ARule but via the Next port to only choose the next
matching and apply the transformation.
When no more ant can move towards the hill an ant in carry mode found on the hill drops its food
part and goes in search mode. When in search mode, the ant first tries to follow a pheromone trail
or else moves randomly in any possible direction. That is achieved by the four ARules connected to
the Synchronizer which find their corresponding matches in parallel and only one is chosen randomly
to apply its transformation. When no ant was provided by DropFood, all ants (iteratively randomly
chosen) in search mode which have not moved yet make a move randomly.
When there is no more ant left to be moved, we check if an ant has reached the outermost circle and
start the generation of the nodes of the next circle from that node in clockwise order. In the meantime,
at every tenth node, some food is created on it.
At the end of each round, for each food part on the hill one ant element is created. Note that AntBirth
is an FRule where all matches are transformed at the same time. This is safe since no two matchings
can be critical pairs. Similarly, all pheromones are evaporated and finally the move flag on each ant is
reset.

2.4 Simulation

MoTif is compiled into a discrete event simulation engine. It can be ran until a specific condition is
reached or for some number of steps (one step is consumed when the higher CRule in the hierarchy level
sends out a graph). In our case we ran the simulation with no limit and some performance measurements
have been collected at the end of each round. Table 1 shows some results per round, the number of
circles present on the grid, the total number of nodes, the number of food parts present on the grid
the total number of ants alive. And to each round we show how long the transformation step took in
seconds. So the 165th round, took 7 minutes and 18 seconds while the generation of the 13th circle
(100 nodes) took about 48 minutes. The total execution time was 23, 890 seconds. Also, on average
over the first 165 rounds the transformation time is about 144 seconds and if we do not consider the
time consumed by the GenerateCycle block, the average is 104 seconds.
These measurements were taken on aWindows Vista machine with a Intel Core 2 Duo CPU with 1.5 GHz
of RAM.

3 Conclusion
The controlled graph rewriting language, MoTif, was able to fullfill the requirements of the published
case study. Given an input model (in our case compiled from AToM3), the transformation is successfully



(a) The
GGRule CRule

(b) The End-
OfRound
CRule

Fig. 3. Some graph transformation control structure

(a) The AntMovements CRule (b) The GenerateCycle CRule

Fig. 4. Some graph transformation control structure



Round Circles Nodes Food Ants Time (sec) Round Circles Nodes Food Ants Time (sec)
1 2 16 0 8 0 43 7 196 1724 34 17
8 4 64 500 8 0 44 7 196 1713 35 7
9 5 100 900 8 15 55 7 196 1651 46 10

10 5 100 900 8 1 56 8 256 2237 47 207
11 5 100 900 8 1 65 9 324 2891 56 48
12 5 100 900 8 1 73 10 400 3640 64 698
13 5 100 899 8 0 103 10 400 3423 94 74
14 6 144 1297 8 39 104 11 484 4214 95 1218
15 6 144 1297 8 0 105 12 576 5107 96 1924
32 6 144 1267 23 1 106 12 576 5099 97 117
33 6 144 1264 24 2 107 13 676 6093 98 2881
38 6 144 1243 29 3 165 13 676 5523 156 438

Table 1. Performance Measurements

applied using local application of the rules. This was done by binding graph element to given pivot
information as well as pivot passing at the structure level. A visual modelling environment in concrete
syntax is provided for the specification of the rules and the description of the flow of transformation.
Some remarks can be made regarding the design of the solution. Although the graphs used have di-
rected edges, the transformation process gives the semantics of undirected edges, which is needed for
the movement of the ants. However having directed edges simplified some of the rules for the node
generation.
All random choices in MoTif are repeatable for simulation purposes. That is every time a new simu-
lation is run, the same random choices will be performed each time. This is important for repeatable
experiments.
This case study does not require any use of time except for performance measurements. MoTif is a
timed language allowing the modeller to specify how long a rule will spend in the matching phase. In
our design, we have set all the rules to spend 1 time unit. A real-time execution could have also been
used for simulating the AntWorld problem.
Soon a pure parallel implementation of MoTif will be available which will increase the performance
significantly. Also MoTif will be extended to link back to AToM3 in order to provide visual simulation
in a graphical user interface.

References
1. E. Syriani and H. Vangheluwe, “Programmed graph rewriting with DEVS,” in 3rd International

Symposium Applications of Graph Transformations with Industrial Relevance (AGTIVE 2007), ser.
Lecture Notes In Computer Science, M. Nagl and A. Schür, Eds. Kassel: Springer-Verlag, October
2007.

2. ——, “Programmed graph rewriting with time for simulation-based design,” in International Con-
ference on Model Transformation (ICMT 2008), ser. Lecture Notes in Computer Science, A. Pieran-
tonio, A. Vallecillo, J. Bézivin, and J. Gray, Eds., vol. 5063. Zürich: Springer-Verlag, July 2008,
pp. 91–106.

3. [Online]. Available: http://www.fots.ua.ac.be/events/grabats2008/
4. J. de Lara and H. Vangheluwe, “AToM3: A tool for multi-formalism and meta-modelling,” in 5th

International Conference on Fundamental Approaches to Software Engineering, ser. Lecture Notes
in Computer Science, R.-D. Kutsche and H. Weber, Eds., vol. 2306. Grenoble: Springer, April 2002,
pp. 174–188.


