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ABSTRACT

APT users experience significant difficulties when learning
how to use APIs, but little is known about the strategies
used to overcome these difficulties, the motivation for each
strategy, or the trade-offs between the strategies. To better
understand the information seeking strategies of API users,
we conducted a study in which 20 participants were asked
to complete programming tasks using unfamiliar APIs, with
the documentation of the APIs and the Web as learning re-
sources. We observed that participants used one of three dif-
ferent strategies when seeking for information on how to use
APITs: some were more inclined to using the Web, others pre-
ferred the documentation of the APIs, and others combined
both the Web and the documentation. We present the char-
acteristics, motivation, and trade-offs between these strate-
gies, and suggests new ideas for documentation and tools to
facilitate the information-seeking process of API learners.

Categories and Subject Descriptors

D.2.13 [Software Engineering]: Reusable Software—Re-
usable libraries
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1. INTRODUCTION

Modern-day software development is inseparable from the
use of Application Programming Interfaces (APIs). Software
developers make use of APIs as interfaces to code libraries
or frameworks to help speed up the process of software de-
velopment and to improve the quality of the software. The
benefits of using APIs, however, do not come cheap: pre-
vious work on API usability showed that learning how to
use APIs presents several barriers [8, 12, 15, 17|, and that
“understanding how the APIs are structured, selecting the
appropriate classes and methods, figuring out how to use the
selected classes, and coordinating the use of different objects
together all pose significant difficulties” [16].
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Whereas the difficulties of learning how to use APIs are
known, we have yet to fully understand the strategies used
by developers to gather the information needed to overcome
these learning barriers, the motivation for each strategy, or
the trade-offs between the strategies. This need to under-
stand the information gathering strategies of API users has
lead to calls for “a more formal, empirically based model
of programmers’ behaviors that would inform API usage,
documentation, and tool design” [17].

In an attempt to answer the call, we conducted an ex-
ploratory study in which 20 participants were asked to com-
plete 2 programming tasks using unfamiliar APIs. Two main
information sources were used in our study: the documen-
tation of the APIs and the Web. Half of our participants
were given access to just the documentation of the APIs,
and the other half had access to both the documentation of
the APIs and the Web. We investigated the following ques-
tions related to the information gathering strategies of API
users and the information sources:

e What are the information gathering strategies of API
users? Which strategies are the most effective? Which
are ineffective?

e What features of the information sources makes learn-
ing how to use APIs difficult?

e Were participants who used the Web more effective
than those restricted to using just the API documen-
tation?

The intuition amongst API users is that the Web makes
learning how to use an API easier and faster since it con-
tains several code examples. Although previous studies have
made use of the API documentation [5, 17] or the Web [2,
16] as learning resources, no study, to our knowledge, has
investigated this intuition. We investigated this intuition
by hypothesizing that the participants with access to the
Web would demonstrate an advantage, either in terms of
the number of tasks successfully completed or the average
time taken to complete a task, over participants restricted
to using just the API documentation.

We make several contributions based on the analysis of
over 20 hours of screen captured videos with the think-aloud
verbalizations of the participants in our study. First, we
observed that participants used one of three different infor-
mation seeking strategies: some were more inclined to using
the Web because they believed it makes learning how to use
APIs easier and faster, others preferred the documentation
because they distrust the code examples found on the Web,
and others combined both the Web and the documentation
because they believed some knowledge of the classes/meth-



ods of an API was essential to understanding code examples
on the Web. We further observed that participants with a
workflow from the documentation to the Web experienced
less difficulty finding and understanding relevant code exam-
ples than participants who turned first to the Web when in
need of information. Second, contrary to our expectations,
we observed no noticeable difference in either the number of
tasks successfully completed or the amount of time used to
complete each task between the two groups of participants.
Finally, we observed that hidden dependencies between re-
lated API elements accounted for most of the learning diffi-
culties experienced by our participants, and that the place-
ment of cues is crucial to uncovering these dependencies.

Our paper complements previous studies on API usability
by investigating the rationale for the choice of API learning
strategies in a detail-rich context, and by studying the even-
tual outcome of each strategy. Next, we compare our study
to a sample of the related work. We present our study de-
sign in Section 3, the results of our study in Section 4, and
the implications of our results in Section 5. We conclude the
paper in Section 6.

2. RELATED WORK

Our work builds on previous studies related to API usabil-
ity, the information needs of programmers, and the working
styles of programmers. The literature in this field is abun-
dant and we discuss a sample of the most relevant work.
API Usability Studies: In a study comparing the usabil-
ity of the Factory pattern in contrast to constructors for
object creation, Ellis et al. observed that participants expe-
rienced more difficulty constructing objects with a factory
than with a constructor [5]. Stylos et al. conducted a study
in which the usability of parameterless constructors was
compared to constructors with parameters, and reported
that programmers strongly preferred and were more effec-
tive with APIs that provide parameterless constructors [15].
In another study examining the placement of methods (that
is, the class to which a method belongs), Stylos et al. re-
ported that participants were significantly faster at identify-
ing relevant dependencies and combining objects when the
methods of a starting class referenced its dependencies [17].
Clarke uses the “Cognitive Dimensions” [4], a framework for
describing API usability problems, to identify specific us-
ability issues with Microsoft APIs, and to help inform the
design of more usable APIs. Other studies have looked at
the role of web resources in learning how to use APIs [2, 16].
Prior studies have either focused on the usability of different
design choices (e.g., Factory pattern versus constructors) or
the usability issues of specific API. These studies have been
instrumental at identifying both the difficulties of learning
how to use APIs and the needs of API users, but not how the
difficulties are overcome. Our study, on the other hand, is
concerned with the strategies used by programmers to over-
come these API learning barriers, the motivation for each
strategy, and the trade-offs between these strategies.
Information Needs of Programmers: Several contribu-
tions have been made in the area of the information needs of
programmers. Ko et al. conducted a study in which novice
programmers were asked to complete several tasks using Vi-
sual Basic .NET [8], and identified learning barriers and
information needs that must be satisfied for the program-
mers to compete the tasks. In a different study, Ko et al.
identified 21 different information needs of programmers in

collocated teams [7]. They observed that most of the needs
in collocated teams were satisfied by consulting coworkers,
and that questions about APIs were answered by consulting
the documentation or coworkers. Sillito et al. identified 44
types of questions asked by programmers when maintain-
ing software code, and presented observations of how pro-
grammers use tools to support the process of answering the
questions [13]. In contrast, our work is concerned with the
questions asked by programmers learning to use APIs and
the strategies used to answer these questions.

Empirical Studies of Programming Strategies: Work
in the area of program comprehension has identified dif-
ferent strategies used by programmers to understand pro-
grams [14]. Some have argued that programmers use a
top-down strategy to understand programs: that is, they
work from higher level abstractions to the code [3]; Others
hold that programmers use a bottom-up strategy by working
from the code to the higher level abstractions [10]. Whether
top-down or bottom-up, programmers either work system-
atically (study a system in detail to gain a global under-
standing of its structure) or a opportunistically (focus only
on areas related to their task). Clarke calls these different
work styles personas, and observed that work styles are in-
dependent of a developer’s level of experience or educational
background [4]. We observed comparable work styles in the
context of learning how to use APIs, although the goals were
different from those of program comprehension. We borrow
terminologies from the program comprehension literature to
help explain some of our observations.

Information Foraging: Pirolli and Card proposed the in-
formation foraging theory to help explain how information-
seekers search for information [11]. They observed that
information-seekers use the same strategies used by preda-
tors in the wild when making decisions about where to look
for information, what search strategies to use, and which
information to consume. Central to the theory are infor-
mation scents (cues which guide information-seekers to rel-
evant information), information patches (the information
sources), and the information diet (the decision of how to
select the most profitable patch). Pirolli and Card observed
that information-seekers would adapt their search strategies
and environment, if need be, to maximize the gains of rel-
evant information per unit cost. In this paper, we make
observations consistent with the information foraging the-
ory of how API users use cues in the documentation and
the Web to locate relevant classes and methods, and how
they adapt their strategies to optimize the gains of relevant
information.

3. STUDY DESIGN

We conducted a laboratory study in which 20 participants
were asked to complete 2 programming tasks using unfamil-
iar APIs and different information sources.

3.1 Participants

Our participants came from the population of non-profess-
ional programmers because our work specifically targets non-
expert API learners. We recruited participants from the stu-
dent population of the department of Computer Science at
McGill university using on-campus posters and mailing lists,
and promised a monetary compensation of $20. Respon-
dents were prescreened using a questionnaire that asked po-
tential candidates about their programming experience and
knowledge of Java.
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We selected 20 participants from the respondents for our
study. The selected participants reported a minimum of 1
year programming experience with Java, 1 year experience
working with the Java API documentation (i.e., Javadoc),
and some experience programming with Eclipse. Our par-
ticipants reported between 1 and 6 years of experience pro-
gramming with Java, with a median of 3.5 years, and an
average of 1.5 years of paid programming experience. Five
of the 20 participants were female, and our participant pool
included 4 PhD students, 11 Masters students, and 5 senior
undergraduate students. Although all of our participants
were students, they are representative of the population of
interest and their expertise level is comparable to that of
recent graduates in software development positions.

3.2 Tasks

We asked the participants to complete two programming
tasks using two real-world Java APIs: JFreeChart and The
Java for XML Processing (JAXP). JFreeChart is a popular
API for generating charts." We used version 1.0.13 of the
JFreeChart API, which has 37 packages and 426 non-except-
ion classes. JAXP is an API for validating and parsing XML
documents, developed by Sun Micosystems.2 We used ver-
sion 1.4 of the JAXP API, which has 23 packages and 207
non-exception classes.

We selected tasks that involved combining multiple ob-

jects since previous work on API usability observed that
developers experienced the most difficulty performing such
tasks [17]. We reasoned that tasks requiring the combina-
tion of multiple objects are more likely to reveal the different
strategies and challenges experienced by API users. Partici-
pants were given a maximum of 35 minutes to complete each
programming task.
Chart-Task (T1): We asked the participants to use the
JFreeChart API to construct a pie chart with three slices
(45% Undergrads, 35% Master’s, and 20% PhDs), and to
save the chart to a file in a graphic format. The pie chart
was titled “Student Distribution at McGill”.

Listing 1: Recommended Solution for Chart-Task
new DefaultPieDataset();

2 dataset.setValue("PhDs”, 20);

3 dataset.setValue("Undergrads”,
4 dataset.setValue("Masters”,
5 JFreeChart chart =

45);
35);
ChartFactory .createPieChart (title ,

dataset , false, false, false);

6 ChartUtilities.saveChartAsJPEG(new File(fileName),
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chart, 400, 400);

Listing 2: An Improvised Solution for Chart-Task

PieDataset dataset = new DefaultPieDataset();

dataset.setValue("PhDs", 20);

dataset.setValue(”Undergrads”, 45);

dataset.setValue(”Masters”, 35);

Plot plot = new PiePlot(dataset);

//improvised code: not part of API

Bufferedlmage bi = new Bufferedimage (400,400,
Bufferedlmage. TYPE_LINT_RGB) ;

Graphics2D g2d = bi.createGraphics ();

plot.drawOutline(g2d, new Rectangle(400,400));

FileOutputStream fos = new FileOutputStream(new File (

)
EncoderUtil . writeBufferedlmage(bi, "jpg"”, fos);

The JFreeChart API provides two possible solutions to the
Chart-Task: Listing 1 shows one of the recommended solu-
tion®. We also observed improvised solutions (Listing 2) —

1jfree.org/jfreechart/
jaxp.dev.java.net
3API providers typically provide sample code on how to use an API,

solutions in which parts of the task were implemented us-
ing the given API and other parts were implemented using
types from the Java language. The relationship between the
information gathering strategies and the resulting solution
will be discussed in the results section of the paper.

XML-Task (T2): We asked the participants to use the
JAXP API to verify whether the structure of an XML file
conforms to a given XML schema. The participants were
provided with both an XML file and an XML schema file,
and were asked to implement the task in a method called
isValid, which returns true if the XML file conforms to the
given XML schema, and false otherwise.

The JAXP API provides two possible solutions to the
XML-Task: the recommended solution (Listing 3) and the
alternative solution (Listing 4), or its variants. The alterna-
tive solution is an outdated way of validating an XML file —
the validation is performed as the XML document is being
parsed. The recommended solution was introduced in Java
5 and it decouples the validation process from the parsing
process.

Listing 3: Recommended Solution for XML-Task

1 boolean isValid(String xmlFile,String schemaType,
String schemaFile){

2 try{

3 SchemaFactory factory = SchemaFactory.newlnstance(
schemaType);

4 Schema schema = factory.newSchema (new File(
schemaFile));

5 Validator validator = schema.newValidator();

6 Source source = new StreamSource(xmlFile);

7 validator.validate (source);

8 return true;

9 } catch (SAXException ex){ex.printStackTrace();}

10 catch (IOException ex){ex.printStackTrace();}

11

12 return false;

13 }

Listing 4: Alternative Solution for XML-Task

1 boolean isValid(String xmlFile,String schemaType,
String schemaFile){

2 try{

3 DocumentBuilderFactory dbf = DocumentBuilderFactory .
newlnstance();

4 dbf.setValidating(true);

5 dbf.setAttribute("type”, schemaType);

6 dbf.setAttribute("”"schemaSource”, schemaFile);

7 DocumentBuilder parser = dbf.newDocumentBuilder () ;

8 parser.parse(xmlFile);

9 return true;

10 } catch (SAXException ex){ex.printStackTrace();}

11 catch (IOException ex){ex.printStackTrace();}

12

13 return false;

14 }

3.3 Study Toolsand Instrumentation

Participants completed the study using the Eclipse IDE
(version 3.4) and were permitted to use any of the features
of the IDE. Two main information sources were used in the
study: the documentation of the APIs and the Web, which
provides access to example usages of the APIs. These in-
formation sources have been reported to be the primary
learning resources for API users [16, 18]. We provided the
participants with the Firefox browser to access these infor-
mation sources, and disabled the browser’s history feature
to prevent any learning effect between participants.

or structure the API documentation to favor a solution they consider
to be of superior quality over the others. We call these favored solu-
tions the recommended solutions of the API.



We used three data collection techniques in our study: the
think-aloud protocol, screen captured videos, and interviews.
In the think-aloud protocol [1], participants are asked to
verbalize their thought process while solving a given task.
Having participants think-aloud was particularly useful in
our study as it permitted us to obtain an insight into the
participants’ understanding of the structure of the APIs and
their information sources, their rationale for using a given
API learning strategy, and the tactics used to select between
alternative usages of API elements or example code. To get
the participant comfortable with thinking aloud while work-
ing, training was provided using a video tutorial. We used
the Camtasia screen capturing software (version 4) to record
the contents of the screen and the think-aloud verbalizations
of the participants. We also conducted semi-structured post-
study interviews in which the participants were asked to
comment about the challenges experienced during the pro-
gramming study. The interviews lasted 5 minutes.

3.4 Study Procedure

Our study involved 20 participants, divided into two groups:
the documentation-group and the web-group. The 10 partic-
ipants of the documentation-group (D1, ..., D10) were re-
stricted to use only the documentation of the APIs; the 10
participants of the web-group (W1,..., W10) were permitted
to use both the documentation of the APIs and the Web.
To ensure that groups were comparable, we ensured that
each group had 5 participants who reported between 1 and
3 years of Java programming experience, and 5 participants
who reported above 3 years of Java programming experience.

The programming studies were conducted individually in
our research lab, and were supervised by the first author.
The participants began each study by watching a 4 minutes
video tutorial about the think-aloud protocol. Participants
were then given time to practice thinking aloud while work-
ing on a web search task. Soon after, the participant was
given the instructions for the Chart-Task and was given a
maximum of 5 minutes to go over the task requirements and
to ask questions relating to the requirements. The partici-
pant was then told which information sources may be used
for the study depending on whether the participant was from
the documentation-group or the web-group. To avoid influ-
encing the strategy of the participants, we did not identify
the classes or packages of the APIs required to complete
the tasks, as was the case with previous studies (e.g., [17]).
Also, the participants were advised to proceed as they would
typically do when learning a new APIL.

Once the participant was satisfied with the task require-
ment, we loaded an Eclipse project which contained a class
with an empty main method and the libraries of the relevant
API. We then showed the participant how to use the Fire-
fox browser to access the Javadoc pages of the APIs from
the bookmark menu. At this point, the study computer was
disconnected from the Internet if the participant was from
the documentation-group, Camtasia was started, and the
participant was asked to begin.

The screen contents and verbalization data captured by
Camtasia during the study were saved once the participant
completed the Chart-Task, or once the 35 minutes allocated
for the task elapsed. Soon after, the Eclipse environment
was once more setup and the participant was asked to begin
the XML-Task. The tasks were completed in the same order
by all the 20 participants. The study produced a total of 40
different programming sessions and about 20 hours of screen-

Table 1: An overview of the categories of questions
asked by the participants in the programming study.

Finding a starting point

Which type(s) of the API represents this concept?
E.g.: “I am going to start by searching the API

to find something related to pie chart” [D6, T1]*

Identifying task-relevant dependencies

Which dependencies of this type are relevant to my task?
E.g.: “are there classes related to BufferedImage

that can be used for writing it to a file?” [D10, T1]

Finding object construction information
How do I construct objects of a given type?
E.g.: “how do I create an instance of PieDataset?” [W5, T1]

captured videos and verbalizations of participants working
with unfamiliar APIs and different information sources.

4. RESULTS

Our analysis focused on discovering the strategies used by
participants to gather the information necessary to make use
of APIs, identifying the trade-offs between the search strate-
gies, and identifying the features of the APIs or the informa-
tion sources that makes the process difficult. Our method for
analyzing the data involved three phases. In the first phase,
we went through the screen-captured videos and verbaliza-
tions to produce a list of specific questions (such as “How do
I create a Schema object?”) asked by our participants, and
to identify segments of the videos, which we called episodes,
corresponding to the information-seeking strategy used to
answer the questions. Episodes unrelated to the information
needs of APT users, such as when participants executed their
code, were excluded from our analysis. We observed that
most participants asked similar questions at similar points
in the process of using an API. We refer to these points
as the context in which the questions were asked, and used
these contexts as the foundation for our categorization of
the questions and episodes of the participants.

In the second phase, we grouped these questions and episo-
des based on the context, producing three categories (see Ta-
ble 1). The questions in the first category are about finding
a starting point — that is, finding one or more types of the
API which represents a concept or requirement to be imple-
mented. The need for a suitable starting point is not unique
to API users; Sillito et al. observed that programmers work-
ing on maintenance tasks naturally began by looking for a
“focus point” [13]. Once an API type relevant to the con-
cept to be implemented is identified, participants must go
through its dependencies to identify those relevant to the
task. The questions in the second category are about identi-
fying these task-relevant dependencies. The questions in the
third category are about finding the information required to
construct objects of a given type.

In the final phase of our analysis, we went through the
questions, episodes, and verbalizations of the participants
for the different categories, noting the differences in strat-
egy between the participants when looking for the informa-
tion needed to answer these questions, the motivation for
each strategy, the trade-offs between the strategies, and the
difficulties® encountered during the process. We summarize

4D6 represents the ID of the participant and T'1 represents the task
in which the comment/question was observed.

5VVe identified difficulties using verbalizations that indicate an obsta-



Table 2: The information seeking strategies, characteristics, and rationale of our participants.

Strategy Characteristics

Rationale

web-inclined | Goes to the Web without knowledge of the classes/methods in an | Code examples on the Web makes learning

API; works from code examples to documentation.

how to use APIs easier and faster [W2, W4].

doc-inclined

Web only when faced with barriers.

Relies on documentation to select relevant classes/methods, and to | Distrust code examples found on the Web;
determine how to use and coordinate the selected classes; goes to the | the cost of using documentation would even-

tually pay off, if not immediately [W1, W6].

hybrid Relies on documentation to select relevant classes/methods, but turns | Having some knowledge of the classes/meth-

classes.

to the Web to determine how to use and coordinate the selected | ods in an API is essential to understanding

code examples found on the Web [W8, W10].

the characteristics and rationale of the major information
seeking strategies in Table 2, and present our observations
in the following sections. We derive our observations from
three sources of evidence: the think-aloud verbalizations of
the participants, their responses to the post-study interview
questions, and the information-seeking patterns observed in
the screen captured videos.

4.1 Finding a Starting Point

The participants were unfamiliar with the APIs used in
the study and therefore had little knowledge about the ideal
places to begin their search. Naturally, our participants be-
gan each task by finding a starting point: “I am going to
start by searching the API documentation to find something
related to pie chart” [D6, T1], and participant W9 began
T1 with “my first instinct is to see if I can find an example
that’s sitmilar to this”, then proceeded to the Web. Suit-
able starting points are required not just at the beginning
of tasks, but also whenever participants start working on a
new sub-area of a task. For instance, after creating a pie
chart in T1, participants had to look for a starting point to
search for information on how to save the chart. Participants
approached the task of finding a suitable starting point in
different ways (see Figure 1): some participants turned first
to the Web, others turned to the API documentation but
started by looking through the packages in the API, and
others used the API documentation but started by looking
through the classes in the API. The participants relied heav-
ily on keywords from the task description to identify relevant
packages, classes, or example code: “the task says I should
create a pie chart so I'm expecting some sort of a PieChart
class to be available” [W8, T1].
The Web as a starting point: Participants who turned
first to the Web when in need of information were convinced
it makes learning how to use APIs easier and faster: “when
you don’t really know about an API its easier to just go to the
Internet and look for examples” [W2]; “Google usually works
best so I'm just going to google this” [W4, T2]. Participants
used keywords from the task description to formulate their
search queries. For instance, W8 used the query “jfreechart
piechart tutorial” for the Chart-Task, with “jfreechart” and
“piechart” taken from the task description. The participants
then browsed through the search results from top to bottom
and would visit a result page based on the seeming relevance
of its summary. Participants were mostly interested in code
examples and relied on information scents such as “demo”,
“tutorial”, or “code” to identify potentially relevant result
pages. Once a page with a code example was identified, par-
ticipants would skim through the code example to determine
its suitability. We observed that participants used multiple
attributes besides relevance to determine which code exam-

cle or struggle when looking for information on how to use an API
element such as “I can’t figure out how to create a Schema object”.

ple to use. For instance, some participants used the “age”
of the examples code (“that’s an old thread from 2001; I
probably want something a bit more recent” [W8, T1]); and
others used facts from multiple code examples “seems like
the last two pages both use ImagelO to save a BufferedImage
so I'm going to use that as well” [W6, T1]. Code examples
alone were not enough to determine relevance; participants
would regularly visit the documentation to understand the
behavior of the classes and methods in code examples: “I
will go back and look at the API documentation a bit more;
Its [the code examples is] a bit confusing” [W4, T2]. Partici-
pants copied relevant code snippets from code examples into
Eclipse and customized them to the context of their task.

The Web was used as a starting point in only 4 of the 20
sessions in which the participants had access to the Internet.
This came as a surprise; we expected participants to favor
the Web as a starting point over API documentation since it
is generally believed to contain several code examples. The
use of the Web as a starting point did not prove to be the
best strategy: 2 of the 4 participants who started with the
Web soon abandoned it for the API documentation, and 2
other participants [W2, W7] were unable to complete their
tasks even after finding several different example solutions.
When asked why he abandoned the Web for the API doc-
umentation, W8 commented that “having some knowledge
of the classes in the API may actually be able to help me
understand the information provided by the tutorials”. The
response of participant W8 explains why some web partici-
pants were unsuccessful at completing their tasks even after
seeing example solutions. For instance, participant W2 suc-
cessfully created the chart for T1 but was unable to save it
even after seeing an example solution for saving a Buffered-
Image. Had she looked at the documentation, she would
have noticed that a Bufferedlmage could be obtained from
a JFreeChart object using its createBufferedImage(int,int)
method. The decision to focus on the Web without as-
sistance from the documentation hindered participant W2
from making the link between the JFreeChart object and
the example code. Brandt et al. made a similar observation
in a study investigating the role of the web in programming;:
“it is cheaper to search [the Web] for information, but its di-
verse nature may make it more difficult to understand and
evaluate what is found” [2].

A second setback we observed amongst participants who
used the Web as a starting point relates to query formu-
lation. Because participants who turned first to the Web
relied on keywords from the task description, not the names
of the classes/methods of an API, they were inclined to for-
mulating search queries less specific to the task than par-
ticipants with a workflow from the documentation to the
Web. Some participants of the Web group [W8, W9] went
through several iterations of searching, examining the search
results, and formulating new queries before finding relevant



code examples. For instance, W8 started the XML-Task
with the query “java xml processing tutorials” but found no
relevant code example. He turned next to the documenta-
tion where he identified the Schema class as relevant, and
commented “let’s go back to the Web and see if I can re-
fine my search”. He then used a more specific query “java
xml validation against schema” from which he found a rel-
evant code example. On average, participants who began
their search for information on the Web reformulated their
queries 10 times, whereas participants who started with the
documentation before using the Web did not reformulate a
single query.

Type
3/20

web-group documentation-group

Figure 1: A distribution of the strategies used by
participants to find a starting point.

Package as a starting point: A comparison of the pref-
erence for each of the three strategies for finding a starting
point against the equal-likelihood multinomial distribution
showed statistical evidence that the package was preferred:
the package was used in 13 of the 20 sessions with access to
the Internet (p = 0.0078), and in 15 of the 20 sessions with-
out access to the Internet (p = 0.0059). Some participants
who started with the API documentation were convinced
that compared to the Web, the documentation would pro-
vide information relevant not just to the current need, but
to other information needs that may emerge in the course of
a task: “the Internet may or may not help; ... it doesn’t give
you information that may be related to other areas of your
task. ... since the documentation is related to your task,
there is information that may not be useful right now but
may be useful when you move to another task” [W1]. Other
participants expressed distrust of the code examples found
on the Web: “it’s hard to find good solutions out there; I
trust myself more than I trust a random Google result” [W6].
Participants began by comparing keywords from the task de-
scription to the names and textual summary of the packages
to identify potentially relevant packages. The participants
would then visit the documentation of a potentially relevant
package, browse through its classes, and then select a class
whose name and description seemed relevant to the task.
Participants would backtrack to the class or package level
to select a different class if the current class was deemed
irrelevant to the task. Once in the class documentation,
participants used the class description and its list of meth-
ods to help determine if the class was relevant to the task:
“I found class ChartFactory which has several methods to
create several charts; let’s see if there is a create pie chart
method” [D10, T1]. Some participants, for instance D3, used
the code completion feature of the IDE to examine the meth-
ods and documentation of potentially relevant classes. This
approach seemed inferior to the others, especially at the be-
ginning stages of finding a suitable starting point, since it
requires constructing an object of the class to be examined,

a process which may be difficult and time consuming (see
Section 4.3), and the resulting code may not form part of
the final solution to the task. For instance, D3 commented
“I am still not sure whether this is the right class or not”
after spending 4 minutes experimenting with a class of the
JFreeChart API not relevant to the Chart-Task.
Participants browsed through the list of API elements
(that is, packages or classes) from top to bottom, but em-
ployed different strategies when deciding which elements to
visit. Some participants (14/20) first scanned through the
list of API elements to identify a set of potentially relevant
elements before making a selection: “these are the packages:
parsers, stream, ... and there is a walidation package.
this should be what we need” [D1, T2]; others participants
(6/20) visited every seemingly relevant API element, in the
order they appeared, until a relevant package or class was
found. This difference in strategy may seem insignificant
but influenced the solution provided for a task. For in-
stance, the JAXP API provides two possible solutions for
the XML-Task: an older approach that combines parsing
with validation (Listing 4), and a newer approach that de-
couples validation from parsing, introduced in Java 5 (List-
ing 3). The older approach is supported by the parsers pack-
age, the newer approach by the wvalidation package, and the
parsers package comes before the validation package. Partic-
ipants who scanned through all the packages before choosing
a package selected the validation package and benefited from
the performance gain (e.g., D1), while the participants with
the other strategy selected the parsers package (e.g., W6).
Participants from the web-group who turned first to the
API documentation when in search for a starting point used
the documentation in one of two ways. Some used the hybrid
strategy: they used the documentation to identify relevant
types, but turned to the Web to find code examples on how
to use and combine them. For example, W10 started the
XML-Task by visiting the JAXP API documentation from
which he learned the Schema class is relevant. He then used
the class name as one of the keywords in the search query
to locate code examples: “we meed to find some examples
which make use of the Schema class”, and used the search
query “example code schema class java” to look for code ex-
amples. Other participants used the doc-inclined strategy:
they used the documentation not only to identify relevant
types, but also to look for information on how to combine
them; they turned to the Web only when faced with a bar-
rier: “I get the impression that I am no going to get forward
with that [API documentation] so am going to use Google”
[W5, T1]. Participants who began with the documentation,
when in need for information, gained valuable knowledge of
the classes and methods of the API relevant to a task. This
knowledge proved helpful when searching for, and evaluat-
ing the relevance of code examples than when the search for
information began with the Web.
Type as a starting point: The final strategy we observed
for finding a starting point was to browse through the list
of types provided by the API. Participants who began by
browsing through the types expected the API to provide
types which correspond to the concepts to be implemented:
“the task says I should create a pie chart so I'm expecting
some sort of a PieChart class to be available” [W8, T1]; “let’s
look is there is something straightforward, say PieChart,
which may save time” [D10, T1]. This strategy was used
in 3 of the 20 sessions with access to the Web, and in 5



of the 20 sessions without access to the Web. The partici-
pants in this group used techniques similar to those in the
“Package as a starting point” group to identify classes and
methods relevant to their tasks. Although both the “Pack-
age as a starting point” strategy and the “Type as a starting
point” involved the use of API documentation, we observed
trade-offs between them which merit distinction.

We observed that participants who used the “Type as a
starting point” strategy experienced more difficulty locating
relevant dependencies than participants who used the “Pack-
age as a starting point” strategy. For instance, the partici-
pants D6 and W1 both started the Chart-Task by browsing
through the list of classes in the JFreeChart API to find a
starting class. Both selected the PiePlot class as a starting
point, successfully created a pie chart, but were unable to lo-
cate the ChartUtilities.saveChartAsJPEG(...) method pro-
vided by the API for saving the chart to a file. Participant
D6 eventually came up with an improvised solution (i.e., a
solution of an inferior quality when compared to the solu-
tion provided by the JFreeChart API) for saving the chart
to a file (Listing 2, lines 7 — 11); participant W1 was unable
to complete the task. The difficulty experienced by partic-
ipants D6 and W1 to locate the ChartUtilities dependency
could be explained by their search strategy. We observed
that participants used the same strategy whether finding a
starting point or looking for a relevant dependency. This
implies that participants who use the “Type as a starting
point” strategy would often ignore the package from which a
type comes from, a logical place to begin the search for rele-
vant dependencies. On the other hand, participants who use
the “Package as a starting point” strategy would often begin
in the package from which a type comes from when look-
ing for relevant dependencies. Had the participants D6 and
W1 started with the packages, they could have noticed the
ChartUtilities class amongst the other chart-related classes
in the chart package.

4.2 ldentifying Task-Relevant Dependencies
API classes are seldom used in isolation; often, each class
has several other dependencies. However, not every depen-
dency is relevant to a given programming task. Developers
must therefore go through the dependencies of a class to
identify those dependencies relevant to the task to be imple-
mented. We call such dependencies task-relevant dependen-
cies. For instance, to save the pie chart using the JFreeChart
API, the participants in our study had to identify the de-
pendency between JFreechart (the class provided by the API
for holding the states of charts) and ChartUtilities (the API
class to be used for saving a chart to a file). Developers
unable to identify this dependency either came up with an
improvised solution or failed to complete the task.
Participants were often unaware of all the relevant de-
pendencies for a given API type. For instance, the partici-
pants in our study expected the JFreeChart class to provide
a method for saving the chart to a file: “now I go back to
the JFreeChart class to check if there is a method to save”
[D10, T1]; “I am going to look at the methods of JFreeChart;
hopefully there is a render, save, or something to that effect”
[W6, T1]. Some participants used the API documentation
to browse through the methods of the JFreeChart class; oth-
ers used the code completion feature of the IDE to look for
a “save” method on the JFreeChart object. The search for
a task-relevant dependency began once our participants re-
alized that the JFreeChart class does not provide a method

for saving to file.

The participants exhibited several strategies for finding
task-relevant dependencies. Some participants searched for
task-relevant dependencies by looking through the list of
classes in the API documentation for a class whose name
suggests “saving” or “rendering” objects to a file: “let’s go
back to all classes [in the API], perhaps there is a ToF'ile-
Saver [class] or something” [W8, T1]. A second strategy was
to browse through the list of packages; some participants did
not visit every package, but only those which could be re-
lated to saving a chart to a file. For instance, 7 of the 20
participant visited the “util”, “io”, and “renderer” packages
looking for utility classes for saving a chart, but found no
relevant class because ChartUtilities was in the “chart” pack-
age. Participants in the web-group eventually went to the
Web when unable to locate a class for saving the chart to a
file from the API documentation: “I get the impression that
I’'m not going to get forward with the Javadoc so I'm going
to use Google” [W5, T1]. Only one participant [W4] used
the “Use” page of the API documentation of the JFreeChart
class to look for a class for saving the chart. This proved
to be the most successful strategy for locating task-relevant
dependencies since the “Use” page contains all the depen-
dencies of a given class.

Participants from the web-group (WG) spent an average
of 5 (£4) minutes looking for the dependency ChartUtilities.-
saveChartAsJPEG(...), while participants from the docu-
mentation-group (DG) spent an average of 7 (£6) minutes.
Thirteen of the 20 participants in our study experienced
some difficulty finding this dependency required for saving
the chart, and 3 of the participants were unable to complete
the Chart-Task because they could not find the ChartUtil-
ities class. This difficulty was due in part to the design of
the API (the ChartUtilities class is not referenced as either
a parameter or a return type in any of the methods of the
JFreeChart class [17]), the absence of cues in the documen-
tation of the JFreeChart class which points to ChartUtilities,
and the failure by participants to leverage the support pro-
vided by the “Use” page.

Six (3 DG; 3 WG) of the 13 participants (6 DG; 7 WG)
who successfully completed the Chart-Task came up with
improvised solutions of inferior quality compared to the op-
tion provided by the API. For instance, one of the impro-
vised solutions involved creating a BufferedIlmage, extracting
a Graphics2D object from the Bufferedlmage, drawing the
chart to the Graphics2D object, and saving the Buffered-
Image to a file in JPEG format(Listing 2, lines 7 — 11).
This improvised solution is less elegant and more complex
than the call to ChartUtilities.saveChartAsJPEG(...) pro-
vided by the API. We observed that the use of the Web is
no guarantee that an API would be used as intended. For
instance, 3 of the 7 web-group participants who successfully
completed the Chart-Task ended up with an improvised so-
lution by using code snippets found on the Web.

4.3 Finding Object Construction I nformation

One category of questions we observed in our study was
about finding the information required to construct objects
of classes relevant to a task: “how do I instantiate a PiePlot?”
[W1, T1]; “how do I create a Schema?” [D7, T2]; “this [Val-
idator] is what I want; how do I make this thing?” [D4, T2].
This is hardly surprising since the use of classes often re-
quires object construction. Half of our 20 participants began
their search for object construction information by attempt-



ing to use the default constructor regardless of whether the
type was an interface or abstract. For instance, participant
D5 commented “let’s see how they[SchemaFactory] are actu-
ally created” after an attempt to instantiate SchemaFactory,
an abstract class, from the default constructor failed; and
both participants D6 and D8 commented “how can I get
an instance of Validator?” after their attempt to instantiate
Validator, an abstract class, from the default constructor
failed. Our participants seemed to expect classes to pro-
vide a default constructor and were surprised when they did
not: participant W5 commented “what is wrong here?” af-
ter an attempt to instantiate PieDataset, an interface, from
the default constructor failed. This observation corroborates
previous findings that programmers not only expect classes
to provide default constructors, but also prefer the use of
the default constructor over other object construction pat-
terns [5, 15].

Some participants (9/20) continued their search for the
object construction information of a class by visiting the
constructor section of the API documentation. Although
this strategy was helpful for classes with public constructors,
it did not prove helpful for classes with other construction
patterns. We observed that, if available, the cue on how to
create an instance of a class from non-constructor patterns
is seldom in the constructor section. For instance, the cue on
how to create an instance of Schema from SchemaFactory
is in the description section, not the constructor section of
the JAXP API documentation for Schema. Thus, partici-
pants who went directly to the constructor section in search
for information on how to create a Schema object missed
the cue (e.g., W3), while participants who systematically
went through the page from the description section to the
constructor section found it (e.g., D7).

Most participants (18/20) turned next to the subclasses
when neither the constructor section nor the description sec-
tion proved helpful: “this [Schema] is an abstract class, so
we need to find a derived class” [W3, T2]; “I’m looking for
a concrete class [derived class] which I can instantiate to
generate a SchemaFactory object” [D7, T2]. Our partici-
pants then browsed through the subclasses looking for a
class suitable to the task. Participants often favored relevant
subclasses which could be created from public constructors
over subclasses with non-constructor construction patterns.
However, not every abstract class has derived classes. This
is often the case for objects such as Schema and Valida-
tor to be constructed from factories. The lack of derived
classes posed significant difficulties for some participants: “I
need to create a Schema object and also ... a Validator ob-
ject. The problem is these two classes are abstract and [
can’t find their derived classes.” [W3, T2]; and participants
D6 commented “so where are the derived classes?” after ob-
serving that Schema has no derived classes. In the absence
of derived classes, some participants resorted to examining
the classes of the package in which Schema is located; oth-
ers browsed through the classes of the API. Participants
from the web-group supplemented their search for object
construction information with web examples when the API
documentation ceased to be helpful: participants W3 used
Google with the query “java.zml.validation.Schema”and was
able to find example code on how to create objects of type
Schema and Validator.

Participants from the web-group spent an average of 4
(+3) minutes looking for information on how to create ob-

jects, while participants from the documentation-group spent
an average of 6 (£4). Participants from both groups ex-
perienced some difficulty with object construction: 4 from
the web-group and 9 from the documentation-group. The
participants from the web-group eventually found help from
code examples on the Web; 4 of the 9 participants from the
documentation-group who experienced difficulty with object
construction were unable to complete a task because of this
difficulty. Although the “Use” page of each class provides in-
formation on how to create it, non of our participants used
this strategy.

In post-study interviews, participants attributed the dif-
ficultly of using abstract class, interfaces, or classes created
through factories to the absence of a “link” between re-
lated API elements: for instance, participant D4 commented
“there is mo cross-reference in the API documentation that
says get a Validator instance from a Schema” when asked
about the difficulty experienced when creating a Validator
object [D4, T2]. Participants gave similar explanations for
the challenges experienced when looking for task-relevant
dependencies. This response only partly explains the prob-
lem since the “links” between related API elements are in the
“Use” page of the API documentation, a page seldom vis-
ited by our participants. Participants expected the “links”
between related API elements to be on the element they are
exploring or on its API documentation page, and experi-
enced difficulties when their expectation of where the links
should be are not meet.

4.4 Web-Group Ver susDocumentation-Group

Some participants echoed the intuition that the Web makes
learning how to use APIs easier and faster: “it is easier to
Just go to the Internet and look for examples [W2]; “it’s tak-
ing too long so I'm just going to Google it” [W4]. If this
intuition is correct, then the participants of the web-group
(WG@G) should demonstrate some strong advantage, either in
terms of the number of tasks successfully completed or the
average time taken to complete a task, over participants of
the documentation-group (DG). We formulated the follow-
ing null hypothesis to investigate this intuition:

Ho: The use of the Web has no effect on the number of tasks
successfully completed or the time taken to complete a task.

Table 3: The number of tasks successfully completed
between the two groups.

DG WG
Successful  Unsuccessful | Successful  Unsuccessful
T1 6 4 7 3
T2 6 4 5 5

We compared the task completion statistics between the two
groups to look for evidence which would allow us to reject
the null hypothesis. The results are summarized in Tables 3
and 4. Six participants from the DG and 7 participants
from the WG successfully completed T1, and 6 participants
from the DG and 5 participants from the WG successfully
completed T2. We obtained a chi-squared statistic of 0 when
we compared the number of tasks successfully completed
between the two groups.

Looking at the task completion times, the participants of
the DG spent an average of 29 (£7) minutes on T1 while
participants from the WG spent an average of 25 (+9) min-
utes. We observed similar results for T2: participants of



the DG spent an average of 29 (£8) minutes while partic-
ipants from the WG spent an average of 26 (£8) minutes.
We used the Rank test to compare the task completion time
between the two groups and obtained a p-value of 0.45 for
T1 and a p-value of 0.26 for T2. Both p-values are signif-
icantly greater than the conventional @ = 0.05. Based on
the chi-squared statistics of the number of tasks completed
and the p-values of the task completion times, there is no
evidence that our null hypothesis is false. Our data suggests
that, at least in the context of our study, the use of the Web
did not prove to be a significant advantage over the use of
the API documentation in learning how to use APIs.

Participants often underestimate the time required to find
code examples on the Web, extract the relevant code snip-
pets, and to customize the snippets into the context of a
task. Some participants spent a significant amount of time
extracting and customizing relevant snippets. For exam-
ple, participant W3 found a code example for T2 at the 16
minutes mark, but was unable to complete the task in the
remaining 19 minutes because of difficulties in extracting
and customizing relevant code snippets. When asked about
this in the post-study interview, participant W3 commented
that “the example had a different context from our task, so
I had to translate their ideas to ours and that takes some
time”. The absence of a significant difference between the
two groups suggests that the time required by non-expert
APT users to find, extract, and customize code snippets from
code examples may be comparable to the time needed to
learn how to use APIs from the API documentation.

Table 4: The average task completion time (in min-
utes) for our 20 participants for both tasks.

DG WG
MEAN STDEV | MEAN STDEV
T1 29 +7 25 +9
T2 29 +8 26 +8

5. IMPLICATIONS
5.1 API Design and Documentation

We identified several strategies used by participants to
explore APIs and their learning resources. Notwithstanding
the differences in strategies, our participants shared a com-
mon problem: they experienced the most difficulty when
cues of how to satisfy information needs were not where par-
ticipants expected them to be. This difficulty was not caused
by the absence of useful information in the documentation,
but by the location of the cues within the documentation.
For instance, cues on how to create objects of a given type
were in other places besides the constructor section of the
documentation. A simple restructuring of the documenta-
tion to place cues where participants expect them to be could
greatly facilitate the API learning process. Our study also
revealed that some participants browse the documentation
systematically from top-to-bottom when searching for infor-
mation, while others go directly to the section of interest.
Documentation providers should therefore factor in not only
the expectations, but also the different search strategies of
programmers to provide more useful documentation.

One additional observation made by this study was about
the structure of the APIs. Most of our participants expected
the class for saving a chart to a file, ChartUtilities, to be in ei-
ther the “util”, “io”, or “renderer” package of the JFreeChart
API, and not in the “chart” package. This was evident by

both their visits to these packages and their think-aloud ver-
balizations. This mismatch between the expected structure
of the APT and the actual structure of the API lead to sev-
eral exploration difficulties. Our findings suggest that the
placement of classes in packages is not just a matter of in-
ternal design, but it also has learnability implications, and
that eliciting the expectation of API users during the design
of an API could improve its learnability.

5.2 Tool Design

Research efforts on tools for learning how to use APIs have
predominantly focused on recommending code examples [6,
19, 20]. These code recommenders are based on the premise
that programmers already know the classes and methods of
an API relevant to their tasks. Our study however paints a
different picture: finding the classes and methods of an API
relevant to a task remains a significant problem, and that
participants are most effective at finding suitable code ex-
amples once relevant API elements are known. Jadeite [18],
a tool which uses code examples on the Web to highlight the
most commonly used classes of an API is the only tool, to
our knowledge, aimed at helping programmers find a start-
ing point. Both code recommenders and API learnability
could benefit from newer research tools such as Jadeite which
assist programmers in finding suitable starting points.

Code recommenders use relevance and popularity to rank
recommendations. Our study revealed that these attributes
may not be sufficient in all situations because as APIs evolve,
popular solutions may no longer reflect the recommended
usage of some parts of an API. Other attributes such as
the “age” of a code example, used by some participants in
our study, combined with relevance and popularity may help
point programmers towards the newer and improved parts
of an APL.

Some participants expressed distrust of code examples
found on the Web, and preferred working with the docu-
mentation of APIs. We observed that much of the difficulties
experienced when using API documentation occurred when
the dependencies between related APT elements are hidden.
For instance, although the Validator class and Schema are
related (a Validator object is created from a Schema ob-
ject), this relationship cannot be inferred from the Valida-
tor class. Participant D4 referred to this as the absence of
a “cross-reference in the API documentation that says get a
Validator instance from a Schema” when commenting about
the difficulty experienced when creating a Validator object.
Research tools which make the relationship between API el-
ements explicit could improve the API learning process, and
facilitate API usability.

5.3 Threatsto Validity

The contributions of our study are based on a systematic
observation of non-professional programmers working with
real-world APIs in a laboratory environment. Given this
setting, there are factors which limit the generalizability of
our observations.

The use of non-professional programmers was intentional;
we wanted a homogeneous group of participants to facilitate
comparisons with prior work on the learning barriers of API
users. The barriers we observed in our study matched those
observed in previous studies with both non-professional and
professional programmers [5, 8, 15, 17]; we therefore ex-
pect the difficulties experienced by the participants in our
study to generalize beyond this population. The API learn-
ing strategies and the trade-offs between strategies observed



in our study could have been a result of the limited expe-
rience of our participants. Professional API users may ex-
hibit different learning strategies because of their experience
or work context. Other studies on the information needs of
programmers working on maintenance tasks have observed
comparable exploration strategies [9, 13]. Whether our ob-
servations would generalize to the population of professional
APT users would have to be determined by another study.

We did not look at the relationship between the experi-
ence level of our participants and their information-seeking
strategies in this paper. Because our study was exploratory,
our main aim was to catalogue the strategies of API users
and to study their rationale and trade-offs in detail. The
connection between experience and strategy is for future
work and would likely require a larger sample to produce
reliable results.

The size of our tasks, the number of tasks, and the num-
ber of participants all limits the generalizability of our ob-
servations. Although our tasks represented real usages of
real-world APIs, they were limited in size to permit our
participants to complete a task within the 35 minutes time
frame. With only 2 tasks and 20 participants, the variation
of the API learning strategies observed in our study could
be limited. However, given the observation that “program-
mers often approach larger programming tasks by focusing
on smaller subtasks” [17], we believe that the strategies and
trade-offs we have observed, possibly limited, would gener-
alize to other tasks.

Our study involved only Java APIs and the Java API doc-
umentation. Some of our observations may be different if
APIs and API documentation in other languages are used.
For instance, the flat, alphabetical structure of the Java API
documentation could have encourage participants to engage
in more browsing than searching. The use of other doc-
umentations such as that for the .NET framework with a
prominent search interface may encourage more searching
than browsing. Furthermore, because our study focused on
programmers learning how to use unfamiliar Java APIs, our
observations may not be applicable to programmers working
with familiar Java APIs. Further studies on API usability
are required to verify the generalizability of our observations
to these contexts.

6. CONCLUSIONS

The goal of our study was to identify the information-
seeking strategies of API users, the motivation for each strat-
egy, and the trade-offs between the strategies. We found
that participants relied on cues in an API or its documenta-
tion to identify relevant elements using one of three strate-
gies: some turned first to the Web when in need for infor-
mation because they believed it makes learning how to use
APIs easier and faster, others preferred the documentation
because they distrust the code examples found on the Web,
and others combined both the Web and the documentation
because they believed some knowledge of the classes/meth-
ods of an API was essential to understanding code examples
on the Web. We identified trade-offs between these “start-
ing points” , and showed how the choice of a “starting point”
could influence both the challenges experienced by program-
mers and the solution they end up with. Furthermore, we
observed that participants experienced difficulty when there
is a mismatch between the location of cues to relevant in-
formation and the participants’ expectation of where cues
should be located.
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