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Abstract. In this article, we propose to use the Discrete EVent system
Specification (DEVS) formalism to describe and execute graph transfor-
mation control structures. We provide a short review of existing pro-
grammed graph rewriting systems, listing the control structures they
provide. As DEVS is a timed, highly modular, hierarchical formalism for
the description of reactive systems, control structures such as sequence,
choice, and iteration are easily modelled. Non-determinism and parallel
composition also follow from DEVS’ semantics. The proposed approach
is illustrated through the modelling of a simple PacMan game, first in
AToM3 and then using DEVS. We show how the use of DEVS allows for
modular modification of control structure.

1 Introduction

In 1996, Blostein et al.[1] described some issues regarding the, at that time very
sporadic, practical use of graph rewriting. Graphs are a versatile and expressive
data representation, and there are many advantages to the explicit representa-
tion (as opposed to encoding in the form of programs) of graph transformations.
Issues such as expressiveness, scale-ability and re-use of models of graph trans-
formation as well as the ability to integrate such models with traditional software
components were considered critical enablers for wide-spread use of graph trans-
formations. During the last decade, several of these issues have been addressed
and tools have been developed. In particular, tools such as FUJABA [2] allow for
programmed graph rewriting. The purpose of programmed graph rewriting is to
be able to model the control structure of (graph) transformation. This is done
in terms of control flow primitives such as sequence, branching (choice), and
looping (iteration). Hierarchical encapsulation allows for modular construction
(and re-use) of control flow structures. Some tools add expressiveness through
non-determinism and parallel composition. In general, it is also desirable for a
control structure language to be target (programming) language neutral. The
explicit incorporation of time is rare in current tools. The above requirements
were summarized recently in [3].

In our quest for the most appropriate formalism (i.e., which optimally satis-
fies the above requirements) to describe programmed graph transformation, we
now briefly present the features of tools with programmed graph transformation
capabilities, based on [4]. Note that our own AToM3 [5,6], “A Tool for Multi-
formalism and Meta-Modelling” which has very limited (priority-based) control
structuring, will be introduced in section 3.
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Graph Rewriting and Transformation (GReAT). [7,8,9] treats the source
model, the target model and the temporary objects created during the transfor-
mation as a single graph using a unified metamodel.

The GReAT graph transformation language uses the Single Pushout algebraic
approach for subgraph matching. Rules consist of a pattern graph described us-
ing UML Class Diagram notation where the elements can be marked to match a
pattern (Bind role), to remove elements (Delete role) or to create elements
(CreateNew role). A guard is associated with each production; this is an OCL
expression that operates on vertex and edge attributes. An attribute mapping
can also be defined to generate values of vertex and edge attributes with arith-
metic and string expressions.

GReAT’s control flow language uses a control flow diagram notation where a
production is represented by a block. Sequencing is enabled by the use of input
and output interfaces (Inports and Outports) of a block. Packets (the graph
model) are fed to productions via these ports. The Inport also provides an
optimization in the sense that it specifies an initial binding for the start of the
pattern matcher. Two types of hierarchical rules are supported. A block pushes
all its incoming packets to the first internal rule, whereas a forblock pushes one
packet through all its internal rules. Branching is achieved using test case rules,
consisting of a left-hand side (LHS) and a guard only. If a match is found, the
packet will be sent to the output interface. Parallel execution is possible when
the Outports of a production are connected to different Inports. There is no
notion of time.
Visual Modelling and Transformation System (VMTS). In VMTS [3,10],
the LHS and right-hand side (RHS) of a graph transformation rule are repre-
sented as two separate graphs. They can be linked (internal causality) by XSL
scripts. These scripts allow attribute operations and represent the create and
modify operation of the transformation step. Also, parameters and pivot nodes
can be passed to a step for optimization.

The programmed graph rewriting system of VMTS is the VMTS Control Flow
Language (VCFL), a stereotyped Activity Diagram. This abstract statemachine
handles pre- and post-conditions of rules. Sequencing is achieved by linking trans-
formation steps; loops are allowed. Branching in VCFL is conditioned by an OCL
expression. In case of multiple branching (step connected to more than one step),
only the first successfully evaluated branch will apply its transformation step. It-
eration is controlled by loops in a sequence of steps. A branch can also be added
to provide conditional loops. Hierarchical steps are composed of a sequence of
primitive steps. A primitive step ends with success if the terminating state is
reached and ends with failure when a match fails. However, in hierarchical steps,
when a decision cannot be found at the level of primitive steps, the control
flow is sent to the parent state or else the transformation fails. Parallelism is
not yet implemented in VCFL. VMTS is language-oriented towards the .NET
framework. There is no notion of time.

PROGReS, FUJABA and MOFLON. The PROgrammed Graph REwriting
System (PROGReS) [11,12] was the first fully implemented environment to allow
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programming through graph transformations. It has very advanced features not
found inother tools suchasback-tracking. Insightsgainedthroughthedevelopment
of PROGReS have led to FUJABA (From UML to Java and Back Again) [2,13], a
completely redesigned graph transformation environmentbased onJava andUML.
FUJABA’s programmed graph rewriting system is based on Story Charts, a com-
bination of Story Diagrams [13] and Statecharts. An activity in such a diagram
contains either graph rewrite rules, which adopt Collaboration Diagram-like rep-
resentation, or pure Java code. The graph schemes for graph rewriting rules exploit
UML class diagrams. With the expressiveness of Story Charts, graph transforma-
tion rules can be sequenced (using success and failure guards on the linking edges)
along with activities containing code. Branching is ensured by the condition blocks
which act like an if-else construct. An activity can be a for-all story pattern, which
acts like a while loop on a transformation rule.

FUJABA’s approach is implementation-oriented. Classes define method sig-
natures and method content is described by Story Chart diagrams. All models
are compiled to Java code. There is no notion of time.

The MOFLON [14] toolset uses the FUJABA engine for graph transforma-
tion, since the latter already features UML-like graph schemata. It provides
an environment where transformations are defined by Triple Graph Grammars
(TGGs) [15]. These TGGs are subsequently compiled to Story Diagrams [13].
This adds declarative power to FUJABA similar to that of the OMG’s QVT
(Query/View/Transformation – www.omg.org).

In the sequel, we propose the Discrete EVent system Specification (DEVS)
formalism [16] to describe transformation control structures. Using DEVS gives
us sufficient expressiveness to match that of the tools described above, thus
satisfying the requirements for transformation control structure description lan-
guages listed before. Furthermore, as with the adaptation of known formalisms
such as Activity Diagrams in tools such as FUJABA, using DEVS means that
no new formalism needs to be invented (and its properties investigated). Also,
existing tools for analysis, simulation, and code synthesis may thus be re-used
for the control structure part of a graph transformation model.

The remainder of this paper is structured as follows. Section 2 describes the
DEVS formalism. Section 3 describes PacMan, a small case study, and how it is
modelled in AToM3. Section 4 describes how the priority-based graph rewriting
semantics of AToM3 can be modelled using DEVS. The combination of DEVS
with Graph Rewriting rules is very elegant and orthogonal. It is shown how the
modularity of DEVS allows for easy modification of the transformation control
structure. This modification includes the specification of real-time user interac-
tion. Section 5 describes the advantages of using DEVS for programmed graph
transformation and section 6 summarizes and concludes.

2 Discrete Event System Specification (DEVS)

This section introduces the Discrete EVent system Specification (DEVS) formal-
ism. In the rest of the paper, it will be shown how the modularity and expressive-
ness of DEVS are well suited to encapsulate graph rewriting building blocks.
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The DEVS formalism was introduced in the late seventies by Bernard Zeigler
to develop a rigorous basis for the compositional modelling and simulation of
discrete event systems [16]. The DEVS formalism has been successfully applied
to the design, performance analysis and implementation of a plethora of complex
systems.

A DEVS model is either atomic or coupled. An atomic model describes the
behaviour of a reactive system. A coupled model is the composition of several
DEVS sub-models which can be either atomic or coupled. Submodels have ports,
which are connected by channels. Ports are either input or output. Ports and
channels allow a model to receive and send signals (events) from and to other
models. A channel must go from an output port of some model to an input port
of a different model, from an input port of a coupled model to an input port of
one of its sub-models, or from an output port of a sub-model to an output port
of its parent model.

An atomic DEVS1 model is a tuple (S, X, Y, δint, δext, λ, τ) where S is a
set of sequential states, one of which is the initial state. X is a set of allowed
input events. Y is a set of allowed output events. There are two types of
transitions between states: δint : S → S is the internal transition function,
δext : Q × X → S is the external transition function, Associated with each
state are τ : S → �

+
0 , the time-advance function and λ : S → Y , the output

function. In this definition, Q = {(s, e) ∈ S × �
+ | 0 ≤ e ≤ τ(s)} is called

the total state space. For each (s, e) ∈ Q, e is called the elapsed time. �+
0

denotes the positive reals with zero included.
Informally, the operational semantics of an atomic model is as follows: the

model starts in its initial state. It will remain in any given state for as long as
the time-advance of that state specifies or until input is received on some port. If
no input is received, after the time-advance of the state expires, the model first
(before changing state) sends output as specified by λ, and then instantaneously
jumps to a new state specified by δint. If input is received however before the
time for the next internal transition, then it is δext which is applied. The external
transition depends on the current state, the time elapsed since the last transition
and the inputs from the input ports.

The following definition formalizes the concept of coupled DEVS models. A
coupled DEVS1 model named D is a tuple (X, Y, N, M, I, Z, select) where X is
a set of allowed input events and Y is a set of allowed output events. N is a set
of component names (or labels) such that D �∈ N . M = {Mn | n ∈ N, Mn is a
DEVS model (atomic or coupled) with input set Xn and output set Yn} is a set of
DEVS sub-models. I = {In | n ∈ N, In ⊆ N ∪{D}} is a set of influencer sets
for each component named n. I encodes the connection topology of sub-models.
Z = {Zi,n | ∀n ∈ N, i ∈ In.Zi,n : Yi → Xn or ZD,n : X → Xn or Zi,D : Yi → Y }
is a set of transfer functions from each component i to some component n.
select : 2N → N is the select or tie-breaking function. 2N denotes the powerset
of N (the set of all sub-sets of N).

1 For simplicity, we do not present a formalization of the concept of “ports”.
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The connection topology of sub-models is expressed by the influencer set of
each component. Note that for a given model n, this set includes not only the ex-
ternal models that provide inputs to n, but also its own internal sub-models that
produce its output (if n is a coupled model.) Transfer functions represent output-
to-input translations between components, and can be thought of as channels
that make the appropriate type translations. For example, a “departure” event
output of one sub-model is translated to an“arrival” event on a connected sub-
model’s input. The select function takes care of conflicts as explained below.

The semantics for a coupled model is, informally, the parallel composition of
all the sub-models. A priori, each sub-model in a coupled model is assumed to
be an independent process, concurrent to the rest. There is no explicit method
of synchronization between processes. Blocking does not occur except if it is ex-
plicitly modelled by the output function of a sender, and the external transition
function of a receiver. There is however a serialization whenever there are multi-
ple sub-models that have an internal transition scheduled to be performed at the
same time. The modeller controls which of the conflicting sub-models undergoes
its transition first by means of the select function.

We have developed our own DEVS simulator called pythonDEVS [17], grafted
onto the object-oriented scripting language Python. In a recent M.Sc. thesis [18],
a compiler for Modelica (www.modelica.org) textual representations of DEVS
models as well as a visual modelling environment were developed.

3 A Small Case Study: PacMan in AToM3

In this section, we describe the simple priority-based graph rewriting in our
meta-modelling and model transformation tool AToM3 [5,6]. In the next section,
this hard-coded control structure will be modelled explicitly using DEVS. As an
example, we use a simplified version of the PacMan video game used in Heckel’s
tutorial introduction of graph transformation [19].

3.1 The PacMan Language (Abstract and Concrete Syntax)

The PacMan language has five distinct elements: PacMan, Ghost, Food, GridNode
and ScoreBoard. Fig. 1 shows the meta-model (model of the abstract syntax) of
this modelling language in AToM3. PacMan, Ghost and Food objects can be linked
to GridNode objects; note the use of associations. This depicts that these objects
can be “on” a gridNode. The self-association between GridNode objects represents
the geometric organization of the game area, similar to the classical PacMan video
game. At a semantic level, this will also denote that PacMan and Ghost “may
move” to a connected gridNode. A Scoreboard object holds an integer valued at-
tribute score. The reason for having different associations from the classes to the
GridNode class is for concrete visual syntax purposes. AToM3 allows one to as-
sociate a visual representation to each class and association. Associations can be
concretely represented visually by means of arrows or by a geometric/topologi-
cal constraint relation, such as a PacMan being centered over a GridNode. Note
how in this example there are no restrictions on the number of instances of each
element, nor on the number of links to a GridNode instance.
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Fig. 1. The PacMan Meta-Model

3.2 The PacMan Semantics (Graph Grammar)

The operational semantics of the PacMan formalism is defined in a Graph Gram-
mar model which consists of a number of rules. In the rules in the following
figures, concrete syntax is used. this is a useful feature for domain-specific mod-
elling unique to AToM3. Dashed lines were added to explicitely show the “on”
links. Rule 1 in Fig. 2 shows killing: when a Ghost object is on a GridNode
which has a PacMan object, the PacMan is removed. Rule 2 in Fig. 3 shows
eating: when a PacMan object is on a GridNode which has a Food object, Food
is removed and the score gets updated (using an attribute update expression).
Rule 3 in Fig. 4 expresses the movement of a Ghost object to the right and rule

Fig. 2. PacMan Semantics: Ghost kills PacMan rule
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Fig. 3. PacMan Semantics: PacMan eats Food rule

Fig. 4. PacMan Semantics: Ghost moves right rule

8 in Fig. 5 the movement of a PacMan object to the left. Similar rules to move
Ghosts and PacMan objects up, down, left and right are part of the grammar but
are not shown. Rules 1 and 2 have priorities 1 and 2 respectively. All remaining
rules have the same priority 3.

3.3 AToM3’s Graph Grammar Semantics

AToM3’s graph rewriting engine supports priority-based execution of rewrite
rules. Rules are grouped based on their priority. Rewriting starts with the
highest-priority group of rules. If for at least one of the rules in the group, a match
if found in the host graph, one of those rules is chosen non-deterministically. Sub-
sequently, the re-write is performed on the host graph and control goes back to
the group of rules with the highest priority. If none of the rules in the group

Fig. 5. PacMan Semantics: PacMan moves left rule
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match, control goes to the group of rules with the next lower priority, and so
on. If no groups of rules are left (even the lowest-priority rules do not yield a
match), the transformation terminates. In AToM3, execution can be done step-
by-step (for simulation purposes) or in continuous mode (useful for terminating
model-to-model transformations). Note that AToM3 allows the specification of
(real-)time taken by each rule-rewrite. The time may be extracted from model
attributes. This allows for meaningful simulation animation.

4 Programmed Graph Rewriting Using DEVS

Fig. 6. The overall coupled DEVS model

The purpose of programmed
graph rewriting is to explic-
itly model the control flow
of (graph) transformation. This
is done in terms of control
flow primitives such as se-
quence, choice, and looping. Hi-
erarchical encapsulation allows
modular construction (and re-
use) of control flow structures.
Some tools increase expressive-
ness through constructs such
as non-determinism and paral-
lelism. Rather than inventing a
new language for control struc-
ture description, we propose to
use the DEVS formalism, with
its precisely defined syntax and
semantics, presented above.

As an illustration of how this
approach satisfies the require-
ments stated earlier, we ex-
plicitly model AToM3’s Graph
Transformation execution en-
gine described above. The start-
ing point of our approach is to
encapsulate to-be-transformed graphs in DEVS events. These events will be sent
between the DEVS building blocks encoding graph transformation rules. Addi-
tionally, events may encode control signals which can be sent to designated ports
of DEVS building blocks. Only atomic DEVS models perform actual transfor-
mations. Coupled DEVS models allow one to hierarchically construct complex
transformation models. Atomic DEVS models are highly encapsulated (they can
only communicate via their input- and output-ports) and can be used to repre-
sent a variety of models in different formalisms, ranging from code (in the target
language of the DEVS simulator used – Python in our case) to Statecharts. The
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only constraint is that building blocks need to accept graphs on their input port
and, after transformation, produce graphs on their output port. The topology of
the coupled DEVS models encodes the control structure. As a result of the DEVS
semantics, the flow of events (graphs) through a DEVS coupled model resembles
data flow more than control flow. In the construction which follows, we will only
allow one model to flow through the network at any time. This effectively makes
data flow and control flow identical. In the future, we will however exploit the
data flow nature of DEVS networks, in particular for parallel implementations.

Fig. 6 shows the overall structure of the DEVS model for AToM3-style graph
transformation. Each block is shown with its ports along with the connections.
Execution (transformation) is triggered by some user control. User intervention
(such as a possible interruption of a running simulation) is modelled in the
UserInput block. Note that the DEVS formalism allows one to specify external
pre-emptive interrupts through the external transition function. The Controller
block acts as the interface of the transformation system to the user: it receives
user inputs and informs the user of the status of the execution. It also models
the transformation steps management. The GGRules block receives the host
graph from the Controller and returns the transformed graph. The Python code
below (synthesized from the control flow model given in Fig. 6) shows a small
part of the pythonDEVS representation of the overall model. Instances of atomic
DEVS building blocks corresponding to the control flow model building blocks
are connected. Note that in our implementation, we have added a Trace atomic
DEVS block to log all transformation steps.

1 class PacManGGExec(CoupledDEVS):
2 def __init__(self, graph, steps):
3 self .USERINPUT = self.addSubModel(UserInput(graph=graph, steps=steps))
4 self .CONTROLLER = self.addSubModel(Controller())
5 self .RULES = self.addSubModel(GGRules())
6 self .TRACE = self.addSubModel(Trace())
7 self .connectPorts(self .USERINPUT.g_out, self.CONTROLLER.g_init)
8 self .connectPorts(self .USERINPUT.out_step, self.CONTROLLER.in_step)
9 self .connectPorts(self .CONTROLLER.done_send, self.USERINPUT.done_rcv)

10 self .connectPorts(self .CONTROLLER.g_out, self.RULES.g_in)
11 self .connectPorts(self .RULES.trace, self.TRACE.in_rule)

4.1 The User Input Block

UserInput is an atomic DEVS block that sends graphs and “steps” control sig-
nals and receives termination events. The graphs are Abstract Syntax Graphs
(ASGs), AToM3’s basic internal data structure, of models in the PacMan lan-
guage. Steps represent the number of steps the user requests the simulator to
perform in a row. 0 ends the simulation. ∞ runs the simulation in continuous
mode, executing till termination (or until interrupted by an external signal).
The reception of a Termination event means that either the requested number
of steps have been performed or that the execution has reached its end. In the
latter case, no more transformations can be applied to the graph. The inports
and outports of the UserInput block are connected to the Controller block.
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Fig. 7. Managing priorities

4.2 The Controller Block

The Controller atomic DEVS block encodes the coordination logic between the
external input and the transformation model. It is the control that receives the
graph to transform and the number of steps to be applied. It also notifies the user
about termination. The Controller sends the graph to the transformation model
and waits for a graph in return. The returned graph may or may not be modified.
This is repeated depending on the “steps” requests received. Note that the system
could in principle receive multiple graphs at any time (thanks to the data flow
nature of DEVS). Also, the user could request more “steps” even when there are
some steps left in the running transformation.

4.3 The Graph Grammar Rule Blocks and Priority

The graph rewriting rules presented in section 3.2 including the semantics of pri-
oritized rewriting, are encoded in the transformation block GGRules. GGRules
is a coupled DEVS model which receives a graph and outputs a graph. GGRules
is composed of one or more GGRule blocks. Each GGRule satisfies certain prop-
erties. There is at most one rule that is applied per step. If a rule fails, the graph
is sent to the next rule until the last rule is reached. If the last rule also fails,
then no rules have been applied in this step, hence GGRules sends back its input
graph. Otherwise it is the newly transformed graph that is sent back, directly
from the rule where the match occurred.

The AToM3 graph rewriting system allows assigning priorities to rules to order
their execution. If multiple rules happen to have the same priority, AToM3 non-
deterministically chooses one of those yielding a match. A Synchronizer block is
introduced to model this situation in our DEVS model. This is depiced in Fig. 7.
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All rules with the same priority (also known as a layer) will receive their input
in parallel from the previous layer. A failed matching of a rule is notified to the
Synchronizer. If it has received failure notices from all rules in the layer, it passes
the input to the next layer. On the other hand, as soon as one rule has successfully
executed, it notifies the Synchronizer which, in turn, aborts the execution of the
remaining rules. It then sends the output to GGRules. As long as the content of
a GGRule block is a valid atomic DEVS and it accepts and returns ASGs, it can
be arbitrary (hand-coded, compiled or interpreted from some specification). In
the case of this example, we compile each AToM3 PacMan rule into an execute
method used inside an atomic DEVS external transition. A small excerpt of the
code synthesized from the rule to match the LHS of the Kill rule is given below:

1 class Kill (Rule):
2 def execute( self , graph):
3 # Find matching subgraph #
4 match = 0
5 try:
6 for ghost in graph.listNodes[ ’GhostV3’]:
7 for ghostLink in ghost.out_connections_:
8 if ghostLink.__class__.__name__ == ’GhostLinkV3’:
9 for pacman in contains.out_connections_:

10 if pacman.__class__.__name__ == ’PacmanV3’:
11 for pacLink in contains.out_connections_:
12 if pacLink.__class__.__name__ == ’PacLinkV3’:
13 match = 1 # First occurence of the subgraph
14 break
15 if match: break
16 if match: break
17 if match: break
18 except:
19 return None
20 if not match:
21 return None
22 # Transform subgraph #
23 ....
24 return graph

4.4 Extending the Model

To illustrate the power of this formalism to describe control flow of graph rewrint-
ing systems, we now extend the previous model. Consider the PacMan formalism
described in section 3 and the graph grammar that described its behaviour. Sup-
pose we would like more interaction with the user. In the model used before, the
simulation could be triggered by the user specifying the numbers of steps to be
performed or continuous execution (till termination). We will now allow user
control of PacMan movement to more closely mimic the behaviour of the classic
PacMan video game. Fig. 8 shows the extended model. The UserInput block re-
mains unchanged, with an outport added. The user can now send a pressed Key
code to the Controller block. This enables us to simulate the user interrupts to
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move the PacMan up, down, left or right. The behaviour of the Controller block
is the same as long as no Key is recieved. If this event occurs however, the Con-
troller waits for the reception of a graph from the transformation block(s) and
then sends the Key and the Graph to the UserControlledRules block. Otherwise,
graphs are always sent to the AutonomousRules block. The AutonomousRules
encapsulates all the rules that do not need user intervention: PacMan eating,
Ghost killing PacMan and Ghost moving. The structure of this block is exactly
the same as the original GGRules block.

Fig. 8. The Extended DEVS model

The UserControlledRules
model consists of the re-
maining rules, those resposi-
ble for PacMan movement
(left, right, up, down). This
coupled DEVS block re-
cieves a Key and an in-
put graph and outputs a
graph that has undergone
the requested transforma-
tion. Fig. 9 presents the
content of this block. The
received Key goes through a
Dispatch block. This block
choses where to send the
graph depending on the
key pressed. The graph is
sent to at most one of
the Up, Down, Left and
Right blocks. These blocks
have the exact same struc-
ture as their counterpart in
the original GGRule model.
Note that event-based selec-
tion of rules has previously been called “Event-driven Graph Rewriting”.

With the first model, we showed how to model a simulator for graph grammar
execution to mimic the AToM3 behaviour. Then, we showed how to extend con-
tinuous execution with user control over the execution. Note how the extension
of the former model needed very little effort thanks to the modularity of DEVS
blocks and the ability of DEVS to represent interrupts. Only adding blocks and
connections but no modification of any original blocks was needed.

5 Advantages of Using DEVS

The approach described above elegantly satisfies all the requirements enumerated
at the beginning of this paper.
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Fig. 9. The User-controlled Rules block

The Power of DEVS. The transformation language used in the PacMan exam-
ple emulates AToM3’s rewriting semantics. In fact, we could have used another
graph transformation semantics (such as unordered or layered graph rewriting).
Note that the approach has the potential to support features such as backtrack-
ing as in PROGReS. We could even have combined different transformation
specification languages. As such, DEVS acts as a “glue” language.

The power of DEVS lies in the ability to express the control flow of the
transformation. Each rule is represented in an atomic-DEVS block (this is com-
parable to the atomicity of the rules in PROGReS). Blocks receive graphs and
sends graph through their ports. Other ports can be added to for example send
optimization hints (such as pivot nodes in GReAT and VMTS) or to pass some
information on the flow of the rule set (like the Key in the extended PacMan
model). DEVS allows modularity. Indeed, coupled DEVS blocks can be treated
as black boxes. The use of DEVS allows for multi-level hierarchies in models.
Sequencing is treated as in GReAT by simply connecting block ports. Iteration
and loops can thus be modelled. A given block can be a test block for branch-
ing if we give it such a semantics (i.e., no transformation occurs). This is what
the Dispatch block in the PacMan example depicts. Parallel execution is pro-
vided by the DEVS formalism when an output port is connected to many input
ports. If execution (not simulated) parallelism is needed, the parallel DEVS [20]
formalism can be used.

Using the DEVS formalism as a control flow language for graph rewriting en-
abled us to not only model the AToM3 simulator for graph grammar execution
but also to provide an improved version of it which combined continuous exe-
cution and user interaction. Note that we are thus modelling control structures
supporting step by step simulation, continuous simulation and user controlled
simulation which are not in the system under study, but rather in the execution
environment.
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Scalability and Multi-Formalism Modelling. The beauty of DEVS models
lies in the modularity of its building blocks. In fact, each block performs an action
given some input and can produce outputs. This modularity trivially supports
the combination of building blocks specified using multiple formalisms. Hence,
we may combine graph grammars with for example Statecharts and code. This
is the key to scaling up (graph) transformation modelling to arbitrarily more
complex models, far beyond the limits of pure graph grammar systems.

Modelling Time. Timed Graph Transformation, as proposed by Gyapay,
Heckel and Varró [21] integrates time in the double push-out approach. They
extend the definition of a production by introducing, in the model and rules, a
chronos element that stores the notion of time. Rules can monotonically increase
the time. DEVS is inherently a timed formalism, as explained in section 2. In
contrast with [21], it is the execution of a rule that can increase time and not the
rule itself. Hence, the control flow (of the graph transformation) has full access
to it. As pointed out in [21], time can be used as a metric to express how many
time units are consumed to execute a rule. Having time at the level of the block
containing a rule rather that in the rule itself does not lose this expressiveness.
Also, providing time to the control flow structure can enhance the semantics
of the transformation. AToM3 for example provides control over execution time
delay for animation (see section 3). In the PacMan example, when modelling the
user we can give meaning to the time delay between the execution of different
rules. As an example, the autonomous rules may take more time than the user
controlled rules moving PacMan. This gives more time for the user to “interrupt”.
But if, for instance, the ghost-moving rules take less time, then the user needs
to interrupt faster to move PacMan. This becomes closer to a game especially if
a real-time simulator such as RT-DEVS [22] is used.

6 Conclusions and Future Work

In this article, we have introduced the Discrete Event system Specification
(DEVS) formalism to describe and execute graph transformation control struc-
tures. We provided a short review of existing programmed graph rewriting sys-
tems, listing the control structures they provide. As DEVS is a timed, highly
modular, hierarchical formalism for the description of reactive systems, con-
trol structures such as sequence, choice, and iteration are easily modelled. Non-
determinism and parallel composition also follow from DEVS’ semantics. The
proposed approach was illustrated through the modelling of a simple PacMan
game, first in AToM3 and then with DEVS. We showed how the use of DEVS
ultimately allows real-time simulation/execution.

We plan to further investigate the use of DEVS. This will include various
types of code synthesis from rules on the one hand and visual control structure
specifications on the other hand, beyond our current non-optimized prototype.
We also consider mapping our control flow formalism onto formalisms other than
DEVS, more suited for real (as opposed to simulated) parallel execution.
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We plan to completely model our AToM3 environment in DEVS. We will then
be able to explicitly model users interacting with a transformation environment.
This will allow for automated testing of interactive transformations as well as
for optimization of transformation models for different types of users.

As consistency is a very important issue in modelling, we plan to integrate
Triple Graph Grammars [15] in our DEVS framework. This will allow model
synchronization and bi-directional transformations.
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