
DEVS as a Semantic Domain

for Programmed Graph Transformation

Eugene Syriani and Hans Vangheluwe

McGill University, School of Computer Science, Montréal, Canada,
{esyria,hv}@cs.mcgill.ca

Abstract. The Discrete Event system Specification (DEVS) formalism allows for highly modular,
hierarchical modelling of timed, reactive systems. We formalize graph transformation control structures
by expressing them in terms of DEVS models. We also show how this use of DEVS as a semantic
domain for controlled rule-based graph transformation allows for simulation and ultimately synthesis of
(real-time) applications. Our approach is illustrated by simulating the AntWorld graph transformation
benchmark.

1 Introduction

1.1 Meta-Modelling and Model Transformation

Model-driven approaches are becoming increasingly important in the area of software engineering. In
model-driven development, models are constructed to conform to meta-models. A meta-model defines
the (possibly infinite) set of all well-formed model instances. As such, a meta-model specifies the syntax
and static semantics of models. Meta-models are often described as the Unified Modelling Language
(UML)’s Class Diagrams. In model-driven engineering, meta-modelling goes hand in hand with model
transformation.
In almost all modelling and simulation endeavours, some form of model transformation is used. Models
are for example transformed for optimization purposes, to address new requirements, to synthesize
real-time embedded code, etc. Transformations are also commonly used to describe the semantics of
a modelling formalism. In the case of operational semantics, the transformation iteratively updates
the state of a model. In the case of denotational semantics, the transformation maps a model in one
formalism onto a model in a known formalism, thereby defining the meaning of the original model.
Model transformations can be described in many ways. Rule-based descriptions are elegant and easy
to understand. Such descriptions have declarative (specifying “what” to change, not “how” to) model
rewriting rules as their primitive building blocks. A rule consists of a Left Hand Side (LHS) pattern that
is matched against a host model. If a match is found, this pattern is updated, in the host model, based
on what is specified in the Right Hand Side (RHS) of the rule. Additionally, Negative Application
Condition (NAC) patterns may be used, specifying which patterns should not be found in the host
model. Because at some level of abstraction, all models can be represented as (typed, attributed)
graphs, and thanks to its rigorous formal underpinning, our rule-based specification is based on the
theory of graph rewriting.
Though elegant, the declarative, rule-based specifications of model transformations do not scale well.
When the number of rules grows, it becomes difficult for a modeller to clearly understand what the
behaviour of the transformation will be. Also, the complexity of matching grows with the number of
rules that need to be tried. Programmed (or controlled) graph rewriting mitigates these problems. It
combines rewriting rules with a control structure. In this chapter we show how the Discrete EVent sys-
tem Specification (DEVS) can be used as a semantic domain for the control structures in a model/graph
transformation system.



In Section 2 we introduce our running example, an extended version of a recent benchmark for graph
transformation [1]. Section 3 shows how extending the meta-model of DEVS allows for the introduction
of programmed (or controlled) model/graph transformation. Then, Section 4 illustrates a solution to the
case study problem using that transformation language. Using the notion of time inherent in DEVS, we
show how the notion of time can elegantly be added to a transformation ultimately allowing real-time
deployment in Section 5. Section 6 compares our DEVS-based approach to other graph transformation
approaches. Finally, Section 7 highlights some of the advantages of this approach, summarizes, and
concludes. We start with a brief overview of the DEVS formalism.

1.2 The Discrete Event System Specification

This section introduces the DEVS formalism. In the rest of the paper, it will be shown how the modu-
larity and expressiveness of DEVS allow for elegant encapsulation of model transformation (i.e., graph
rewriting) building blocks.
The DEVS formalism was introduced in the late seventies by Bernard Zeigler to develop a rigorous basis
for the compositional modelling and simulation of discrete event systems [2]. It has been successfully
applied to the design, performance analysis, and implementation of a plethora of complex systems.
Figure 1 shows the meta-model of a model transformation language based on DEVS. The dashed-line
elements in Fig. 1 (for now ignore the full-lined elements) show a simplified meta-model of DEVS in
UML Class Diagram notation. A DEVS model (the abstract class Block) is either an AtomicBlock
or a CoupledBlock. An atomic model describes the behaviour of a timed, reactive system. A coupled
model is the composition of several DEVS sub-models that can be either atomic or coupled. Sub-
models have ports that are connected by channels (represented by the associations between the different
ports). Ports are either Inport or Outport. The abstract classes (In/Out)port can be instantiated in an
Atomic(In/Out)port or a Coupled(In/Out)port, respectively. Ports and channels allow a model to receive
and send events (any subclass of Event) from and to other models. A channel must go from an output
port of some model to an input port of a different model, from an input port of a coupled model to
an input port of one of its sub-models, or from an output port of a sub-model to an output port of
its parent model, as depicted by the associations of Fig. 1. Note that the dynamic semantics of DEVS
cannot be expressed by the meta-model and will be informally outlined hereafter.
An atomic DEVS model is a structure 〈S, X, Y, δint, δext, λ, τ 〉 where S is a set of sequential states,
one of which is the initial state. X is a set of allowed input events. Y is a set of allowed output
events. There are two types of transitions between states: δint : S → S is the internal transition
function and δext : Q × X → S is the external transition function. Associated with each state are
τ : S → R

+

0 , the time-advance function, and λ : S → Y , the output function. In this definition,
Q = {(s, e) |s ∈ S, 0 ≤ e ≤ τ (s)} is called the total state space. For each (s, e) ∈ Q, e is called the
elapsed time. R

+

0 denotes the positive reals with zero included.
Informally, the operational semantics of an atomic model is as follows: the model starts in its initial
state. It will remain in any given state for as long as the time-advance of that state specifies or until
input is received on an input port. If no input is received, after the time-advance of the state expires,
the model first (before changing state) sends output as specified by the outputFunction, and then
instantaneously jumps to a new state specified by the internalTransition. If, however, input is received
before the time for the next internal transition, then the externalTransition is applied. The external
transition depends on the current state, the time elapsed since the last transition, and the inputs from
the input ports.
A coupled DEVS1 model named D is a structure 〈X, Y, N, M, I,Z, select〉 where X is a set of allowed
input events and Y is a set of allowed output events. N is a set of component names (or labels)
such that D 6∈ N . M = {Mn | n ∈ N, Mn is a DEVS model (atomic or coupled) with input set
Xn and output set Yn} is a set of DEVS sub-models. I = {In | n ∈ N, In ⊆ N ∪ {D}} is a set
of influencer sets for each component named n. I encodes the connection topology of sub-models.



Fig. 1. The MoTif meta-model, based on the DEVS meta-model



Z = {Zi,n | ∀n ∈ N, i ∈ In.Zi,n : Yi → Xn or ZD,n : X → Xn or Zi,D : Yi → Y } is a set of transfer
functions from each component i to some component n. select : 2N → N is the select or tie-breaking
function. 2N denotes the powerset of N (the set of all sub-sets of N).
The connection topology of sub-models is expressed by the influencer set of each component. Note that
for a given model n, this set includes not only the external models that provide inputs to n, but also its
own internal sub-models that produce its output (if n is a coupled model). Transfer functions represent
output-to-input translations between components, and can be thought of as channels that make the
appropriate type translations. For example, a “departure” event output of one sub-model is translated
into an “arrival” event on a connected sub-model’s input. The select function takes care of conflicts as
explained below.
The semantics for a coupled model is, informally, the parallel composition of all the sub-models. A
priori, each sub-model in a coupled model is assumed to be an independent process, concurrent to the
rest. There is no explicit method of synchronization between processes. Blocking does not occur except
if it is explicitly modelled by the output function of a sender, and the external transition function
of a receiver. There is, however, a serialization whenever there are multiple sub-models that have an
internal transition scheduled to be performed at the same time. The modeller controls which of the
conflicting sub-models undergoes its transition first by means of the select function.
We have developed our own DEVS simulator called pythonDEVS [3], grafted onto the object-oriented
scripting language Python.

2 The AntWorld Simulation Case Study

The case study used in this chapter is based on case no. 2 (AntWorld Simulation case study) of the
GraBaTs 2008 tool contest [1]. This is a benchmark for the comparison of graph transformation tools
that stresses local rule application. A solution using a DEVS-based graph transformation language
MoTif (Modular Timed graph transformation) [4] was presented at the 2008 tool contest.
The complete description of the behaviour can be found in [1] and is as follows. The AntWorld simulation
map is discretized into concentric circles of nodes (representing a large area) centered at a hill (the ant
home). Ants are moving around searching for food. When an ant finds food, it brings it back to the
ant hill in order to grow new ants. On its way home, the ant drops pheromones marking the path to
the food reservoir. If an ant without food leaves the hill or if a searching ant hits a pheromone mark, it
follows the pheromone path leading to the food. This behaviour already results in the well known ant
trails.
The AntWorld simulation works in rounds (similar to time-slices). Within each round, each ant makes
one move. If an ant is not in carry mode and is on a node with food parts, it takes one piece of food and
enters carrying mode. Note that it may still move within the current round. On the other hand, if an
ant carries some food, it follows the links towards the inner circle one node per round. During its way
home (towards the unique hill at the centre of all node), on each visited node (including the node that
it picked food from) the ant drops 1024 parts of pheromones in order to guide other ants to the food
place. However, if a carrying ant is on the hill, it drops the food and enters the search mode. It may
leave the hill within the same round. Any ant without food is in search mode. While in this mode, the
ant checks the neighbouring node(s) of the next outer circle for pheromones. If some hold more than
9 parts of pheromones, the ant chooses one of these nodes randomly. Otherwise, the ant moves to any
of its neighbour nodes based on a fair random choice (but never enter the ant hill). Whenever during
one round an ant is on a node on the outmost circle, a new circle of nodes shall be created. For each
outmost grid node, a new grid node is created; but three nodes are created in the case of a main axis
node. During the creation of this next circle, every 10th node shall carry 100 food parts. If a circle has
for example 28 nodes, node 10 and node 20 of that circle shall have food. Thus, this circle would need
just two more nodes to create a third food place. Therefore, these 8 nodes are kept in mind and during



the creation of the next circle (in our example with 36 nodes) we add another food place when two
more nodes have been added. Thus, across circles, every 10th node becomes a food place. After each
round, all pheromones shall evaporate: reducing by 5%. Also, the hill shall consume the food brought
to it by creating one new ant per delivered food part.
To emphasize the advantages of the use of DEVS for controlled graph rewriting, the AntWorld case
study has been extended as follows. The ants running around seeking for food are not protected from
external factors. In fact, a human could step on an area discovered by the ants. Hence at random points
in time, ants will be killed. This happens on a grid node chosen at random as well as its neighbouring
nodes. Irrespective of whether ants are present or not on these four nodes, the nodes will lose food
parts by a factor of 2 and pheromones by a factor of 10. Section 4 will show how this can be modelled
by simulating the user decision of when a human step will occur and Section 5 how this can be done
in real time, allowing an actual user to intervene.

2.1 The AntWorld Language (Abstract and Concrete Syntax)

As shown in Fig. 2, the AntWorld formalism consists of Ants and GridNodes. An Ant element can go
on a GridNode which can also be a Hill. GridNodes can hold pheromones and food parts. Ants can
be in “carry mode”. The grid nodes are connected in circles centred at the hill in a very specific way.
This is why the meta-model differentiates between connections in the same circle and to the next circle
for neighbouring grid nodes. Furthermore, different strategies for the generation of the grid are used
depending on whether it is a node along the two main axes. This is why we distinguish between main
axis nodes and the other grid nodes. A node counter is also needed to decide which generated node
will hold food parts. Using AToM3 [5] as a modelling environment enables one to associate a concrete
syntax for each meta-model element. This is depicted in Fig. 2 by the pictures attached to the elements
by red dashed lines.

Fig. 2. AntWorld Meta-Model

2.2 The AntWorld Semantics (Graph Transformation)

As we have seen at the beginning of this section, the semantics of the AntWorld formalism is described in
terms of simulation rules. In our case, these rules are graph rewriting rules taking as input a host graph
(model) and producing as output the transformed graph. This encodes the state changes (i.e., dynamics)



of the system. In MoTif, a rule consists of a LHS, a RHS, and optionally a NAC. The LHS represents
a pre-condition pattern to be found in the host graph along with conditions on attributes. The RHS
represents the post-condition after the rule has been applied on the matched subgraph by the LHS. The
NAC represents what pattern condition in the host graph shall not be found, inhibiting the application
of the rule if it is. Additionally, hints can be provided through pivot information. A rule using a pivot
on a node of the LHS pattern binds the matching process to a previously specified matched node (this
is useful for local search).
To illustrate how a graph rewriting rule is applied, we will consider the ConnectNodesInSameCircle
rule from Fig. 3. This rule states that whenever two neighbouring nodes1 N and M are on the same
circle and are each linked to a GridNode (labelled respectively 1 and 2) on the next circle, a connection
toSameCircle must be drawn between these latter nodes in the same direction N and M are connected.
However, 1 may not be the source of a link to a node on the same circle nor 2 be the target of such a
link.
Also, N must be bound to the pivot that this rule receives and M will be the pivot of the next rule. This
internal dependency between rules is the essence of how local rule application is achieved in MoTif.
For this particular case, the next rule that will be executed is again ConnectNodesInSameCircle as
the control structure will show, in Section 3. This makes the connecting step between generated nodes
ordered in clockwise direction.
One of the advantages of using graph transformation for transforming models is that they can easily be
described in a visual language which makes the rules human readable. The remaining rules described
in the appendix also use concrete syntax.

Fig. 3. The ConnectNodesInSameCircle rule

3 A Meta-Model for DEVS-based Graph Transformation

MoTif is a controlled graph transformation language. It offers a clean separation of the transformation
entities (i.e., the rewriting rules) from the structure and flow of execution of the transformation. While
Section 2.2 outlined the graph transformation rules, we focus here on the structural and control flow
aspect of MoTif. Revisiting Fig. 1 where up to now only the DEVS meta-model was mentioned, we will
now see how a MoTif model is a DEVS model specialized for graph transformation.
The central elements of this DEVS-based graph transformation meta-model are the rule blocks. The
graphs are encoded in the events that flow through the ports from block to block. The atomic block

1 We use the term nodes in the general sense (i.e., including GridNode, MainAxisNode, and Hill) because subtype
matching can be used. This allows an pattern element to be matched to any element from the same class or from
a sub-class of it. In MoTif, such a pattern element is flagged with the {Abs} label, short for abstract.



ARule (for “Atomic Rule”) is the smallest transformation entity and the coupled block CRule (for
“Coupled Rule”) is meant for composition of rule blocks. A rewriting rule is part of the state of an
ARule as a reference to the compiled rule. Rule application is performed in two phases: (1) the matching
(where all the possible matches are found) and (2) the transformation on one or more matches. The
ARuleState also keeps track of the graph and pivot received. The time advance of an ARule can be
specified at modelling time to set its execution time (both match and transform). Otherwise the time
advance is +∞.

ARule blocks receive packets (a graph, with potentially a pivot node) from the AGraphIn port. In
case of success (i.e., when at least one match has been found), the packet containing the transformed
graph is output through the ASuccessOut port. In case of failure, the original graph is sent through
the AFailOut port. Furthermore, it is possible to enable pivot passing for these two outports. For
the success outport, either the new pivot specified by the rewriting rule or the original received pivot
is passed on to the next block. In the case of multiple matches found in the received graph, a host
graph ever received by the ANextIn port will only apply the transformation on the next match without
running the matching phase one more time. This feature is very useful as we will see in the AntWorld
example for the flow logic and performance. On reception of an event through the AResetIn port, the
rule application is cancelled and the state of the ARule is reset. Similar ports are available for a CRule
block which serve as interface from its incident blocks to its sub-models.

To increase the expressiveness of the language MoTif, additional rule blocks have been added. Among
them is the FRule which will be used in our example. It is an ARule that applies its transformation
phase to all the matches found (in arbitrary order) before sending the new graph. The matches are
assumed to be parallel independent.

As in a general purpose DEVS model, atomic and coupled rule blocks are connected through their
ports. There could be one-to-many or many-to-one connections between them. The semantics of an
(A/C)SuccessOut outport2 connected to many (A/C)GraphIn inports is the parallel execution of the
rules encoded in the receiving blocks. Since classical DEVS is used here, the parallel execution of the
external transition of these rule blocks is serialised as specified by the select function. In our case, one
block is chosen at random, first among the matching rules and then among those that failed. Many-to-
one connections between rule blocks ports are not encouraged, since different graphs will be received
by a single ARule at the same time.

In graph grammars, it is sometimes wished to have many rules that match but let only one execute.
That is why MoTif introduces the Selector block. Such a pattern can be found in Fig. 6 invloving,
for example, a Selector and the Generate and CreateFood ARules connected to it. Its purpose is
to receive, through its ASuccessIn inport, the transformed graph sent from an ARule that has been
chosen by the select function. Instantaneously it outputs an event via its AResetOut outport, forcing
all remaining rules to reset their state. Then, with a time advance of 0, the Selector passes the packet it
received to the next block(s) via its ASuccessOut port. In case of failure of all ARules, the rule selected
by the select function sends its original packet to the AFailIn inport of the Selector. In return, the
Selector forces the reset of all these rules and outputs the packet received through its AFailOut port.

Since the semantics of DEVS is the compositional parallelization of atomic blocks, MoTif allows rules
to conceptually be applied in parallel. This leads to what we call “threads” of rule applications, e.g., the
HumanStep CRule has four such threads in Fig. 7(c) (which will be described later in the context of
the case-study). Therefore a Synchronizer is needed to merge and synchronize the concurrent threads.
Our approach uses in-place transformation of models, which means that the events sent and received
are references to the host model, in contrast with out-place transformation where rules work on copies
of the host model. This avoids the undecidable problem of merging transformed models. In that sense,
the Synchronizer waits until all the threads have sent their packets through its ASuccessIn and/or

2 The (A/C)FailOut has an analogous semantics.



AFailIn inports. Only then will it send the transformed graph through its ASuccessOut port if at least
one thread has succeeded or else it will send the unmodified graph through its AFailOut port.
To formalise these concepts, we define each of these elements in terms of a DEVS structure.

3.1 The ARule

The ARule is an atomicDEVS, parameterised by a rule r and by σ1 to determine if a pivot is sent on
a successful matching and σ2 on failure.

ARuler,σ1,σ2
= 〈X, Y, S, δint, δext, λ, τ 〉

where

T = R
+

0

S = {s = (γ, ρ, ǫ, σ1, σ2, Σ (r)) |γ ∈ G, ρ ∈ VG ∪ {φ} , ǫ, σ1, σ2 ∈ {true, false}}

τ (s) =

{

t ∈ [0,∞) if ǫ = true

∞ otherwise
, ∀s ∈ S

X = XAGraphIn × XAResetIn × XANextIn

XAGraphIn = {〈γ, ρ〉} ∪ {φ}

XAResetIn = {false} ∪ {φ}

XANextIn =
{

〈γ, ρ〉
n

}

∪ {φ}

Y = YASuccessOut × YAFailOut

YASuccessOut =
{〈

γ
′
, ρ

′
〉}

∪ {φ}

YAFailOut = {〈γ, ρ〉} ∪ {φ}

ω : T → X

δint (γ, ρ, ǫ, σ1, σ2, Σ (r)) = (γ, ρ,false, σ1, σ2, Σ (r))

δext ((s, e) , x) =







(

γ, ρ, true, σ1, σ2, Σ
M (r)

)

if x = 〈γ, ρ〉
(

γn, ρ, true, σ1, σ2, Σ
M (r)

)

if x = 〈γ, ρ〉
n

(

γ, ρ, false, σ1, σ2, Σ
i (r)

)

if x = false

λ (s) =















〈γ′, ρ′〉 if σ1 = true ∧ Σ (r) .INSTATE
(

ΣT (r)
)

〈γ′, φ〉 if σ1 = false ∧ Σ (r) .INSTATE
(

ΣT (r)
)

〈γ′, ρ〉 if σ2 = true ∧ Σ (r) .INSTATE
(

Σ⊥ (r)
)

〈γ′, φ〉 if σ2 = false ∧ Σ (r) .INSTATE
(

Σ⊥ (r)
)

In this notation, γ is a graph from the set of all possible graphs G. ρ is a node of this graph representing
the pivot. 〈γ′, ρ′〉 is the resulting packet after the transformation phase of the application of r. Note
how it is possible to have ρ′ = ρ. ǫ is used to determine if the ARule is active. The function Σ gives
the state of the rule r. It is illustrated by the automaton in Fig. 4. ΣM gives the state of r after the
matching phase, ΣT gives the state of r when it has at least one unprocessed match left and Σ⊥ gives
the state of r when there are none.

3.2 The CRule

The CRule is defined exactly like a coupledDEVS

CRule = 〈X, Y, N, {Mi|i ∈ N} , {Ii} , {Zi,j} , select〉



Fig. 4. The state automaton of a rule r

where

X = XCGraphIn × XCResetIn × XCNextIn

XCGraphIn = {〈γ, ρ〉} ∪ {φ}

XCResetIn = {false} ∪ {φ}

XCNextIn =
{

〈γ, ρ〉
n

}

∪ {φ}

Y = YCSuccessOut × YCFailOut

YCSuccessOut =
{〈

γ
′
, ρ

′
〉}

∪ {φ}

YCFailOut = {〈γ, ρ〉} ∪ {φ}

The select function is described by these prioritized algorithmic steps:

1. If the Selector is in the imminent list, choose the Selector.

2. Among all the rules that still have a match, choose a corresponding ARule from the imminent list
at random, no matter what depth it is at inside this CRule.

3. At this point no rule has any unprocessed match left, then choose any of the ARule in the imminent
list.

4. Finally, the imminent list contains either custom atomic blocks or Synchronizers. Proceed with a
first-in-first-out selection.

3.3 The Selector

The Selector is also an atomicDEVS

Selector = 〈X, Y, S, δint, δext, λ, τ 〉

where



T = R
+

0

S = {s = (t, f, 〈γ, ρ〉) |t, f ∈ {true, false} , γ ∈ G ∪ {φ} , ρ ∈ VG ∪ {φ}}

τ (s) =

{

0 if t = true ∨ f = true

∞ otherwise
, ∀s ∈ S

X = XASuccessIn × XAFailIn

XASuccessIn =
{〈

γ
′
, ρ

′
〉}

∪ {φ}

XAFailIn = {〈γ, ρ〉} ∪ {φ}

Y = YASuccessOut × YAFailOut × YAResetOut

YASuccessOut =
{〈

γ
′
, ρ

′
〉}

∪ {φ}

YAFailOut = {〈γ, ρ〉} ∪ {φ}

YAResetOut = {false} ∪ {φ}

ω : T → X

δint (s) = (false, false, 〈φ,φ〉)

δext ((s, e) , x) =

{

(true, false, 〈γ′, ρ′〉) if x = 〈γ′, ρ′〉
(false, true, 〈γ, ρ〉) if x = 〈γ, ρ〉

λ (s) =

{

{〈γ′, ρ′〉} ∪ {false} if s = (true, false)
{〈γ, ρ〉} ∪ {false} if s = (false, true)

3.4 The Synchronizer

The Synchronizer is also an atomicDEVS, parametrized by the number of threads θ to synchronize.

Synchronizerθ = 〈X, Y, S, δint, δext, λ, τ 〉

where



T = R
+

0

S = {s = (t, f, θ, 〈γ, ρ〉) |t, f, θ ∈ N, γ ∈ G ∪ {φ} , ρ ∈ VG ∪ {φ}}

τ (s) =

{

0 if t + f = θ

∞ otherwise
, ∀s ∈ S

X = XASuccessIn × XAFailIn

XASuccessIn =
{〈

γ
′
, ρ

′
〉}

∪ {φ}

XAFailIn = {〈γ, ρ〉} ∪ {φ}

Y = YASuccessOut × YAFailOut × YAResetOut

YASuccessOut =
{〈

γ
′
, ρ

′
〉}

∪ {φ}

YAFailOut = {〈γ, ρ〉} ∪ {φ}

ω : T → X

δint (s) = (0, 0, θ, 〈φ, φ〉)

δext ((s, e) , x) =

{

(t + 1, f, θ, 〈γ′, ρ′〉) if x = 〈γ′, ρ′〉
(

t, f + 1, θ, 〈γ, ρ〉
−1

)

if x = 〈γ, ρ〉

λ (s) =

{

{〈γ′, ρ′〉} if t ≥ 1
{〈γ, ρ〉} otherwise

On top of these constructs, pure atomic and coupled DEVS models are also allowed to be present in
MoTif models. This allows the modeller to add customised behaviour to the transformation model. De
facto, the MoTif code generator makes use of it, when compiling the model down to an executable
model transformation environment, by modelling the user of the transformation as well as an interface
between the rule model and the user.

4 Using MoTif for the AntWorld Simulator Case Study

Having described the DEVS-based transformation language, we will now explore how MoTif models
can be used. MoTif is a meta-modelled language and is provided with graphical visual concrete syntax.
Figure 5 shows the overall structure of the DEVS model for the AntWorld graph transformation.
Each block is shown with its ports along with the connections. The execution of the transformation is
triggered by some user control. User intervention (such as a possible interrupt of a running simulation)
is modelled in the User block, since the DEVS formalism allows one to specify pre-emptive external
interrupts through the external transition function. The Controller block acts as the interface of the
transformation system to the user: it receives user inputs and informs the user of the status of the
execution. It also models the management of the transformation steps. The two rule blocks, Round and
HumanStep, can both receive the host graph from the Controller and return a graph, transformed or
not. This approach was also used to model a PacMan game [6].
Figures 6 and 7 show the core of the transformation model. The top left triangle on each rule block
represents the GraphIn port. On the top right, the triangle with a line through it is the ResetIn port.
The two small filled triangles on the left represent the NextIn port. At the bottom left, the double-
lined triangle is the SuccessOut port and at the bottom right, the filled double-lined port is FailOut.
Pivot passing is enabled when there is a round at the summit of one of the triangular outports. For
the Selector and the Synchronizer, the thick-lined triangle is the SuccessIn port and the filled triangle
is the FailIn port. On the top of the Selector, the triangle with a line through it pointing up is the
ResetOut port.



Fig. 5. The overall transformation model in MoTif notation

For completeness, Table 1 lists all the rules with a brief description used for a solution to the extended
AntWorld case study using MoTif.

4.1 The Round Block

The AntWorld simulation is run in rounds. Figure 6(a) illustrates how a round is layered to first run
the AntMovement sub-transformation (Fig. 7(a)), then when no more rule in this CRule is applicable,
run the GenerateCircle (Fig. 6(b)) sub-transformation, and finally run the EndOfRound (Fig. 7(b))
sub-transformation.
At the level of the AntMovement CRule, the first rule looks for an ant to grab a food part. Having
already explained in detail the description of the ConnectNodes rule, the reader is referred to the
appendix for a description of all the rules.. The name of every ARule block matches the name of the
rule itself. If the GrabFood rule succeeds this same ant moves one step towards the hill. Then the graph
is sent back to the GrabFood ARule but via the ANextIn port to only choose the next matching and
apply the transformation. This loop continues till no more ants can move towards the hill. Afterwards,
an ant found in carry mode on the hill drops its food part and goes into search mode. When in search
mode, the ant first tries to follow a pheromone trail or else moves randomly in any possible direction,
either on a neighbouring node on the same circle or on a neighbouring node in the previous or following
circle. This search mode behaviour is achieved by the four ARules connected to the Selector which find
their corresponding matches in parallel and only one is chosen randomly to apply its transformation.
The scenario is repeated for every ant matched by the DropFood rule. When no ant is provided by
DropFood, all (iteratively chosen in random fashion) ants in search mode which have not moved yet
move to a neighbouring node.
The (possibly) new graph is passed onto the GenerateCircle CRule when there are no more ants left
to be moved. A check looking for an outermost circle node reached by an ant is first verified. If no



Rule Description

1 GrabFood
When an ant is on a node with food parts, remove a food part,
add some pheromones and put the ant becomes in carry mode.

2 MoveTowardsHill
When an ant is in carry mode and has not moved yet, make it
move to the neighbouring node on the previous circle.

3 DropFood
When an ant is on the hill and is in carry mode, increase the
food parts of the hill by one and put the ant in search mode and
allowed to move.

4 GoToPheromones
If the bound ant is in search mode and has not moved yet and
the neighbouring node on the next circle has more than nine
pheromones, the ant moves to that node.

5 GoToNextNodeOut
If the bound ant is in search mode and has not moved yet, it
moves to the neighbouring node on the next circle.

6 GoToNextNodeIn
If the bound ant is in search mode and has not moved yet, it
moves to the neighbouring node on the previous circle, if it is not
a hill.

7 GoToSameNodeOut
If the bound ant is in search mode and has not moved yet, it
moves to the neighbouring node on the same circle, in the direc-
tion of the link between the two nodes.

8 GoToSameNodeIn
If the bound ant in search mode and has not moved yet is on a
node, it moves to the neighbouring node on the same circle, in
the opposite direction of the link between the two nodes.

9 CheckOnOutCircle When an ant is on a node on the outmost circle, bind the node.

10 GenerateMAN

If the bound node is linked to a main axis node in the same
circle and the latter node has no neighbour in the next circle,
create three neighbours on the next circle linked to that node:
the central new node being another main axis node. Bind the
former main axis node.

11 GenerateGN
If the bound node is linked to a grid node node in the same circle
and the latter node has no neighbour in the next circle, create a
neighbour on the next circle linked to that node. Bind the former
grid node.

12 CreateFoodMAN1
If a grid node is linked to a main axis node that is the neighbour
on the next circle of the bound main axis node and the node
counter is 9, then that grid node is made to hold 100 food parts
and the node counter is increased by 3 (modulo 10).

13 CreateFoodMAN2
If a main axis node is the neighbour on the next circle of the
bound main axis node and the node counter is 8, then that main
axis node is made to hold 100 food parts and the node counter is
increased by 3 (modulo 10).

14 CreateFoodMAN3
If a grid node is linked to a main axis node that is the neighbour
on the next circle of the bound main axis node and the node
counter is 7, then that grid node holds 100 food parts and the
node counter is increased by 3 (modulo 10).

15 CreateFoodGN
If a grid node is the neighbour on the next circle of the bound
grid node and the node counter is 9, then that grid node holds
100 food parts and the node counter is increased by 1 (modulo
10).

16 UpdateNodeCtrMAN If a bound main axis node is found, then increase the node counter
by 3 (modulo 10).

17 UpdateNodeCtrGN If a grid axis node is found, then increase the node counter by 1

(modulo 10).

18 ConnectNodes cf. Section 2.2

19 AntBirth
When the hill has some food part, remove one food part and
create an ant in search mode that has not moved yet.

20 EvaporatePheromones
When a node has some pheromones multiply the number of
pheromones by 0.95, rounding to the next integer value.

21 Reset
When an ant has already moved, change it to not moved.

22 WeakenNode
When a node is found, divide its food parts by 2 and its
pheromones by 10. Bind this node.

23 KillOnNode If an ant is found on the bound node, delete the ant and keep the
binding.

24 WeakenSameOut
When a node is linked to the bound node in the same circle,
divide its food parts by 2 and its pheromones by 10. Keep the
binding.

25 KillSameOut
If an ant is found on a node linked to the bound node in the same
circle, delete the ant and keep the binding.

26 WeakenSameIn
When a node is linked to the bound node in the same circle,
divide its food parts by 2 and its pheromones by 10. Keep the
binding.

27 KillSameIn
If an ant is found on a node linked to the bound node in the same
circle, delete the ant and keep the binding.

28 WeakenNextOut
When a node is linked to the bound node in the next circle, divide
its food parts by 2 and its pheromones by 10. Keep the binding.

29 KillNextOut
If an ant is found on a node linked to the bound node in the next
circle, delete the ant and keep the binding.

30 WeakenNextIn
When a node is linked to the bound node in the previous circle,
divide its food parts by 2 and its pheromones by 10. Keep the
binding.

31 KillNextIn
If an ant is found on a node linked to the bound node in the
previous circle, delete the ant and keep the binding.

Table 1. The different rules for the extended AntWorld case study



node fulfils this criterion, the graph is passed onto the EndOfRound CRule. Otherwise, the generation
of nodes of the next circle in clockwise order is engaged. The creation of nodes starts at the node found
by the CheckOnOutCircle rule. The transformation model takes care of the case where the creation
happens at the level of a main axis node (three nodes are created, the middle one being also a main
axis node) or a default grid node (only a default grid node is created). The four CreateFood ARules
handle the specification that some food is placed on every tenth new node, the count of nodes being
tracked by the World element. Once all nodes on the new circle are created, they get connected through
ConnectNodes.
Finally, the end of the round is reached. For each food part on the hill one ant element is created; this
is depicted by the AntBirth, Selector pair which makes the rule execute “for as long as possible”. Note
how EvaporatePheromones and Reset are all FRules, denoted by the “F” in the ARule box. This forces
the rule to transform all its matches before outputting its packet. Note that this is safe, since no two
matchings can be critical pairs. Subsequently all pheromones are evaporated and a final clean up is
made. The order of these three ARules is arbitrary and could, in principle, be executed in parallel.

4.2 The HumanStep Block

The HumanStep semantics can be summarised by two actions: weakening and killing. Weakening a node
reduces its food parts and pheromones, if any. Killing removes all ants on a node. When the CRule
receives a graph, first an arbitrary node is chosen and the two actions are applied to it. WeakenNode
sends KillOnNode the node it has chosen along with the transformed graph to apply the killing rule
on this same node. Since all ants on the node are deleted, KillOnNode is an FRule. The same logic is
repeated for each of the four neighbouring nodes. In this case, every kill and weaken ARule pair on
neighbours can also be executed in parallel since the rules are parallel independent. As stated by the
Local Church-Russer theorem [7], two rules are said to be parallel independent if the matching elements
that overlap between the two LHS are preserved by each of the rules application. Proving the parallel
independence of eight rules3 is not the focus of this chapter and is therefore not discussed any further.

4.3 The Controller Block

The Controller atomic DEVS encodes the coordination logic between the external input and the trans-
formation model. It is the control that receives the graph to transform and the number of steps to
be applied. It also notifies the user about termination. The Controller sends the graph to the Round
sub-transformation model and waits for a graph in return. The returned graph may or may not be
modified. However this cycle is interrupted when it receives an event from its control_in port. It will
send the graph to the HumanStep sub-transformation model after Round has returned a graph. Every
time a graph is received back, the Controller will notify the user by sending it the graph it just received;
which happens to be after each round. This is repeated depending on the “steps” requests received. Note
that the system could in principle receive multiple graphs at any one time (thanks to the data flow
nature of DEVS), but we restricted it to a control flow in our case. Also, the user could request more
“steps” even when there are some steps left in the running transformation.

4.4 The User Block

User is a coupled DEVS block that sends graphs and “steps” control signals and receives termination
events. The graphs are Abstract Syntax Graphs (AToM3’s internal representation of models) of models

3 The four pairs WeakenSameOut,KillSameOut, WeakenSameIn,KillSameIn, WeakenNextOut,KillNextOut,
and WeakenNextIn,KillNextIn are parallel independent.



(a) (b)

Fig. 6. Sub-models of the transformation model: the Round CRule in (a) and the GenerateCircle in (b) CRule



(a) (b)

(c)

Fig. 7. Sub-models of the transformation model: the AntMovements CRule in (a), the EndOfRound in (b) CRule,
and the HumanStep in (c) CRule



in the AntWorld language. Steps represent the number of iteration cycles the user requests the simula-
tor to perform in a row. 0 ends the simulation. ∞ runs the simulation in continuous mode, executing
till termination (or until interrupted by an external signal). For our case study we let the simulation
run “as long as possible”. The reception of a Termination event means that either the requested number
of steps have been performed or that the execution has reached its end. In the latter case, no more
transformations can be applied to the graph. The inports and outports of the User block are connected
to the Controller block only. The User block is composed of two atomic sub-models: UserInput and
UserBehaviour. The User is separated into two sub-models to distinguish the decision making of per-
forming the HumanStep transformation from the interaction with the transformation system. Hence the
UserBehaviour ’s time advance is randomized to emulate the random time aspect of the human step-
ping on a node. This separation of the user is the key for extending standard graph transformations
to event-driven timed graph transformations. Note how this event-based selection of rules is different
from “Event-driven Graph Rewriting”, as introduced in [8]. The authors [8] let the rule itself determine
how to behave given an event. Hence it is the rule that “parses” the event. In our approach, the event
is “parsed” by a separate atomic DEVS block and the appropriate rule is applied accordingly. This
approach is therefore more modular.

4.5 Simulation Results

For the simulation experiments, an initial model was used with the following setup: 8 nodes, 1 hill, and
1 node counter and no ants. Figure 8 shows a snapshot of the model being transformed.
Some performance measurements have been collected at the end of each round. Table 2 shows some re-
sults per round, the number of circles present on the grid, the total number of nodes, the number of food
parts present on the grid, and the total number of ants alive. Furthermore, for each round we show how
long the transformation step took in seconds. So the 165th round took 7 minutes and 18 seconds while
the generation of the 13th circle (100 nodes) took about 48 minutes. The total execution time was 23,890
seconds. Also, on average over the first 165 rounds the transformation time is about 144 seconds and
without considering the time consumed by the GenerateCycle block, the average is 104 seconds. These
measurements were taken on a Windows Vista machine with an Intel Core 2 Duo CPU with 1.5 GHz
of RAM.

Round # Circles Nodes Food Ants Time (sec) Round # Circles Nodes Food Ants Time (sec)

1 2 16 0 8 0 43 7 196 1724 34 17

8 4 64 500 8 0 44 7 196 1713 35 7

9 5 100 900 8 15 55 7 196 1651 46 10

10 5 100 900 8 1 56 8 256 2237 47 207

11 5 100 900 8 1 65 9 324 2891 56 48

12 5 100 900 8 1 73 10 400 3640 64 698

13 5 100 899 8 0 103 10 400 3423 94 74

14 6 144 1297 8 39 104 11 484 4214 95 1218

15 6 144 1297 8 0 105 12 576 5107 96 1924

32 6 144 1267 23 1 106 12 576 5099 97 117

33 6 144 1264 24 2 107 13 676 6093 98 2881

38 6 144 1243 29 3 165 13 676 5523 156 438
Table 2. Performance Measurements



Fig. 8. Snapshot of the model in AToM3 while being transformed



5 Timed Graph Transformation

In this section we briefly discuss the introduction of time in transformation languages and how our
approach makes use of it.

5.1 Introduction of Time

DEVS is inherently a timed formalism. Hence, using DEVS as a semantic domain for graph transfor-
mation has a side effect of extending graph transformation with the notion of time.
Timed Graph Transformation, as proposed by Gyapay et al., [9], integrates time in only one particular
theoretical foundation of graph transformation: the double push-out approach [7]. They extend the
definition of a graph transformation rule by introducing, in the model and rules, a “chronos” element
that stores the notion of time. Rules can monotonically increase time.
In our approach, time is modelled and embedded both at the block entity level. In contrast with [9], it
is the execution of a rule that can increase time and not the rule itself. This is done through the time
advance of ARules. Hence, the control flow of the transformation has full access to it. As pointed out
in [9], time can be used as a metric to express how many time units are consumed to execute a rule.
Having time at the level of the block containing a rule rather than in the rule itself does not lose this
expressiveness.
Also, providing time to the control flow structure can enhance the semantics of the transformation.
AToM3 for example provides control over execution time delay for animation. To have more realistic
simulations in the AntWorld example, we can give meaning to the time delay between the executions
of different rules by modelling the user. For example, the ant movement rules may take more time than
the generation of new circles and the rules at the end of round may take no time.

5.2 Real-Time Model Transformation and Deployment

Having control over time for simulation purposes can be extended to real-time applications. In [10] we
have shown how using DEVS for programmed graph rewriting with time allows for simulation-based
design. This was achieved on a game example where first the UserBehaviour block was enhanced with
some artificial intelligence for path finding to optimize parameters such as the speed of the game. Then
a web-based game was synthesised from the simulation model, where the UserBehaviour block was
replaced by an actual human user. A real-time simulator, our Python implementation of RT-DEVS
[11], was used.
A similar approach has been employed for the extended AntWorld case study. From the meta-model
of the AntWorld formalism designed in AToM3, an Ajax/SVG-based Web application was (mostly)
synthesised (yet another model transformation). The web page consists of a visual representation of a
given model. While the transformation runs, ants move and new node circles are created. Each node
is equipped with an event handler listening to a mouse click from the user. This allows the user to
“interrupt” the Round sub-transformation and trigger the HumanStep sub-transformation, passing the
clicked node as initial pivot.

6 Related Graph Transformation Tools

Many graph transformation tools and languages have been developed during the past decade. Hence,
we present those that describe a transformation in a controlled way (i.e., programmed graph rewriting).
The Graph Rewriting And Transformation (GReAT) tool [12,13,14] treats the source model, the target
model, and the temporary objects created during the transformation as a single graph using a unified



meta-model. Rules consist of a pattern graph described using UML Class Diagram notation where the
elements can be marked to match a pattern (Bind role), to remove elements (Delete role), or to create
elements (CreateNew role). A guard is associated with each production; this is an Object Constraint
Language (OCL) expression that operates on vertex and edge attributes. An attribute mapping can
also be defined to generate values of vertex and edge attributes with arithmetic and string expressions.
GReAT’s control flow language uses a control flow diagram notation where a production is represented
by a block. Sequencing is enabled by the use of input and output interfaces (Inports and Outports) of
a block. Packets (the graph model) are fed to productions via these ports. The Inport also provides an
optimization in the sense that it specifies an initial binding for the start of the pattern matcher. Two
types of hierarchical rules are supported. A block pushes all its incoming packets to the first internal
rule, whereas a forblock pushes one packet through all its internal rules. Branching is achieved using
test case rules, consisting of a left-hand side (LHS) and a guard only. If a match is found, the packet
will be sent to the output interface. Parallel execution is possible when the Outports of a production
are connected to different Inports. There is no notion of time.

In the Visual Modelling and Transformation System (VMTS) [15,16], the LHS and RHS of a graph
transformation rule are represented as two separate graphs. They can be linked (internal causality)
by Extensible Stylesheet Language scripts. These scripts allow attribute operations and represent the
create and modify operation of the transformation step. Also, parameters and pivot nodes can be
passed to a step for optimization. The programmed graph rewriting system of VMTS is the VMTS
Control Flow Language (VCFL), a stereotyped Activity Diagram [17]. This abstract statemachine
handles pre- and post-conditions of rules. Sequencing is achieved by linking transformation steps; loops
are allowed. Branching in VCFL is conditioned by an OCL expression. In the case of multiple branching
(step connected to more than one step), only the first successfully evaluated branch will apply its
transformation step. Iteration is controlled by loops in a sequence of steps. A branch can also be
added to provide conditional loops. Hierarchical steps are composed of a sequence of primitive steps.
A primitive step ends with success if the terminating state is reached and ends with failure when a
match fails. However, in hierarchical steps, when a decision cannot be found at the level of primitive
steps, the control flow is sent to the parent state or else the transformation fails. Parallelism is not yet
implemented in VCFL. VMTS is language-oriented towards the .NET framework. There is no notion
of time.

The PROgrammed Graph REwriting System (PROGReS) [18] was the first fully implemented environment
to allow programming through graph transformations. It has very advanced features not found in
other tools such as back-tracking. Insights gained through the development of PROGReS have led to
FUJABA (From UML to Java and Back Again) [19,20], a completely redesigned graph transformation
environment based on Java and UML. FUJABA’s programmed graph rewriting system is based on Story
Charts, an of Story Diagrams [20]. An activity in such a diagram contains either graph rewrite rules,
which adopt a Collaboration Diagram-like representation [17], or pure Java code. The graph schemes
for graph rewriting rules exploit UML class diagrams. With the expressiveness of Story Charts, graph
transformation rules can be sequenced (using success and failure guards on the linking edges) along
with activities containing code. Branching is ensured by the condition blocks which act like an if-else
construct. An activity can be a for-all story pattern, which acts like a while loop on a transformation
rule. FUJABA’s approach is implementation-oriented. Classes define method signatures and method
content is described by Story Chart diagrams. All models are compiled to Java code. There is no notion
of time.

The MOFLON [21] toolset uses the FUJABA engine for graph transformation, since the latter already
features UML-like graph schemata. It provides an environment where transformations are defined by
Triple Graph Grammars (TGGs) [22]. These TGGs are subsequently compiled to Story Diagrams. This
adds declarative power to FUJABA similar to that of the OMG’s QVT (Query/View/Transformation
– www.omg.org).



Although all these tools provide a control flow mechanism for graph transformations, many designed a
new formalism for this purpose. Also, none of these exploit event-based transformations; MoTif not only
allows that but the user and its interaction with the executing transformation can even be explicitly
modelled, offering a user-centric approach to model transformations. Note that in the abovementioned
tools, user-tool interaction is hard-coded. Furthermore, the notion of time is absent in these languages.
Some do provide sophisticated, user friendly graphical interfaces while others are more efficient.

7 Conclusions

In this chapter, we have introduced the DEVS formalism as an appropriate semantic domain for “pro-
grammed” model transformation. As DEVS is a timed, highly modular, hierarchical formalism for the
description of reactive systems, control structures such as sequence, choice, and iteration are easily
modelled. Non-determinism and parallel composition also follow from DEVS’ semantics. Each rule of a
model transformation is encoded in an atomic-DEVS block (this is comparable to the atomicity of the
rules in transformation tools such as PROGReS). The encoding is done automatically, by compiling
declarative transformation rules into appropriate atomic-DEVS functions. Model transformation build-
ing blocks send and receive events through their output and input ports respectively. In those events,
to-be-transformed graphs as well as optimization hints (such as pivot nodes in the tools GReAT and
VMTS) are encapsulated.
Other events, related to information on the order in which rules are executed, are also fed to the
channels (such as the event for resetting an ARule for example). The DEVS formalism is compositional:
the behaviour of a DEVS block is independent of the context it is used in. This allows for modular
re-use of building blocks and is one of the main reasons for choosing DEVS as a semantic domain for
model transformation.
The use of DEVS allows for multi-level hierarchical modelling. Sequencing is treated as in GReAT by
simply connecting block ports. Iteration and loops can thus be modelled. A given block can be a test
block for branching if we give it such a semantics (i.e., no transformation occurs). Parallel execution
is provided by the DEVS formalism when an output port is connected to multiple input ports. If true
parallelism is needed, the parallel DEVS [23] formalism can be used.
A side-effect of the use of DEVS as a semantic domain is the explicit introduction of the notion of
time. This allows one to model a time-advance for every rule as well as to interrupt (pre-empt) rule
execution.
The proposed approach was illustrated through the modelling of an extended version of the AntWorld
model transformation benchmark. We showed how the use of DEVS ultimately allows for real-time
simulation and execution.
Performance-wise, the generated code for individual transformation rule needs to be more efficient.
Recent results from other transformation tools, such as VIATRA [24], indicate how higher performance
may be achieved. Increasing the expressiveness of the rule pattern specification language is also ongoing
work.

References

1. 2008/07/21. [Online]. Available: http://www.fots.ua.ac.be/events/grabats2008/
2. B. Zeigler, Multifacetted Modelling and Discrete Event Simulation. Academic Press, 1984.
3. J.-S. Bolduc and H. Vangheluwe, “The modelling and simulation package pythonDEVS for classical

hierarchical DEVS,” McGill University, MSDL Technical Report MSDL-TR-2001–01, June 2001.
4. E. Syriani and H. Vangheluwe, “Using MoTif for the AntWorld simulator case study,” in GraBaTs

2008 Tool Contest, P. Van Gorp and A. Rensink, Eds., 2008.



5. J. de Lara and H. Vangheluwe, “AToM3: A tool for multi-formalism and meta-modelling,” in
FASE’02, ser. LNCS, R.-D. Kutsche and H. Weber, Eds., vol. 2306. Grenoble(France): Springer-
Verlag, April 2002, pp. 174–188.

6. E. Syriani and H. Vangheluwe, “Programmed graph rewriting with DEVS,” in AGTIVE’07, ser.
LNCS, M. Nagl and A. Schürr, Eds. Springer-Verlag, October 2007.

7. H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozenberg, Handbook of graph grammars and computing
by graph transformation, Volume 1: Foundations, G. Rozenberg, Ed. World Scientific Publishing
Co., Inc., 1997.

8. E. Guerra and J. de Lara, “Event-driven grammars: Relating abstract and concrete levels of visual
languages,” SoSym, vol. 6, no. 6, pp. 317–347, 2007.

9. S. Gyapay, R. Heckel, and D. Varró, “Graph transformation with time: Causality and logical clocks,”
in Procedings of ICGT 2002: 1st International Conference on Graph Transformation, ser. LNCS,
vol. 2505. Barcelona(Spain): Springer-Verlag, October 2002, pp. 120–134.

10. E. Syriani and H. Vangheluwe, “Programmed graph rewriting with time for simulation-based de-
sign,” in ICMT’08, ser. LNCS, A. Pierantonio, A. Vallecillo, J. Bézivin, and J. Gray, Eds., vol.
5063. Zürich(Switzerland): Springer-Verlag, July 2008, pp. 91–106.

11. J. S. Hong, H.-S. Song, T. G. Kim, and K. H. Park, “A real-time discrete event system specification
formalism for seamless real-time software development,” DEDS, vol. 7, pp. 355–375, 1997.

12. A. Agrawal, “Metamodel based model transformation language,” in OOPSLA’03: Companion of
the 18th annual ACM SIGPLAN conference on Object-oriented programming, systems, languages
and applications. Anaheim(USA): ACM Press, 2003, pp. 386–387.

13. A. Agrawal, G. Karsai, Z. Kalmar, S. Neema, F. Shi, and A. Vizhanyo, “The design of a language
for model transformations,” SoSym, vol. 5, no. 3, pp. 261–288, September 2005.

14. A. Vizhanyo, A. Agrawal, and F. Shi, “Towards generation of high-performance transformations,”
in Proceedings of the Third International Conference on Generative Programming and Component
Engineering, ser. LNCS, G. Karsai and E. Visser, Eds., vol. 3286. Springer-Verlag, 2004, pp.
298–316.

15. L. Lengyel, T. Levendovszky, G. Mezei, and H. Charaf, “Control flow support in metamodel-based
model transformation frameworks,” in EUROCON’05. Belgrade(Serbia): IEEE, November 2005,
pp. 595–598.

16. ——, “Model transformation with a visual control flow language,” IJCS, vol. 1, no. 1, pp. 45–53,
2006.

17. Object Management Group, Unified Modeling Language Superstructure, February 2009.
18. D. Blostein and A. Schürr, “Computing with graphs and graph rewriting,” SPE, vol. 9, no. 3, pp.

1–21, 1999.
19. U. Nickel, J. Niere, and A. Zündorf, “Tool demonstration: The FUJABA environment,” in ICSE’00.

Limerick(Ireland): ACM Press, June 2000, pp. 742–745.
20. T. Fischer, J. Niere, L. Turunski, and A. Zündorf, Theory and Application of Graph Transforma-

tions, ser. LNCS. Paderborn(Germany): Springer-Verlag, November 2000, vol. 1764, chapter Story
diagrams: A new graph grammar language based on the Unified Modelling Language and Java, pp.
296–309.

21. C. Amelunxen, A. Königs, T. Rötschke, and A. Schürr, “MOFLON: A standard-compliant meta-
modeling framework with graph transformations,” in Model Driven Architecture - Foundations and
Applications: Second European Conference, ser. LNCS, A. Rensink and J. Warmer, Eds., vol. 4066.
Springer-Verlag, 2006, pp. 361–375.

22. A. Schürr, “Specification of graph translators with triple graph grammars,” in Proceedings of
the 20th International Workshop on Graph-Theoretic Concepts in Computer Science, ser. LNCS,
G. Tinhofer, Ed., vol. 903. Heidelberg(Germany): Springer-Verlag, June 1994, pp. 151–163.

23. A. C.-H. Chow and B. Zeigler, “Parallel DEVS: a parallel, hierarchical, modular modeling formalism
and its distributed simulator,” TSCS, vol. 13, pp. 55–67, 1996.



24. D. Varró and A. Balogh, “The model transformation language of the VIATRA2 framework,” Science
of Computer Programming, vol. 68, no. 3, pp. 214–234, 2007.


