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Abstract 
Aspect-Oriented Programming (AOP) continues to gain increasing 

popularity in both academia and industry for its effectiveness in 

localizing and modularizing crosscutting concerns. Two recurring 

criticisms of AOP tools are their deficiency (or inflexibility) in language 

features and the potential performance overhead that may be incurred 

from adopting this technology. Using AspectJ as the target AOP tool, I 

investigate the language features necessary to support aspect 

dependencies, aspect interactions, aspect interference and aspect 

reuse in the context of implementing the ACID properties of 

transactional objects in a flexible and reusable way. Five encountered 

limitations are identified, namely; lack of support for inter-aspect 

configurability, lack of support for runtime disabling and re-enabling of 

pointcuts on a per-object basis, lack of support for per-instance 

association of aspects, lack of support for stronger and intuitive 

aspect-to-class binding of reusable static crosscutting behaviours, and 

the reflection/super-class method execution dilemma. Finally, I discuss 

the deficiencies of work-around solutions and suggest potential 

language improvements for addressing these limitations. 
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Résumé 
De plus en plus de personnes du monde académique et industriel 

utilisent la programmation orienté-aspect (AOP) pour mieux structurer 

et modulariser leur code source. Beaucoup d'environments de 

programmation orientés-aspect ont été critiqués à cause de 

l'inflexibilié de leur language AOP et à cause du ralentissement de la 

vitesse d'exécution qui resulte de leur utilisation. Cette these évalue la 

capacité du language orienté-aspect AspectJ à exprimer les 

dépendences entre aspects, à exprimer et résoudre les interferences 

entre aspects, et à écrire du code orienté-aspect réutilisable. 

L'évaluation est effectuée en implémentant AspectOPTIMA, un cadre 

applicatifs qui guaranti les propriétés ACID (atomicité, cohérence, 

isolation et durabilité) pour les objets transactionnels. Cinq limitations 

du language AspectJ ont été identifiées: le language n'offre pas de 

méchanisme pour spécifier les dépendances entre aspects, le language 

ne permet pas d'associer un aspect à un objet (mais seulement à une 

classe), le language ne permet pas d'activer et de désactiver un aspect 

pendant l'execution du programme, les introductions statiques 

d'attributs dans une classe fait par un  aspect ne se comportent pas 

comme les attributs standards face à  l'héritage, et l'incompatibilité 

entre l'utilisation de la réflection et les aspects. La thèse explique 

également quelles concessions ont dû être faites pour implémenter 

AspectOPTIMA malgré ces limitations. En conclusion, la thèse suggère 

des améliorations possible pour le language AspectJ. 
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Chapter 1 ~ Introduction 
_________________________________________________________________ 
 

1.1 Motivation 

Object-oriented programming [1] revolutionized the process of 

software development with its introduction of object abstraction, 

encapsulation, inheritance and polymorphism. These concepts have 

proven to be effective in modeling common hierarchical behaviours but 

fall short in modeling behaviours that spans across (i.e., crosscut) 

several unrelated modules. Attempts to implement such crosscutting 

concerns (i.e., system goals, concepts or areas of interest, non-

functional requirements [14]) in object-oriented programming often 

results in systems that are difficult to reuse or maintain [2,3]. Aspect-

oriented programming (AOP) [3,4] has been proposed as a new 

programming paradigm for addressing these deficiencies - resulting in 

a proliferation of AOP tools (AspectJ [4], JbossAOP [5], Spring AOP [6], 

CaesarJ [7]). The concepts and constructs of AOP have proven 

effective in localizing and modularizing crosscutting concerns; and 

consequently facilitating their reuse and evolution. 

 As expected of any new technology, the AOP user community 

continues to apply these concepts and tools in their respective 

domains and proposes new aspect-oriented language features to 

address their needs. However, the examples used for justifying new 

language features have been criticized as being too specialized to be 

convincing. The Software Engineering Lab at McGill University 
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proposed a case study [8] to “serve as a “benchmark” for evaluating new 

AOP approaches, programming language features and aspect-oriented software 

development and modeling approaches in general”. The case study was a 

by-product of an ongoing work to migrate OPTIMA [9] – a framework 

that provides transaction support for concurrent object-oriented 

programming languages - from an object-oriented to an aspect-

oriented platform. The case study proposed a language-independent 

decomposition of the necessary runtime support to implement the 

ACID properties (Atomicity, Consistency, Isolation and Durability) of 

transactional objects used in transactions into reusable aspects. It 

then describes how these aspects can be recomposed to implement 

various Concurrency Control and Recovery strategies for transactional 

objects. The language independent design of this case study makes it 

ideal for evaluating AOP tools. 

 This thesis has two objectives. First, I verify the effectiveness of 

the design proposed in the case study; that is, does the proposed 

decomposition of Concurrency Control and Recovery into reusable aspects 

effectively capture all the required functionalities and can these 

aspects be seamlessly implemented in an AOP platform? Second, I 

evaluate the expressiveness of the language features of the current 

state of the art AOP tool – AspectJ - in the context of the case study. 

Simple stated, I attempt to answer the following question: Are the 

current programming language features of AspectJ (version 1.5.0) 

adequate for implementing a reusable framework for the ACID 

Properties of Transactional Objects (hereafter called the AspectOPTIMA 

framework)? If not, what are the encountered language limitations and 

how can these limitations be resolved?  My definition of a reusable 

framework of aspects is comparable to the oblivious property 

suggested in [21] – i.e., developers do not have to modify an existing 
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system to accommodate these aspects and the base application is 

completely ignorant of their existence. The enormous benefits of 

aspect-oriented software development (AOSD) in general and AOP in 

particular would be inconsequential to a specific domain unless the 

current AOP tools provide adequate and flexible programming 

language features to make this possible. The investigation of these 

questions will therefore take us a step closer to broadening the 

application base of both AOSD and AOP technologies. 

 

1.2 Summary of Contributions 

AspectJ has come a long way since its inception and its most recent 

release (AspectJ 5) is a testament of the commitment to broaden its 

application base. Notwithstanding, I identify several limitations in the 

context of the case study, namely:  

 

• Lack of support for runtime disabling and re-enabling of pointcuts 

The if(BooleanExpression) pointcut of AspectJ is often promoted as 

the construct for achieving runtime disabling and re-enabling of 

aspects but this claim is only partially true. At best, this poincut 

supports the disabling and re-enabling of an advice within an aspect 

at runtime, not the join points of interest to which the advice is to 

be applied. This means that the join point(s) of the advice in 

question would still be intercepted but its execution is conditional 

on the value of BooleanExpression. This thesis argues that the 

performance overhead of unnecessarily intercepting join points and 

the evaluation of if(BooleanExpression) is not optimal for 

performance-sensitive applications. I propose new language 

constructs for facilitating runtime disabling and re-enabling of 
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pointcuts (and consequently, target join points) so as to mitigate 

this deficiency. 

 

• Lack of support for per-instance association of aspects 

Aspects in AspectJ are statically deployed. That is, once compiled 

with a base class, the aspects become effective in every object of 

that class. Consequently, the application of different concurrency 

control and recovery strategy aspects to different objects of the 

target application is not an option. I highlight a need for the support 

of this functionality, suggest a potential solution and discuss some 

challenges of supporting per-instance association of aspects. 

 

• Lack of support for explicit inter-aspect configurability 

The functionality of some of the aspects in the case study requires 

the presence of other aspects; hence, such aspects should be able 

to express their need for other aspects while preserving 

obliviousness. AspectJ does not currently provide explicit support 

for inter-aspect configuration. I demonstrate how this can be 

achieved with the use of interfaces and discuss its limitations. 

 

• Weak aspect-to-class binding 

Abstract introduction [19,20] has been promoted as the strategy for 

creating reusable static crosscutting aspects that can be used in 

different contexts. This sounds like the perfect strategy for 

implementing the reusable concurrency control and recovery 

aspects proposed in the case study since these aspects will 

obviously be used in various contexts. I expose the pitfalls of this 

strategy and propose potential solutions. 
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• Reflection/Super-class method execution dilemma 

The method call pointcut (call(MethodPattern) ) of AspectJ does not 

pick out reflective calls; a deliberate decision made by the AspectJ 

team not to “delve into the Java reflection library to implement call 

semantics” [9]. Developers are advised to use the method execution 

pointcut (execution(MethodPattern)) instead. The method execution 

pointcut on the other hand does not pick out the execution of non-

overridden inherited methods when the context and target is the 

subclass. Developers must therefore choose between capturing 

reflective calls or the execution of non-overridden inherited 

methods, but both functionalities can not be provided 

simultaneously. I discuss the ramifications of this dilemma in the 

context of implementing a reusable aspect-oriented framework of 

transactional objects and suggest potential language 

improvements.

 

In addition to these AspectJ limitations, this work also makes the 

following contributions: 

• It provides a tertiary contribution to the proposed case study by 

refining the decomposition and dependencies between the 

aspects. 

• It validates the decomposition proposed in the case study. 

• It provides a reusable aspect-oriented framework for the ACID 

properties of transactional objects - AspectOPTIMA. I discuss at 

a higher level how this was achieved and provide a stripped-

down version of the implementation. 
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1.3 Thesis outline 

The motivation and contributions of this thesis have been discussed in 

this chapter. Chapter 2 covers the fundamentals of transactions 

(transactional objects, ACID properties of transactions, concurrency 

control and recovery strategies) and AOP as it applies in the context of 

the case study and this thesis.  A summary of the case study is 

presented in chapter 3. I introduce the implementation platform 

(JavaTM and AspectJ) in chapter 4. In chapter 5, I discuss the 

implementations of the aspects presented in the case study, critiquing 

each implementation and highlighting the encountered limitations. The 

encountered AspectJ limitations and potential improvements are 

discussed in chapter 6. Chapter 7 covers related work; chapter 8 

contains the conclusions of the thesis and future work. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6 



 
 

 
 

 

 

 

 

Chapter 2 ~ Fundamentals of Transactions and Aspect-
Oriented Programming 

_________________________________________________________________ 
 

This thesis brings together concepts from two different domains - 

transactions and aspect-oriented programming. This chapter 

introduces those concepts of these domains used in this thesis. Section 

2.1 presents the fundamentals of transactions (transactional objects, 

ACID properties of transactions, concurrency control and recovery 

strategies). Aspect-oriented programming is introduced in section 2.2 

of this chapter. 

 

2.1 Transactions 

2.1.1 Transactional Objects 

A transaction [10,11] groups together operations involving one or 

more data objects (also known as transactional objects) that must either 

succeed or fail as a group. This ensures that the execution of these 

operations on transactional objects appears indivisible from the 

perspective of concurrent competing transactions. Three standard 

operations are used for marking transaction boundaries: begin, commit 

and abort.  

The begin operation is used for signalling the beginning of a new 

transaction or sub-transaction. A transaction abort may be triggered 

voluntarily or involuntarily (in event of an exception) during the 

execution of a transaction. Upon abort, all the changes (writes or 
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updates) made on the accessed transactional objects by the aborting 

transaction must be undone (also known as rollback). Upon a successful 

completion, all the modifications made by the committing transaction 

on transactional objects become permanent and visible to other 

transactions.  

In classical transaction models, each transaction is executed by 

a single thread. More advanced models (such as Open Multi-Threaded 

Transaction model [11]) allow several threads to jointly participate in the 

execution of a transaction. The AspectOPTIMA framework provides 

support for both classical and advanced transaction models. 

 

2.1.2 The ACID Properties of Transactions 

Frameworks providing transaction support must be able to detect and 

resolve the execution of conflicting concurrent operations on 

transactional objects in order to preserve data consistency. To achieve 

these, frameworks must enforce the famous ACID properties (Atomicity, 

Consistency, Isolation and Durability) of transactions. 

 

Atomicity 

The Atomicity property guarantees the execution of either all or none of 

the operations within a transaction; hence, its synonymity to the all-or-

nothing (or at-most-once) property of transactions. The net effect from 

an external viewpoint should be a jump from the initial state to the 

result state (in the event of a successful transaction commit) or no state 

change (in the event of a transaction abort). The execution of only a 

subset of the operations of a transaction is not acceptable as this may 

place the system in an inconsistent state. Consequently, Atomicity is 

said to be unconditional, i.e. it must hold under every potential 

catastrophic circumstances - including a crash of the operating system. 
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Consistency 

Given a consistent state to start with, the Consistency property 

guarantees that the execution of a transaction (whether successful or 

not) will produce another consistent state. The results from a 

transaction must satisfy the validation constraints of the target 

application to be considered consistent. Inconsistent intermediate 

states within a transaction do not pose a problem since these are not 

visible to other transactions. This property is considered impossible to 

achieve without explicit programmer support, hence there is great 

reliance on the application developer to write consistency-preserving 

transactions. 

 

Isolation 

The isolation property prevents interference between concurrent 

executing transactions even when they access a common set of 

transactional objects. In other words, all the modifications made by a 

transaction on transactional objects cannot be based on data 

computed by other transactions still in progress. Consequently, the 

results produced by concurrently executing a set of transactions 

should be equivalent to the result produced by executing the same set 

of transactions in some arbitrary sequential order. 

 

Durability 

The Durability property guarantees that the results of successfully 

committed transactions survive program termination or system crash, 

even if the computer crashes immediately after a commit. That is, 

upon a successful transaction commit, the system must be able to re-

establish its results (either by re-executing the same sequence of 

9 



 
 

 
operations in event of an immediate system failure or by retrieving it 

from a stable storage) irrespective of subsequent failures. 

 

2.1.3 Concurrency Control and Recovery 

Transactions interact with transactional objects through well-defined 

public interfaces in properly designed systems. Implementing the ACID 

properties of transactional objects involves intercepting these 

interactions and performing the appropriate pre-actions and post-

actions. These activities have been traditionally divided in to 

concurrency control and recovery. This section introduces the concepts of 

concurrency control and recovery necessary for this thesis.  

 

Concurrency Control 

The concurrency control component of a transaction framework 

guarantees the isolation and consistency properties of transactions. To 

achieve these, the concurrency control component must be able to 

distinguish between observer operations (i.e., read-only operations) 

and modifier operations (i.e., write and update operations), and must 

also be able to detect and resolve the execution of conflicting 

operations. There are two main techniques for conflict detection [11]: 

strict concurrency control and semantic-based concurrency control, but the 

latter is out of the scope of this work.  

 Strict concurrency control (Table 2.1) is used in distinguishing 

between read, write and update operations. Read operations do not 

modify the state of transactional objects, hence, they do not conflict 

with other read operations. A Write (i.e., a write-only operation) or an 

Update (a read followed by a write) operation on the other hand 

conflicts with other writes, updates or read operations because they 
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modify the state of the transactional object on which they are 

executed. 

 

 Read Write Update

Read No Yes Yes 

Write Yes Yes Yes 

Update Yes Yes Yes 

Table 2.1: Strict Concurrency Control conflict table

 

Concurrency control can be achieved either pessimistically [10] or 

optimistically [12], each having its advantages and disadvantages.  

 

Pessimistic Concurrency Control 

This technique requires a transaction to obtain permission from the 

concurrency control manager associated with a transactional object 

before executing an operation on it. The concurrency control manager 

first checks if the execution of this operation would conflict with other 

operations in progress. If so, the calling transaction is blocked or 

aborted. Otherwise, the transaction is given the permission to proceed, 

with an implicit guarantee of isolation.  

 

Optimistic Concurrency Control 

This technique allows the execution of conflicting operations on a 

transactional object but only persists the results of those transactions 

that do not violate system consistency. In order to accomplish this, the 

execution of a transaction is divided into three phases: a read phase, a 

validation phase and a conditional write phase (Figure 2.1). A transaction 

executes its write and update operations on a local copy of a 
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transactional object during the read phase. The results of a transaction 

are only made global in the write phase if the validation phase succeeds. 

 

 
Figure 2.1: Three phases of a transaction 

 

The validation phase can be further categorized as either forward or 

backward [13] based on the way in which conflicts are detected. 

Forward validation ensures that committing transactions do not 

invalidate the results of the transactions still in progress. Backward 

validation ensures that the result of a committing transaction has not 

been invalidated by recently committed transactions.  

 

Recovery 

The recovery component of a transaction framework guarantees the 

atomicity and durability of state modifications on transactional objects 

irrespective of system failures (transaction abort or system crash).  In the 

event of a transaction abort (be it voluntarily or involuntarily), the 

recovery manager must undo all the modifications made by the 

aborting transaction. In the event of a system crash, the recovery 

manager must successfully abort all uncommitted transactions and 

undo all the modifications made on transactional objects by these 

transactions. It must then ensure that the results of transactions that 

committed before the crash are reflected in the appropriate 

transactional objects. Two types of techniques for performing updates 
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and recovery of transactional objects have been identified in literature 

[11]: in-place and deferred update. 

 

In-place update 

This update strategy executes operations on behalf of the calling 

transactions on the main copy of a transactional object. This implies 

that all updates on transactional objects are instantly made global. The 

undo functionality (also known as rollback) is facilitated by taking a 

snapshot (also known as a checkpoint) of the state of a transactional 

object before it is modified. The states of transactional objects can be 

conveniently restored by rolling back to a previously established 

checkpoint - in the event of a transaction abort or system crash. 

 

Deferred update 

This strategy supports recovery/updates by creating a local copy of a 

transactional object per transaction the first time it executes a state 

modifying operation. Subsequent operations are executed on the local 

copy, making these changes invisible to the outside world. These 

changes are made global upon a successful transaction commit either 

by replacing the state of the main copy with that of the local copy or 

by re-executing these operations on the main copy. Undoing state 

modifications in the event of a transaction abort or system crash 

simply involves discarding the local copies of the appropriate 

transactions. 

 

2.2 Aspect Oriented Programming (AOP) 

Object-oriented programming (OOP) revolutionized the process of 

software development with its introduction of object abstraction, 

encapsulation, inheritance and polymorphism. These concepts have 
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proven effective in modeling common hierarchical behaviours but fall 

short in modeling behaviours that spans across several unrelated 

modules. Attempts to implement such crosscutting behaviours in OOP 

often result in systems that are difficult to reuse or maintain. Aspect-

oriented programming [3,4] has been proposed as a new 

programming paradigm for addressing these deficiencies.  

 AOP is not intended to be a replacement methodology to OOP 

but a complementary addition. It introduces new concepts and 

constructs that enable the modularization of crosscutting concerns, 

resulting in systems that are easier to understand, maintain and reuse. 

The most fundamental concept of AOP is the Join Point Model (JPM). The 

JPM specifies how crosscutting concerns interact with a base 

application. Specifically, it defines the locations in a base program 

were crosscutting concerns can be applied, a way for selecting these 

locations and a means of affecting the behaviour at these locations. 

The development of an AOP system typically involves three distinct 

phases [14]:  

 

Aspectual Decomposition 

This phase involves the identification of crosscutting and core system 

concerns (i.e., goals, concepts or areas of interest). Given a banking 

application for example, a developer may identify credit and debit 

activities as core concerns, and authentication, persistence and 

concurrency control as crosscutting concerns.  

 

Concern Implementation 

This phase involves the implementation of the concerns identified in 

phase one. The flexibility of AOP permits the independent/oblivious 

implementation of the core concerns in either a procedural (such as C) 
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or an object-oriented (such as C++ or Java) platform. The crosscutting 

concerns (i.e., aspects) are typically implemented in an AOP-extension 

of the base language.   

 

Aspectual Re-composition 

The rules for re-composing the concerns implemented in phase two 

into a final system are specified in this phase. These rules are typically 

specified in the same language in which the concerns were 

implemented and within an AOP class-like construct named aspect. 

Other AOP tools such as JBoss AOP and Spring AOP supports the 

specification of these rules in XML files. A weaver then re-composes 

these concerns using the specified weaving rules into a final system 

(see figure 2.2).  

 

 
Figure 2.2: Re-composing concerns into final system 
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2.3 Summary 

The foundational concepts of this thesis have been introduced in this 

chapter. Specifically, I introduced the ACID properties of transactions, 

concurrency control and recovery strategies, and the basics of AOP. In 

chapter 3, I show how the aspectual decomposition concept of AOP 

was employed by the Software Engineering Lab at McGill University to 

decompose the implementation of the ACID properties into reusable 

aspects. 
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Chapter 3 ~ The Case Study 
_________________________________________________________________ 
 

This chapter presents the case study [8] proposed by the Software 

Engineering Lab at McGill University for evaluating AOP approaches 

and AOP language features. The case study argues that although 

concurrency control and recovery look like two separate concerns at a 

higher level, they cannot be completely separated at the 

implementation level. There exist both conflicts and common grounds 

between these two concerns. For instance, pessimistic concurrency 

control can only work with in-place update and both concerns must be 

able to distinguish observer operations from modifier operations.  

Motivated by this incomplete separation of concerns, the study 

proposed a potential aspectual decomposition of concurrency control and 

recovery (presented in section 3.1) into well-defined reusable aspects. 

It then showed how these aspects can be re-composed to provide 

various concurrency control and recovery strategies (presented in 

section 3.2). This thesis provides a tertiary contribution to the case 

study - some of these aspects have been refined where necessary to 

achieve a more elegant and functional decomposition. The version of 

the case study discussed below reflects these contributions. 
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3.1 Aspectual Decomposition of Concurrency Control and Recovery 

This section presents a brief description of each of the aspects 

proposed in the case study. Specifically, I discuss the motivation, 

dependencies (i.e., other aspects that the current aspect depends on 

or other aspects that require the functionality provided by the current 

aspect) and interferences (i.e., aspects that have to modify their 

behaviours in the presence of other aspects) of each aspect. The 

justifications of the reusability of the aspects can be found in [8] and 

the implementation details are separately discussed in chapter 5 of this 

thesis. 

 
3.1.1 AccessClassified 

Motivation 

The AspectOPTIMA framework must be able to identify the operations 

of a transactional object, which if executed concurrently may 

compromise the object’s state consistency. To this end, the operations 

of transactional objects must be classified into three categories: read 

operations (i.e., operations that do not modifier the state of an object), 

write operations (i.e., write-only) and update operations (i.e., a read, 

followed by a write). The AccessClassified aspect provides this 

functionality.  

 
Dependencies 

• Depends on: None 

• Interferes with: None  

• Is used by: Shared, Tracked, AutoRecoverable and Concurrency Control 
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3.1.2 Named 

Motivation 

One of the fundamental properties of an object is its identity because 

it helps in distinguishing it from other objects. A memory reference is 

typically used to uniquely identify an object at runtime. Transactional 

objects by nature have need of a lifespan that is not tied either to the 

lifetime of a memory location or an application. Consequently, there 

must be a way for uniquely identifying transactional objects that will 

transcend program termination and the lifetime of an application.  

The Named aspect provides this functionality. A transactional 

object should be given a name at creation time and the name should 

remain valid throughout its lifetime. It should be possible to obtain the 

name of a given object and to retrieve an object given its name. 

 
Dependencies 

• Depends on: None 

• Interferes with: None  

• Is used by: Tracked, Persistent, Serializeable and Versioned  

 

3.1.3 Copyable 

Motivation 

An object encapsulates state. At times (e.g., as in recovery strategies 

using deferred update), it may be necessary to duplicate an object’s 

state or to replace the state of one object with that of another object 

of the same class. These functionalities are provided by Copyable. This 

aspect should detect the presence of Shared and Named. The name of 

an object must not be changed by the state replacement operation and 

the state replacement or duplication of a Shared object should occur in 

mutual exclusion. 
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Dependencies 

• Depends on: None 

• Interferes with: Shared and Named 

• Is used by: Serializeable and Versioned  

 

3.1.4 Shared 

Motivation 

Transactional objects are shared data structures. Threads running 

concurrently within the same transaction may simultaneously execute 

conflicting operations on a transactional object - producing an 

inconsistent state. It is therefore necessary to prevent the threads that 

jointly participate in the execution of a transaction from concurrently 

modifying an object’s state. The Shared aspect provides this 

functionality. It provides exclusive access of a transactional object to 

either a single state modification operation (modifier) or multiple 

concurrent read operations (observers) - assuming no modification 

operation is in progress. Shared depends on AccessClassified in order to 

distinguish observer operations from modifier operations. 

 
Dependencies 

• Depends on: AccessClassified 

• Interferes with: None 

• Is used by: Concurrency Control 

 

3.1.5 Serializeable 

Motivation 

The state of a transactional object is not restricted to main memory. 

Certain functionalities (e.g., Persistence) require an object’s state be 

moved to a different location such as a file or a database. The main 

memory representation of the object must therefore be transformed to 
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the appropriate representation of the destination location. The 

Serializeable aspect provides this functionality. It enables a 

transactional object to be able to write its state to a backend requiring 

varying representation formats, read its state from a back end and 

create a new object - initialized with the state read from a backend.  

Serializeable relies on Copyable in replacing the state of an object with 

that of a previously serialized object of the same class. Serializeable 

also interferes with Shared and Named.  A shared transactional object 

should only be serialized when there is no other transaction modifying 

it. This aspect should also detect the presence of Named and serialize 

an object’s name together with its state. 

 
Dependencies 

• Depends on: Copyable  

• Interferes with: Shared and Named 

• Is used by: Persistent 

 

3.1.6 Versioned 

Motivation 

State modifications made by a transaction on transactional objects 

must be isolated from other transactions until the outcome of the 

transaction is known. To facilitate this, each transaction must have its 

own view of the transactional objects it accesses and threads should 

only see the updates made by other participants of the same 

transaction but not the updates made from within other transactions. 

Consequently, multi-version concurrency control strategies, as well as 

snapshot-based recovery techniques have to create multiple copies of 

the state of a transactional object. The Versioned aspect provides this 

functionality. 
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A Versioned object encapsulates several versions of the state of a 

transactional object, with one version designated as the main version. 

Versions are linked to the views of transactions. A method invocation 

on a transactional object is either directed to the version of a particular 

view - if the invoking transaction has a view - or to the main version - 

otherwise. Versioned relies on Copyable (for duplicating the state of an 

object) and Named (for uniquely identifying an object). It indirectly 

interferes with Shared (a new version should only be created when an 

object’s state is not being modified by another transaction) but 

Copyable has already taken care of this. 

 
Dependencies 

• Depends on: Copyable and Named 

• Interferes with: None 

• Is used by: Recoverable and Concurrency Control 

 

3.1.7 Tracked 

Motivation 

The AspectOPTIMA framework must keep track of all the transactional 

objects accessed by transactions (or threads) in order to effectively 

ensure the ACID properties of transactions. For instance, the list of 

modified transactional objects is required to support rollbacks or global-

updates in the event of a transaction abort or a transaction commit 

respectively. The Tracked aspect provides this functionality. It enables 

threads to define regions in which object accesses can be monitored in 

a generic way. The tracked region is delimited by begin and end 

operations. A thread should be able to obtain all read, written-to or 

updated transactional objects for the given region at any point in time. 

Tracked relies on AccessClassified (to distinguish observer operations 

from modifier operations) and Named (to avoid duplicates). Tracked 
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should detect the presence of Versioned to avoid tracking different 

versions of the same object. 

 

Dependencies 

• Depends on: AccessClassified and Named 

• Interferes with: Versioned 

• Is used by: Concurrency Control and Recovery 

 

3.1.8 Recoverable 

Motivation 

The AspectOPTIMA framework must be able to undo (also known as 

rollback) all state modifications made on transactional objects by 

aborting transactions in order to ensure the all-or-nothing property of 

transactions. The Recoverable aspect provides this functionality. It 

provides transactional objects with the ability to save their state (also 

known as establishing a checkpoint) and restore it at a later time, if 

need be. It should be possible to establish multiple checkpoints and to 

rollback an object’s state to any of the previously established 

checkpoints. The Recoverable aspect should also support both in-place 

and deferred updates.  

Recoverable depends on Versioned in establishing a checkpoint. It 

indirectly interferes with Shared (a checkpoint should only be 

established when an object’s state is not being modified by another 

transaction) but Versioned has already taken care of this. 

 

Dependencies 

• Depends on: Versioned 

• Interferes with: None 

• Is used by: AutoRecoverable and Recovery. 
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3.1.9 AutoRecoverable 

Motivation 

A potential performance issue when establishing multiple checkpoints 

of an object is the possibility of no state changes between successive 

checkpoints. An optimal solution may be to establish a checkpoint only 

when it is determined that the execution of an operation would modify 

the object’s state. The AutoRecoverable aspect provides this 

functionality. It allows a thread to define a region within which a 

checkpoint is automatically established before the execution of a state 

modification operation. This region is delimited by begin and end 

operations and all state modifications made within this region can be 

undone at any time. AutoRecoverable relies on AccessClassified (to 

distinguish observer operations from modifier operations) and 

Recoverable (to provide undo functionality). 

 
Dependencies 

• Depends on: Recoverable and AccessClassified 

• Interferes with: None 

• Is used by: Recovery. 

 

3.1.10 Persistent 

Motivation 

The state of persistent objects must outlive program termination. To 

support this, persistent objects must be able to write their state to 

stable storage (such as a database [15] or a file) and subsequently 

restore the object’s state based on the content of the storage device. A 

storage device should be specified at object creation time and it should 

be possible to destroy the object when no longer needed.  

The Persistent aspect depends on Serializeable (for transforming the 

object’s state into the appropriate format), Copyable (for restoring the 
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state of an object) and Named (for designating a valid storage location 

on the storage device). It interferes with Versioned (i.e., of all the 

versions, only the main version should be persisted) and Recoverable (a 

recoverable object should be persisted together with its checkpoints). 

The indirect interference between Persistent and Shared (i.e., an 

object’s state should only be persisted when it is not being modified by 

another transaction) has already been taken care of by Serializeable.  

 
Dependencies 

• Depends on: Serializeable, Copyable and Named 

• Interferes with: Versioned and Recoverable 

• Is used by: Recovery 

 

3.1.11 Summary 

I have discussed the decomposition of concurrency control and 

recovery into reusable aspects in this section. Specifically, I presented 

the motivation, dependencies and interferences of each aspect. Figure 

3.1 shows a UML diagram of the dependencies and interferences 

between these aspects. The solid arrows depict dependencies and the 

broken arrows depict interferences. The Concurrency Control and 

Recovery aspects have been added to represent general concurrency 

control and recovery strategies. Those highlighted in grey represent 

implementation overlap between Concurrency Control and Recovery. 

Finally, aspects that have to intercept calls/executions to transactional 

objects are stereotyped <<interceptor>>. 
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Figure 3.1: Aspect dependencies and interference 

 

3.2 Aspectual Re-composition of Concurrency Control and 

Recovery 

This section describes how the aforementioned aspects can be re-

composed to achieve different concurrency control and recovery 

strategies for transactional objects. It is assumed that the transaction 

framework creates a tracked zone, a recovery zone and a view for each 

transaction when it begins, and that it ends these zones upon 

transaction abort or commit. 

 

3.2.1 Pessimistic Lock-Based Concurrency Control with In-

Place Update 

The objective of the LockBased aspect is to provide a pessimistic lock-

based concurrency control for transactional objects. When a 

transaction invokes an operation on a transactional object, this aspect 

obligates the transaction to obtain permission (i.e., a lock) from the 

AspectOPTIMA framework before execution the operation. Each public 

operation is assumed to have a read, write or an update lock associated 

with it. LockBased depends on AccessClassified in determining the type 
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of lock requested by a given operation. The lock is only granted if it 

does not conflict with a lock held by another transaction currently in 

progress. Otherwise, the calling transaction is blocked till the 

requested lock is released. LockBased then selects an in-place update 

strategy by calling Recoverable before allowing the call to proceed. 

 The AspectOPTIMA framework needs to know all the 

transactional objects accessed by a transaction in order to be able to 

release the acquired transactional locks upon a transaction abort or 

commit. For this, LockBased depends on Tracked. LockBased also 

depends on AutoRecoverable (to prepare for rollback by establishing a 

checkpoint before state modification operations), on Versioned (to 

direct the operation call to the main version of the transactional object) 

and on Shared (to ensure that no two threads within a transaction can 

modify the object’s state concurrently). 

The Shared aspect releases the mutual exclusion lock 

immediately after the execution of the operation. Transactional locks, 

however, are held till the outcome of the transaction is known. The 

execution order of conflicting transactions is determined by the order 

in which transactional locks are granted. This implies that transactions 

acquire locks during their execution phase (phase one) and release 

them once the outcome of the transaction is known (phase two) – a 

process known as two-phase [13] locking. The sequence diagram below 

(Figure 3.2) shows how a call to a transactional object (TAObjects) is 

intercepted and how all the aspects involved in this concurrency 

control strategy collaborate to achieve the desired functionality. 
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Figure 3.2: Aspect Collaboration for the LockBased Aspect 

 

3.2.2 Pessimistic Multi-Version Lock-Based Concurrency Control 

with In-Place Update 

A major weakness of the lock-based concurrency control strategy 

presented above (section 3.2.1) is that read-only transactions 

(observers) can be blocked by modifier transactions. This may greatly 

impact the performance of applications with many short-lived observer 

transactions and few long-lived modifier transactions. The MultiVersion 

aspect addresses this problem. The MultiVersion aspect encapsulates 

two sets of states per transactional object, namely: a history of 

committed states (HCS) and the main version. Observer operations are 

executed on the appropriate objects in the HCS whereas modifier 

operations are executed on the main version. The HCS is populated by 

creating new versions of a transactional object upon a successful 
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transaction commit. Each object in the HCS is assigned a logical 

timestamp during which it state was valid. 

 Read-only transactions are assigned logical timestamps at 

creation time and they no longer have to acquire locks before 

observing the states of transactional objects. Notwithstanding, 

MultiVersion has to intercept read-only transactions, find a committed 

version with the highest timestamp that is lower than the transaction 

timestamp and assigns this version to the view of the invoking 

transaction. MultiVersion depends on Versioned to direct the call to the 

selected version and on Tracked - to record read accesses. The 

AutoRecoverable and Shared aspects are not needed for read-only 

transactions since these transactions do not modify the state of 

transactional objects. 

Figure 3.3 illustrates the control flow when an operation is 

invoked on a MultiVersion transactional object. The versions old1 to old4 

represents the history of committed states of the transactional object 

(TAObject). Ideally, the Shared aspect should be disabled for the 

versions old1 to old4 of the TAObject but enabled for the main version 

(main) to optimize performance. 

 

 
Figure 3.3:  Control Flow for Multi-Version Concurrency Control 
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Modifier transactions are handled in the same way as in the LockBased 

aspect. First, MultiVersion attempts to acquire the appropriate lock 

(Write or Update lock) on the main version of the transactional object 

(TAObject). If granted, the transaction is allowed to proceed; 

otherwise, it blocks. MultiVersion then depends on Tracked to record 

object accesses, on Recoverable for selecting an in-place update 

strategy and on AutoRecoverable for establishing a checkpoint. Versioned 

then directs this call to the main version and Shared ensures mutual 

exclusion for concurrently executing conflicting threads. As before, 

Shared releases the lock immediately after the execution of the 

operation but the transactional locks are held till the outcome of the 

transaction is known. 

 

3.2.3 Optimistic Concurrency Control with Deferred Update and 

Backward Validation 

The Optimistic aspect implements an optimistic concurrency control 

strategy with deferred update and backward validation. As discussed in 

section 2.1.3, the execution of a transaction is divided up into three 

phases (Read, Validation and Write) when using optimistic concurrency 

control. 

 

Read Phase 

Transactions always read the most recently committed state of a 

transactional object during this phase. The Optimistic aspect intercepts 

and classifies method calls on transactional objects with the assistance 

of AccessClassified.  

If the method call is an observer operation, it is first forwarded to 

Tracked to record object accesses. Then, Versioned forwards the call to 

the main version since it contains the most recently committed state. 
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The Shared and AutoRecoverable aspects are not necessary in this case 

because it is a read-only call. 

If the method call is a modifier operation, Optimistic first selects a 

deferred-update strategy by calling Recoverable. The call is then 

forwarded to Tracked to record the object access. Next, AutoRecoverable 

creates a new version of the transactional object using the selected 

update strategy. Finally, Versioned forwards the call to the newly 

created version and Shared ensures mutual exclusion as usual. All 

subsequent reads performed by this transaction are executed on the 

local version of the transactional object.  

 AutoRecoverable creates a local version per-transaction for each 

concurrent modification call. Consequently, there might exist several 

uncommitted versions of a transaction object at a given time, each 

belonging to a different transaction. Figure 3.4 illustrates the control 

flow through the aspects for observer and modification operations. We 

have four active transactions, each with its own local copy of the 

transaction object. Observer operations are executed on the main version 

and have no need for AutoRecoverable or Shared.  

 

 
Figure 3.4: Control Flow for Optimistic Concurrency Control 
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Validation Phase 

The results of transactions have to be successfully validated before 

they are committed. To achieve this, the Optimistic aspect requires the 

timestamp of the most recently committed transaction both when a 

transaction begins (Tbegin) and when a transaction is about to begin 

its validation phase (Tend). It then computes the union of all the 

transactional objects modified by transactions (excluding the current 

validating transaction) between Tbegin and Tend using Tracked and 

intersects this union with the set of transactional objects modified by 

the validating transaction.  

A transaction successfully validates only if the intersection set is 

empty. It then receives a commit timestamp before proceeding to the 

write phase. Otherwise, validation is considered unsuccessful and the 

validating transaction is aborted. Recoverable is then informed to 

rollback the changes, resulting in the deletion of the local versions of 

the transaction. 

 

Write Phase

This phase is responsible for making the results of a successfully 

validated transaction global and for discarding the local versions of a 

transactional object.  

 

3.3 Summary 

I have discussed the decomposition of the ACID properties of 

transactions into reusable aspects proposed by [8]. I also discussed 

how these aspects could be re-composed to achieve different 

concurrency control and recovery strategies for transactional objects. 

A surface examination of the decomposition and re-composition 
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scenarios highlights some preliminary requirements that a typical AOP 

tool should provide:  

 

• Inter-aspect configurability(i.e., aspect dependencies) 

Some aspects require the functionality of other aspects in order to 

function (e.g., AutoRecoverable depends on Recoverable and 

AcessClassified). An AOP tool should provide a construct for 

explicitly expressing these dependencies. 

 

• Inter-aspect ordering 

The ability to define the execution order of aspects is crucial in 

certain cases. Optimistic for instance, requires AutoRecoverable to 

create a new version of a transactional before Versioned directs and 

executes the call on the appropriate version. 

 

• Per-instance aspect association 

An often-desired functionality is the possibility to apply different 

concurrency control and recovery strategies to different objects of 

the same class. It should therefore be possible to apply Lockbased, 

MultiVersion and Optimistic to objects, instead of classes. 

 

• Dynamic aspects 

There is no need of the Shared aspect on transactional objects that 

are accessed only by observer operations. The presence of Shared 

on such objects may be a cause for concern for performance 

sensitive applications. An AOP tool should therefore provide support 

for runtime enable or disabling of aspects. 
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Chapter 4 ~ Implementation Platform 
_________________________________________________________________ 
 

This chapter introduces the concepts and constructs of Java and 

AspectJ that are of importance to this thesis. I introduce user-defined 

annotations (supported as of Java 5) in Section 4.1. These annotations 

are used for classifying the operations of transactional objects as Read, 

Write or Update. AspectJ is introduced in section 4.2. 

 

4.1 Annotations 

Before the advent of user-defined annotations, frameworks (such as 

Junit [16]) relied on naming conventions for identifying methods that 

require special treatment at runtime. This approach is restrictive and 

prone to implementation and evolutionary errors. As of release 5.0 

(also known as Tiger) [17], the Java platform now provides a versatile 

approach for annotating program elements (fields, methods, 

parameters, constructors, local variables, packages, annotations, 

classes, interfaces and enumerations). 

The declaration of an annotation takes an at-sign (@), followed 

by the interface keyword and the name of the annotation. Annotations 

also have a target program element, a retention policy (Source, Class 

or Runtime) and an inheritance policy. These policies are specified using 

meta-annotations (predefined annotations used for annotating other 

annotations). Java currently supports three types of annotations: 

marker annotations (i.e., annotations with no elements), single-value 
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annotations (i.e., annotations with a single element) and multi-value 

annotations (i.e., annotations with multiple elements). 

I use marker annotations in distinguishing between the read, write 

and update operations of a transactional object. Figure 4.1 shows the 

Read marker annotation used in this work. It is equivalent to the Write 

and Update annotations, except for the difference in name. As shown 

below, these annotations have a runtime retention policy (i.e., they 

are retained by the virtual machine so that they can be read 

reflectively at run-time), can be inherited (i.e., annotations on super-

classes are automatically inherited by subclasses) and their target is 

method declarations. 

 

     

        @Retention(RetentionPolicy.RUNTIME) 

        @Target(ElementType.METHOD) 

        @Inherited  

        public @interface Read {} 

Figure 4.1: Sample marker annotation 

 

Unfortunately, method annotations on super-interfaces cannot be 

inherited by implementing classes [18]. The framework must therefore 

employ a different strategy for classifying methods inherited from 

super-interfaces to avoid the performance overhead that come from 

using worst-case classification. These strategies are discussed in the 

implementation of AccessClassified (section 5.3.1). 
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4.2 AspectJ 

AspectJ [4] is an aspect-oriented extension of the Java programming 

language. It emerged from a research work at Xerox PARC aimed at 

modularizing crosscutting concerns and is currently considered to be 

the most mature AOP implementation. This section introduces those 

concepts and constructs of AspectJ that are used in this thesis (see 

[14] for an in-depth coverage on AspectJ). AspectJ supports two types 

of crosscutting behaviours: dynamic and static crosscutting. These 

crosscutting behaviours are encapsulated in an AspectJ class-like 

construct known as an aspect. Similar to a Java class, an aspect can 

contain both data members and method declaration but it cannot be 

explicitly instantiated. 

 

4.2.1 Dynamic Crosscutting 

Dynamic crosscutting techniques are used for defining behaviours that 

modify the runtime execution of a system either by augmenting or 

replacing it. I introduce the AspectJ constructs used for modifying a 

system’s dynamic behaviour in this section.  

 

Join point 

Join points are well-defined points in the execution of a program. The 

integration of crosscutting concerns with base applications occurs at 

these points. A program’s execution contains several join points but 

AspectJ exposes only the following: method call and execution, 

constructor call and execution, read or write access to a field, object 

and class initialization execution, exception handler execution, and 

advice execution. These join points also have states associated with 

them such as the current executing object, the target object or the list 

of arguments. 
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This thesis makes use of method call and execution, constructor call 

and execution, and advice execution join points. My discussion of join 

points is therefore limited to these.  

 

Method and Constructor call join points 

The method and constructor call join points are equivalent in 

definition. Both occur at the places where they are being invoked 

(Figure 4.2). The constructor call join point of the Account object occurs 

at the statement that requests the creation of a new object. Similarly, 

the method call join point of the getBalance() method of the Account 

object occurs at the point where it is being invoked. 

 

 
Figure 4.2: Method and Constructor call join points 

 

Method, Constructor and Advice execution join points 

The method, constructor and advice execution join points are also 

equivalent in definition. These occur when the code within the body of 

the corresponding construct executes. Figure 4.3 shows an example of 

the getBalance() method and the Account constructor execution join 

points of the Account object. 
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Figure 4.3: Method and Constructor execution join points 

 

AspectJ provides a special reference variable – thisJoinPoint – that 

contains the dynamic information associated with an advised join 

point. This variable provides direct access to information such as the 

target object (thisJoinPoint.getTarget()), the current executing object 

(thisJoinPoint.getThis()), and method arguments (thisJoinPoint.getArgs()). 

Other information such as the name of the current executing method 

can also be extracted (indirectly) from this variable using the Java 

reflection API. 

 

Pointcut 

A pointcut is a construct used for capturing join points of interest and 

their associated context - such as the current executing object 

(this(ObjectIdentifier)), the target object of a call or execution 

(target(ObjectIdentifier)) and the arguments of the join point (args(…)).  

AspectJ supports both named and anonymous pointcuts. Named 

pointcuts are declared using the keyword pointcut and can be reused in 

multiple places.  Pointcuts can also be composed using Boolean 

operators (AND, OR, NOT) to build other pointcuts. Below is the syntax 

of a named pointcut:  
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[access modifier] pointcut pointcut-name ([arguments]): pointcut-definition

 

The access modifier can be public, private or protected; the pointcut-name 

can be any valid user-defined non-keyword and arguments are used for 

exposing context of interest to the advice. Table 4.1 introduces the 

pointcut-definition of interest to my work.  

 

Pointcut-definition Description
 

call(public * Account+.*(..)) 

Picks out all public method calls to Account or its 

subclasses, taking zero or more arguments. 

 

execution(public * Account+.*(..)) 

Picks out all public method execution on Account 

or its subclasses, taking zero or more arguments. 

 

call(public Account+.new(..)) 

Picks out public constructor calls to Account or its 

subclasses, taking zero or more arguments. 

 

execution(public Account+.new(..)) 

Picks out public constructor execution on Account 

or its subclasses, taking zero or more arguments. 

 

target(Account) 

Picks out all join points where the target is an 

instance of Account. 

Adviceexecution() Picks out the execution join point of an advice. 

 

!cflow(Adviceexecution()) 

Picks out all join points that are not in the control 

flow of the executing advice.  

 
if(BooleanExpression)

 

Picks out all join point where the Boolean 

expression evaluates to true. 

Table 4.1: Sample pointcut definitions 

  

Advice 

An advice defines the actions to be taken at the join point(s) captured 

by a pointcut. AspectJ supports three types of advice: before, after and 

around advice. The before advice runs just before the captured join 

point; the after advice runs immediately after the captured join point; 

the around advice surrounds the captured join point and has the ability 
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to augment, bypass or allow its execution. The after advice comes in 

three flavours: after returning (i.e., after the successful execution of a 

join point), after throwing (i.e., after the advised join point throws an 

exception), and after (i.e., irrespective of the return status of the join 

point). 

  

 
Figure 4.4: Sample before, after and around advice 

 

Figure 4.4 shows an example before, after and around advice for the 

pointcut call(public float Account.getBalance()). The proceed() statement of 

the around advice passes control back to the captured join point. 

Omitting this statement will bypass the captured join point. 

 

4.2.2 Static Crosscutting 

The static crosscutting constructs are used for modifying the static 

structure (i.e., classes, interfaces and aspects) of a system. I 

introduce the AspectJ constructs that support this type of crosscutting 

in this section.  

 

Inter-type member declarations (also known as Introductions) 

The member introduction concept of AspectJ is a feature that is 

extensively used in this thesis. This concept facilitates the introduction 

of data members and methods - with implementation - into classes and 

interfaces. Figure 4.5 illustrates the introduction of a private accountID 
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field, with public setter (public void setAccountID(int id)) and getter (public 

int getAccountID())  methods into the Account class. This type of 

introduction is called direct introduction because the data members are 

introduced directly in the target class. Indirect introduction introduces 

data members into an interface and later binds the interface to the 

target class. A significant difference between direct and indirect 

introduction of relevance to this thesis is the association of the joint 

points of the introduced methods. The call and execution joint points 

of directly introduced methods are associated with the target classes 

whereas those of indirectly introduced methods are associated with the 

interface. 

 

 
Figure 4.5: Data member and method introduction 

 

Modifying the class hierarchy 

AspectJ also provides a construct (declare parents) for modifying the 

inheritance hierarchy of existing classes. This construct can declare 

new super-classes and super-interfaces for an existing class as 

demonstrated in figure 4.6. The Account class is now serializable and a 

subclass of Bank. 
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Figure 4.6: Modifying the hierarchy of a class using: declare parents

 
Aspect precedence 

Multiple crosscutting behaviours may apply to the same join point in a 

system with multiple aspects. The outcome of an unspecified execution 

order of crosscutting behaviours at common join points is not only 

unpredictable; it may also be undesirable. AspectJ provides the declare 

precedence construct for controlling the execution order of advices at 

these common join points. This construct takes the following form: 

 

declare precedence: TypePattern1, TypePattern2, …;

 

The aspects matching Typepattern1 have a higher precedence than 

those matching Typepattern2, and so on. What this means from the 

viewpoint of an advice is: the before and around advice of higher 

precedence aspects executes before those of lower precedence aspects 

whereas the after advice of lower precedence aspects executes before 

those of higher precedence aspects.  
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Chapter 5 ~ AspectJ Implementation of the ACID 
framework 

_________________________________________________________________ 
 

I have introduced the foundational concepts (transactions, aspect-

oriented programming, AspectJ and the case study) of this thesis in 

the preceding chapters. In this chapter, I present and critique potential 

AspectJ implementations for each of the aspects introduced in the case 

study.  I also highlight the encountered implementation limitations for 

each aspect. In chapter 6, I provide an in-depth evaluation of these 

limitations, accompanied with potential AspectJ improvements. 

Section 5.1 of this chapter introduces the sample base 

application used in this thesis. I introduce abstract introductions – a 

popular idiom for implementing reusable static crosscutting aspects - 

in section 5.2. A stripped-down implementation of the aspects and 

their limitations are discussed in section 5.3. 

 

5.1 Sample Base Application 

The sample application that will be used for demonstrating the 

implementation of reusable aspects is presented in figure 5.1. This is a 

simplified version of a typical account class and is intended just for 

demonstration purposes. The application consists of one abstract super 

class (Account) and two concrete subclasses (SavingAccount and 

CheckingAccount). The Account class has one field (balance), two 

abstract methods (credit(…) and debit(…)) and one non-abstract method 
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(getBalance()). The subclasses provide a constructor and 

implementations for the inherited abstract methods but do not 

override the inherited non-abstract method (i.e., getBalance()). 

 

 
Figure 5.1: Sample base application 

 

5.2 Reusability through the Abstract Introduction Idiom 

As discussed in chapter 3 (the case study), the functionality of some 

aspects can only be achieved through the assistance provided by other 

aspects (e.g., AutoRecoverable depends on Recoverable and 

AccessClassified). Aspects therefore require an oblivious way for 

expressing their need of the functionalities (i.e., both static and dynamic 

crosscutting behaviours) provided by other aspects (i.e., inter-aspect 
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configurability). In addition, these aspects should be generic enough to 

be used in different contexts besides ensuring the ACID properties of 

transactional objects. Hence, we also require an oblivious way for 

identifying the classes to which an aspect should be applied (i.e., 

aspect-to-class binding). 

The abstract introduction idiom (also known as indirect introduction) 

[19,20] has been proposed as a strategy for implementing aspects 

that can be reused in different contexts. It allows us to “collect several 

extrinsic properties from different perspectives within one unit and defers the 

binding to existing objects” [19]. In other words, the target classes of the 

static and dynamic crosscutting behaviors are unknown until weave-

time. This strategy has three participants (figure 5.2):  

 

• Introduction container: a construct used as the target for the inter-type 

member declarations.  

• Introduction loader: the aspect that introduces crosscutting behaviors and 

ancestors to the introduction container. 

• Container connector: the aspect used for connecting the introduction 

container to the base application classes. 

 

 
Figure 5.2: Abstract introduction 
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The introduction container serves a dual purpose in the context of this 

thesis. First, it enables the aspects (i.e., both static and dynamic 

crosscutting behaviours) to be reused in different contexts; second, it 

helps in identifying the classes to which the crosscutting behaviours of 

an aspect should be applied. The introduction container can either be a 

class or an interface in AspectJ. A class would not be an appropriate 

introduction container for our purpose because multiple-inheritance is not 

supported in Java and an aspect might rely on the functionalities of 

several other aspects. In addition, a class cannot be an ancestor to an 

interface. Consequently, interfaces are used as the introduction container 

for each of the aspects in this thesis. 

I associate a dummy interface to each of the aspects identified in 

the case study. For instance, the interface IShared is associated to the 

aspect Shared, IAutoRecoverable is associated to AutoRecoverable and so 

on. Each aspect is then implemented to apply its functionality to all the 

classes that implements its associated interface (e.g., the Shared 

aspect is applied to all classes that implements the IShared interface). 

Aspect-to-class binding is typically achieved through the declare parents 

construct of AspectJ (figure 5.3) but explicit support for inter-aspect 

configurability is not yet supported. Inter-aspect configurability was 

achieved by having the associated interface of an aspect implement 

the interfaces of the aspects it depends on. For instance, inter-aspect 

configurability was achieved in the AutoRecoverable aspect by having 

IAutoRecoverable implement IAccessClassified, IRecoverable, (as 

demonstrated figure 5.4). 

 

 
Figure 5.3: Aspect-to-class binding 
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Figure 5.4: Inter-aspect configurability 

 

Figure 5.3 brands the Account class as IShared; hence, the crosscutting 

behaviours of the Shared aspect would be applied to all the objects of 

the Account class at runtime. Figure 5.4 expresses the need of the 

AutoRecoverable aspect for the functionalities provided by the 

Recoverable and AccessClassified aspects (see section 3.1.9). Hence, an 

AutoRecoverable object is by default Recoverable and AccessClassified. 

Observe that the use of interfaces in achieving aspect-to-class binding 

and inter-aspect configurability satisfies the oblivious property as 

suggested in [21] – developers do not have to modify their systems to 

accommodate these aspects and the base application is completely 

ignorant of their existence.  

  

5.3 Implementing the ACID Framework 

I discuss and critique the implementations of each of the aspects 

identified in the case study in this section. Encountered AspectJ 

limitations are also highlighted but will be addressed in detail in 

chapter 6. 

Be reminded that an object in an AspectJ environment has three 

types of methods: those inherited from super-classes and super-

interfaces, those declared by the class, and those introduced through 

direct or indirect introductions (as opposed to just inherited and declared 

methods in Java). The same is true for data members. An AOP 

transaction framework must therefore recognize this new dimension 

and handle it accordingly. These implementations also assume that the 

interactions between the transaction framework and the transactional 
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objects occur through well-defined public interfaces. Consequently, the 

enforcement of the ACID properties of transactions is addressed only 

at this level.  

 

5.3.1 AccessClassified 

Summary of functionality 

• This aspect classifies every public method (inherited, declared, 

introduced) of an object as either a read, a write or an update 

operation. 

 
Implementation 

Option-1: Implementation 

The effectiveness of an ACID transactional framework is conditional on 

its ability to accurately identify the access type of the operations of a 

transactional object. An unnoticeable erroneous classification might 

place the system in an inconsistent state - with potential costly 

consequences. An ideal solution would therefore involve an automation 

of the method classification process instead of relying on developers. 

 An automated solution would have to anticipate all field 

references within the control flow of a given operation and classify the 

operation accordingly. An operation with only get field references in its 

control flow would be classified as a read, an operation with only set 

field references in its control flow would be classified as a write, and an 

operation with both get and set field references in its control flow would 

be classified as an update.  

 AspectJ provides two pointcuts for capturing get and set field 

references: get(FieldPattern) and set(FieldPattern). Figure 5.5 illustrates 

how these pointcuts can be used in automating the operation 

classification process. 
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Figure 5.5:  Automatic classification of operations 

 

The get and set pointcuts for capturing field references on 

IAutoAccessClassified objects are defined on lines 5 and 6 respectively, 

line 7 defines a pointcut for capturing public calls to 

IAutoAccessClassified objects. The around advice (lines 9 to 21) 

intercepts and classifies all field references in the control flow of the 

current executing public operation with target IAutoAccessClassified. The 

getMethodName(thisJoinPoint.toString()) function is a helper method for 

obtaining the name of the current executing method from the 
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thisJoinPoint aspect variable. Observe that there is no proceed() 

statement in either of the around advices (i.e., the captured join points 

are not executed). The after advice (lines 23 to 31) then determines 

the access type of the operation based on the kinds of field references 

in its control flow and stores this information in a HashMap. The 

getAccessKind(String methodName) method (lines 33 to 35) returns the 

access type of the method with name methodName on the 

IAutoAccessClassified object. 

 
Option-1: Discussion 

Although this implementation successfully automates the operation 

classification process, it has four significant drawbacks. First, every 

operation must be executed twice (although invoked only once by the 

developer): the first time to determine its access type (classification 

phase) and the second time, to actually execute the operation by 

reflection (execution phase). Additional aspects are obviously required to 

mask this complexity from the developer. Theoretically, the execution 

time of an operation would double the first time it is executed in the 

presence of automatic classification.  

Secondly, conditional state modification statements (e.g., set 

field references within an if-statement) within an operation may not be 

executed the first time it executes. This implies that an update 

operation may be erroneously classified as a read operation. There is 

therefore the potential of corrupting the state of an object since 

subsequent requests for an operation’s access type is obtained from 

the hash map.  

Thirdly, the field reference pointcuts (lines 5 and 6) captures 

accesses to the fields of transactional objects only. This implies that 

set field references on non-transactional objects in the control flow of 
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transactional operations will always be executed twice - during the 

classification phase and the execution phase – putting the system in an 

inconsistent state. Our implementation assumes that transactional 

operations do not access non-transactional objects.  

Finally, this solution relies on the if(Boolean) pointcut (lines 11, 18 

and 24) to avoid classifying an operation every time it is invoked. That 

is, operations are only classified once and their access type 

subsequently obtained from the HashMap. This implies that an 

operation call will always be intercepted by the pointcuts but not 

necessarily classified. The performance overhead introduced by the 

if(Boolean) pointcut cannot be significantly reduced at runtime since 

AspectJ does not currently support runtime disabling and re-enabling 

of pointcuts (AspectJ limitation). Ideally, all the pointcuts of the 

AutoAccessClassified aspect should be disabled as soon as the access 

type of all the public operations is known.  The performance overhead 

introduced by this deficiency, combined with the need for dual 

operation execution might outweigh the benefits of automatic 

classification. 

The runtime performance overhead may be significantly reduced 

or even eliminated if the classification process is performed at compile-

time. Some AOP compilers already support the identification of get and 

set field references in the control flow of a method at compile-time. 

Such compilers may therefore be optimized to use this information in 

classifying and annotating the methods of a class with metadata at 

compile-time. However, this is out of the scope of this thesis. 
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Option-2: Implementation 

This option places the burden of classifying the operations of a 

transactional object on the developer. Developers are required to 

classify every public method (inherited, declared, introduced) of a 

transactional object as either a read, a write or an update using the 

marker annotations introduced in section 4.1. The AccessClassified 

aspect (figure 5.6) introduces a method (getAccessType(String 

methodName)) to every IAccessClassified object that examines these 

annotations by reflection at runtime and classify each operation 

accordingly. 

Line 8 obtains all the methods (inherited, declared, introduced) 

of the object, lines 9 to 18 determines the annotation type associated 

with the method of interest using the Method.isAnnotationPresent(..) 

method of the Java reflection framework.  

 

 
Figure 5.6: Manual classification of operations 
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AspectJ currently supports direct introduction of annotated methods 

(i.e., @Read int Account.getAccountID()) into a target class. These 

methods will therefore be appropriately classified. However, Indirect 

introduction of annotated methods (i.e., introducing @Read int 

getAccountID() into the interface IExample - @Read int 

IExample.getAccountID()  - and later binding the Account class to 

IExample as illustrated in section 5.2) into a target class is not yet 

supported in AspectJ. That is, the getAccountID()  method  will be 

introduced into the target interface (IExample) without the annotation 

(@Read)  and later bound to the target application (Account)  without 

the annotation (AspectJ limitation). The framework must therefore 

make worst-case assumptions (line 16) when such methods are 

encountered to ensure system consistency.  

 
Option-2: Discussion 

This option also has two significant drawbacks. First, its reliance on the 

developer in classifying the methods of transactional objects is a time 

bomb with potential costly consequences. Also, developers may ignore 

or forget to classify the methods of transactional objects, resulting in a 

system where all the operations are considered conflicting. This may 

greatly affect the performance of such a system. Second, observer 

operations introduced by indirect introduction are by default classified as 

modifiers – another performance concern.  

Ideally, the correctness of the classification should be verified at 

compile time and the appropriate warning/error message emitted. For 

instance, there shouldn’t be any set field references in the control flow 

of a method annotated as read. This cannot be accomplished with the 

declare error and declare warning constructs of AspectJ because the cflow() 

pointcut is not statically determinable. Our ideal AOP tool should 

provide a pointcut that supports such functionality at compile-time. 
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5.3.2 Named 

Summary of functionality 

• Every object creation operation must associate a unique name to 

the object that is created. 

• Every named object knows its name and it should be possible to 

retrieve an object given its name. 

• An object’s name must remain unchanged throughout its 

lifetime. 

 
Implementation 

 
Figure 5.7: Implementation of the Named aspect 
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Figure 5.7 illustrates a possible implementation of the Named aspect. 

Line 7 introduces a private field named myName into the object that 

the aspect is applied to, line 8 introduces a public method 

(getMyName()) for retrieving the object’s name, and line 9 introduces a 

private method (setMyName(String))  for setting the object’s name. The 

private method setMyName(String) is accessible only within this aspect 

(i.e., it cannot be accessed even by the base application to which the 

aspect is bound). Hence, once initialized, the object’s name cannot be 

changed. 

 The pointcut for picking out the constructor execution of an 

INamed object is defined on lines 11 to 12, and lines 14 to 20 defines 

an after advice for setting the object’s name. The object’s name is the 

fully qualified name the class name (i.e., the full package path) plus a 

unique ID (line 15) and therefore unique. Lines 22 to 30 defines a 

method (getObject()) for retrieving an object given its name. 

 
Discussion 

As demonstrated, reusable implementations may require the 

introduction of additional information (data members and methods) 

into their target classes to facilitate their functionality. With several 

aspects in a system, there is the possibility of introducing methods or 

fields with the same name into the target class - resulting in naming 

conflicts. An alternative implementation is to keep the additional 

information within the aspect and associate an instance of the aspect 

state to every instance of an INamed object. This sounds good, except 

that the aspect-to-object association must occur at a captured join 

point but purely static crosscutting aspects (such as the manual 

AccessClassified aspect – figure 5.6) do not contain join points. 

Consequently, the name conflict issue is unavoidable (AspectJ 

limitation). 
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Another deficiency worth nothing is the inability of the set pointcut of 

AspectJ in capturing reflective field references; hence, reflective 

changes of an object’s name cannot be prevented. Why not just 

declare the name field final to prevent reflective changes – you ask? 

First, because a final field can only be initialized within a constructor 

and the constructor execution pointcut (lines 10 to 11) does not satisfy 

this requirement even though its join point occurs within the body of 

the constructor (see section 4.2.1). Secondly, indirect initialization of a 

final field using a set-field method from within an advice that picks out 

a constructor execution (such as in lines 13 to 17) is also not feasible. 

 
5.3.3 Copyable 

Summary of functionality 

• An ICopyable object is Cloneable, i.e., this aspect enables an 

object to create an identical copy of itself. 

• An ICopyable object can also replace its state with that of 

another object of the same class. 

 
Implementation

The Copyable aspect (figure 5.8) introduces static crosscutting 

behaviours to all classes that implement the ICopyable interface to 

facilitate the state replacement and cloning functionality. Line 3 

enables all classes that implement the ICopyable interface to be 

Cloneable. Lines 11 to 29 present one possible implementation of the 

clone method. This implementation requires the target class (including 

its composed classes) to be serializable so as to support deep cloning. 

The decision of whether to support deep or shallow cloning of an object’s 

state is application dependent - each having its strengths and 

weaknesses - and certainly not an AspectJ issue. This cloning strategy 

is therefore intended just for demonstration purposes. Developers can 
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seamlessly override this cloning implementation by providing a custom 

clone() implementation within classes that implement the ICopyable 

interface. 

 

 
Figure 5.8: Implementation of the Copyable aspect – Part I 

 

Lines 5 to 9 provide the method (replaceState(Object)) for replacing the 

state of one object with that of another object of the same class. The 

copyFields(this, source) method – figure 5.9 - performs a field-by-field 

copy of the state (inherited, declared, introduced and those of composed 

objects) of the source object to the invoking object.  
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Figure 5.9: Implementation of the Copyable aspect – Part II

 

Discussion 

Fields declared as final cannot be replaced - even by reflection. The 

state replacement method cannot therefore replace the value of a final 

field. This implementation also detects the presence of the Named 

aspect to avoid modifying the identity (Constants.OBJECT_NAME – line 

59) of an INamed object. 
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5.3.4 Shared 

Summary of functionality 

• This aspect obligates a transaction to obtain a read, write, or an 

update lock before executing a method (inherited, declared and 

introduced) of an IShared object. 

• Previously acquired locks are released when returning from the 

method invocation. 

 
Implementation 

The implementation of the Shared aspect is presented in figure 5.10. 

The Shared aspect expresses its need for the functionality provided by 

AccessClassified on line 3, lines 6 to 7 introduce the static crosscutting 

behaviours for synchronizing access to an object’s state, and lines 10 

to 12 introduce fields and methods for supporting runtime enabling or 

disabling of advices on a per-object basis (e.g., for disabling the 

Shared advice on the objects in the history of committed states). This 

aspect relies on AccessClassified to distinguish observer operations from 

modifier operations. 

The around advice (lines 17 to 37) obligates every thread 

executing an operation (with the exception of static methods because 

they do not have a this reference) on a Shared object to acquire the 

appropriate lock (lines 21 to 31) before proceeding (line 32). The 

previously acquired lock is then released (lines 34 to 35) after the 

operation is executed. A well-known problem with lock-based solutions 

is the possibility of deadlock. For instance, deadlock can occur in this 

implementation if a thread with a read lock on an object wants to 

execute another method on the same object that requires a write lock 

without releasing its read lock. This implementation allows a thread to 

upgrade its lock in such instances in a deadlock-free manner (the code 

has been edited out for clarity). 
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Figure 5.10: Implementation of the Shared aspect 

 

Discussion 

This implementation has three significant drawbacks. First, as 

explained in section 3.2.2 (Multi-version lock based concurrency 

control), there is no need of the Shared aspect on objects that are 

accessed only by observer operations. At best, AspectJ supports only 

the disabling of advices through the if(BooleanExpression) pointcut (line 

18). This implies that the target-joinpoint (lines 14 to 15) will always be 
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intercepted but the execution of its associated advice is conditional on 

the value of BooleanExpression. Consequently, every operation call to 

the objects in the history of committed states will unnecessarily be 

intercepted - incurring an unnecessary performance overhead (AspectJ 

limitation). Disabling the pointcut(s) that intercept target-joinpoint(s) 

would eliminate the unnecessary interception of operation calls. Our 

ideal AOP tool should therefore provide support for runtime disabling 

and re-enabling of pointcuts so as to optimize system performance. 

Secondly, a method call pointcut does not capture reflective calls 

to operations on Shared objects, making it impossible to detect and 

prevent the concurrent execution of conflicting operations. This is a 

deliberate decision made by the AspectJ team not to “delve into the Java 

reflection library to implement call semantics” [9]. Developers are advised to 

use the method execution pointcut (execution(public * IShared+.*(..))) 

instead. The method execution pointcut on the other hand does not 

pick out the execution (reflective or non-reflective) of non-overridden 

inherited methods when the target is the subclass. For instance, 

assuming that CheckingAccount is IShared, the execution of 

CheckingAccount.getBalance() is not captured by the aforementioned 

method execution pointcut; firstly, because the getBalance() method is 

not overridden in the CheckingAccount subclass; and secondly, because 

the execution join point of getBalance() occurs in the Account super 

class. Making the super class (i.e., Account) IShared would solve the 

problem but at the expense of obligating all its subclasses (e.g., 

SavingAccount) to also be IShared. Composing call(public * IShared+.*(..))) 

and execution(public * IShared+.*(..))) with an OR operator is also not a 

feasible solution because reflective invocations of getBalance() will not 

be captured. Developers must therefore decide between exploiting the 

benefits of inheritance (i.e., by not unnecessarily overriding inherited 
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implementations) or capturing reflective method executions but not 

both (Reflection/Super-class method execution dilemma) – AspectJ limitation.  

 Finally, transactional objects by nature assume multiple roles as 

they move through the execution of a transaction. For instance, if the 

SavingAccount class implements both ICopyable and IShared, then 

SavingAccount objects would be treated as ICopyable from the 

perspective of the Copyable aspect and as IShared from the perspective 

of the Shared aspect. However, the Shared aspect must intercept every 

public method call (inherited, declared and introduced) on a SavingAccount 

object; including those introduced by Copyable (i.e., replaceState() and 

clone()). It is logical to assume that the call and execution of 

SavingAccount.replaceState() would be captured by both (call(public * 

IShared+.*(..))) and (execution(public * IShared+.*(..))) respectively since the 

method replaceState() was actually introduced into the SavingAccount 

class. This is however not the case because AspectJ associates the call 

and execution join point of replaceState() with ICopyable, instead of 

SavingAccount (Weak aspect-to-class binding). Therefore, there is the 

possibility of cloning or replacing the state of a Shared object while it is 

being modified by a concurrent transaction. The use of indirect 

introduction as a means for providing default interface implementation 

although effective, is therefore not equivalent to its Java counterpart 

(i.e., implementing the methods inherited from super interfaces within 

the subclasses) that actually associates these join points with 

SavingAccount – AspectJ limitation.  
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5.3.5 Serializeable 

Summary of functionality 

• An ISerializeable object knows how to write its state (declared, 

inherited and introduced) to a backend, restore its state by 

reading it from the backend and create a new object - initialized 

with the state read from the backend. 

 

Implementation 

The implementation of the Serializeable aspect is presented in figure 

5.11. As with Copyable, this aspect introduces only static crosscutting 

behaviours into the target class to support the desired functionality. 

The backend in this case is an OutputStream and it is assumed that the 

object is serializable (i.e., implements java.io.Serializable) – line 3. As 

before, this is not an AspectJ issue and this implementation is intended 

just for demonstration purposes. 

The Serializeable aspect expresses its need for the functionality 

provided by the Copyable aspects on line 3. The Copyable aspect is 

required for replacing the state of an object with its backend state. 

Lines 6 to 13 introduce the method (serialize(..)) for writing an object’s 

state to an OutputStream, lines 16 to 18 introduce the method 

(deserialize(..))  for restoring an object’s state from the backend, and 

lines 21 to 33 introduces the method (createObject(..)) for creating a 

new object from a previously saved state. This implementation expects 

each transaction to specify a unique OutputStream for serializing its 

perspective of the state of a transactional object. 
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Figure 5.11: Implementation of the Serializeable aspect 

 

Discussion 

An ideal Serializeable aspect should support multiple backend 

representation formats (e.g., a database, a file or remote machine) 

and a mechanism for selecting a desired format. It is my opinion that 

an implementation of such an aspect will not reveal any additional 

AspectJ limitation. Consequently, my implementation of the 

Serializeable aspect is limited to OutputStream only. 
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5.3.6 Versioned 

Summary of functionality 

• Versioned encapsulates multiple versions of the state of an 

IVersioned object; with one version designated as the main 

version. 

• Versioned objects are linked to the views of transactions (i.e., 

each transaction has its own perspective of a transactional 

object).  

• A method invocation on a transactional object is directed either 

to the version in the view of the invoking transaction (if the 

calling transaction has joined a specific view) or the main version 

of the target object. 

• Versioned also provides operations for managing transaction 

views and the versions of an object. 

 

Implementation 

Part I of the Versioned aspect implementation is presented in figure 

5.12. The functionalities provided by the Named and Copyable aspects 

are requested on line 3. Copyable is required for duplicating the state 

of an object, Named is required for uniquely identifying an object. 

InheritableThreadLocal (line 5) is used for assigning views to 

threads (i.e., transactions). Lines 21 to 33 provides the methods for 

creating a new view (View newView()), joining an existing view 

(joinView(View)) and destroying the view of a thread (deleteView()). The 

constructor execution of a Versioned object is captured at line 12 and 

the version ID initialized with an after advice (lines 15 to 19). By 

default, objects created with the constructor are considered the main 

version. 
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Figure 5.12: Implementation of Versioned – Part I 

 

Part II of the Versioned aspect implementation is presented in figure 

5.13. Besides being the main version (MVObject), MVObject also serves as 

a handle to all the other versions of an object. The method call poincut 

(lines 40 to 41) captures calls to MVObject and the around advice (lines 

43 to 59) is used for determining the appropriate version of the object 

on which to execute the operation. The version of the object in the 

View of the calling transaction is used, if one exist (lines 47 to 49); 

otherwise, the operation is executed on the main version (lines 50 to 

52). Once determined, the framework executes the operation by 
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reflection (lines 54 to 59) on the target version of the object. The use 

of the around advice is critical to the Versioned aspect implementation. 

This is because the captured join point always occurs on the main 

version but the target-version of the operation might be different; 

hence, the intercepted join point must be bypassed (by omitting the 

proceed() statement).  

 

 
Figure 5.13: Implementation of Versioned – Part II 
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The code on lines 61 to 71 provides a method (setCurrentVersion(…))  

for modifying the current version of an object associated with the view 

of a given thread. 

 

 
Figure 5.14: Implementation of Versioned – Part III 

 

Part III (figure 5.14) of this implementation provides additional static 

crosscutting behaviours required by the Versioned aspect. The method 

for querying the current version of an object associated with the view 

a given thread is presented on lines 74 to 79 (getCurrentVersion(…)). 

The code on lines 81 to 98 provides methods for creating a new 

version of an object (Version newVersion()), and for designating a given 

version of an object as the main version (setToMainVersion()). 
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Discussion 

There is the danger of infinite recursion in this implementation since 

Versioned has to intercept method invocations on Versioned objects (the 

call phase), and then execute the methods by reflection on the 

appropriate version (the execution phase). The inability of the call 

poincut (lines 40 to 41 – figure 5.12) in picking out reflective calls or 

executions has proven beneficial in this context. It picks out the call 

phase but not the execution phase of a method invocation, eluding 

infinite recursion. The execution pointcut (execution(public * 

IVersioned+.*(..))), if used on its own will result in infinite recursion since 

both the call phase and the execution phase of a method invocation will be 

captured. However, the net effect of composing the method execution 

join point with cflow() and adviceexecution() (producing execution(public * 

IVersioned+.*(..)) && !cflow(adviceexecution())) is equivalent to the call 

pointcut.  

This implementation shares two of the three drawbacks 

discussed in section 5.3.4 (Shared), namely: Weak aspect-to-class 

binding and Reflection/Super-class method execution dilemma. The former, 

because the calls or executions of indirectly introduced methods on 

Versioned objects cannot be captured; hence, such methods will not be 

executed on the correct version of the object. The later, because 

reflective calls or execution of non-overridden inherited methods are 

also not intercepted, incurring similar ramifications as the former 

deficiency. 
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5.3.7 Tracked 

Summary of functionality 

• Provides operations for defining a zone (in the execution of a 

thread) in which object accesses are monitored. 

• Objects accessed within the defined zone are divided into three 

categories: read, written-to and updated. 

• Provides operations for requesting the set of objects read, 

written-to or updated by a transaction. 

 

Implementation

Figure 5.15 presents the first half of the implementation of the Tracked 

aspect. The Tracked aspect depends on AccessClassified (line 4) for 

distinguishing between observer and modified operations, and on Named, 

to avoid tracking different copies of the same transactional object. 

InheritableThreadLocal (line 6) is used for designating the track zone of a 

thread. Track zones are requested by executing the aspect method 

beginTrackZone() - lines 8 to 13. 

 The poincut for capturing accesses to Tracked objects is defined 

on lines 14 to 15. The after advice (lines 17 to 38) places the target 

object in the appropriate category with the assistance received from 

the AccessClassified aspect (lines 19 to 20). This categorization is 

performed only for threads with an existing track zone (line 18).  

 

 

 

70 



 
 

 

 
Figure 5.15: Implementation of Tracked – Part I 

 

The second half of the implementation of the Tracked aspect is 

presented in figure 5.16. The code on lines 58 to 71 provides 

operations for requesting the set of objects read (getReadObjects()) 

written-to (getWriteObjects()) or updated (getUpdatedObjects()) by a 

transaction. The operations for managing track zones are presented on 

lines 42 to 56. A thread can end its track zone (endTrackedZone()), 

join an existing track zone (joinTrackedZone()), leave a track zone 
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(leaveTrackedZone()),  and request a reference to its track zone 

(getMyTrackedZone()). 

 

 
Figure 5.16: Implementation of Tracked – Part II 

 

Discussion 

This implementation shares two of the three drawbacks discussed in 

section 5.3.4 (Shared), namely: Weak aspect-to-class binding (because 

the calls or executions of indirectly introduced methods on Tracked 

objects cannot be tracked) and Reflection/Super-class method execution 
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dilemma (because reflective calls or execution of non-overridden 

inherited methods cannot be tracked). The ramifications of these 

deficiencies may be costly; for example, state changes executed on 

transactional objects by indirectly introduced or non-overridden 

inherited methods cannot be undone in the event of a transaction 

abort. 

 

5.3.8 Recoverable 

Summary of functionality 

• An IRecoverable object knows how to take a snapshot of its 

state (i.e., establish a checkpoint), restore its state from a 

previously established checkpoint, discard a checkpoint and 

switch its update strategy to either in-place or deferred update. 

 

Implementation

Figure 5.17 presents the first part of the implementation of the 

Recoverable aspect. The functionality provided by the Versioned aspect 

is requested on line 3. Recoverable relies on Versioned for creating a 

new version of an object (line 9). Line 4 introduces a variable for 

assigning the update strategy of an object. Lines 6 to 33 of this code 

introduces a method (int establishCheckpoint()) for establishing a 

checkpoint of an object. The return value of this method provides a 

handle to the established checkpoint.  

After creating a new version of an object (line 9), Recoverable 

has to determine whether this new version should be assigned to the 

View of the invoking transaction or not based on the current update 

strategy. If the current update strategy is deferred (lines 13 to 17), 

then the version of the object visible to the invoking transaction (i.e., 

in its View) is changed to the version of the newly created object (line 
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15). This results in a unique local copy of an object per transaction for 

the deferred update strategy (see section 3.2.3). If the current update 

strategy is in-place (lines 18 to 22), then the version of the object 

visible to the invoking transaction (i.e., in its View) continues to be the 

main version (line 20). 

 

 
Figure 5.17: Implementation of Recoverable – Part I 
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Figure 5.18: Implementation of Recoverable – Part II 

 

Figure 5.18 presents the second half of the implementation of the 

Recoverable aspect. Lines 39 to 52 introduces the method 

(restoreCheckpoint(CheckpointID))  for restoring an object’s state to a 

previously established checkpoint. The input parameter of this method 

is the checkpoint ID of a previously establish checkpoint. Restoring a 

checkpoint simply involves changing the version of the object in the 

View of the invoking transaction to the checkpoint ID of a previously 

establish checkpoint (line 46). The method for discarding a checkpoint 

is introduced on lines 54 to 56 (discardCheckpoint(checkpointID)), and lines 

58 to 60 introduces the method for switching between update 

strategies (setDeferred(Boolean)). 
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Discussion

The Recoverable aspect provides a versatile implementation for undoing 

state changes on a transactional object. It supports multiple 

checkpoints of the state of an object and multiple rollbacks to any of 

the previous established checkpoints.  

 

5.3.9 AutoRecoverable 
Summary of functionality 

• This aspect provides operations for delimiting and managing 

recoverable zones (in the execution of a thread) in which object 

accesses are monitored. 

• A checkpoint is automatically established the first time an 

IAutoRecoverable object is modified within the defined zone. 

 

Implementation

The implementation of the AutoRecoverable aspect is presented in figure 

5.19. This aspect relies on AccessClassified in distinguishing modifier 

operations from observer operations (line 4), and on Recoverable in 

establishing and rolling back checkpoints (line 4). InheritableThreadLocal 

(line 5) is once more used for designating the recoverable zone of a 

thread. Recoverable zones are requested by executing the aspect 

method beginRecoverableZone(View) - lines 23 to 29. 

 The poincut for intercepting operation calls to AutoRecoverable 

objects is presented on lines 7 to 8. The before advice (lines 10 to 21) 

is executed only if the current executing thread had previously defined 

a recoverable zone (line 11). The access type of the operation is 

determined (lines 12 - 13), and a checkpoint established for the target 

object if the operation is a modifier (lines 15 - 21) and a checkpoint has 

not been previously established for this object (line 17).  
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Figure 5.19: Implementation of AutoRecoverable 

 

 The methods for managing recoverable zones are presented on lines 

30 to 38 of the implementation. A thread can end its recoverable zone 

(endRecoverableZone()), join an existing recoverable zone 

(joinRecoverableZone()), or leave a previously joined recoverable zone 

(leaveRecoverableZone()). 
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Discussion

This implementation also shares two of the three drawbacks discussed 

in section 5.3.4 (Shared): Weak aspect-to-class binding (because the 

calls or executions of indirectly introduced methods on an 

IAutoRecoverable object cannot be captured and check-pointed) and 

Reflection/Super-class method execution dilemma (because reflective calls 

or execution of non-overridden inherited methods cannot be not 

captured). The ramifications of these deficiencies may also be costly; 

for instance, state changes executed on transactional objects by 

indirectly introduced or non-overridden inherited methods cannot be 

rolled-back by Recoverable in the event of a transaction abort. 

 

5.3.10 LockBased 
Summary of functionality 

• This aspect provides support for pessimistic lock-based 

concurrency control with in-place update. 

• The appropriate transactional lock (Read, Write or Update) must 

be acquired before invoking an operation on a LockBased object. 

• Unlike Shared, transactional locks are released only after the 

outcome of the transaction is known. 

 
Implementation

Figure 5.20 presents the first part of the implementation of the 

LockBased aspect. LockBased (lines 3 to 4) relies on AccessClassified (in 

distinguishing between Read, Write and Update operations), Shared (in 

preventing threads within a transaction from currently modify an 

object’s state), AutoRecoverable (in facilitating the undo functionality - 

in event of a transaction abort) and Tracked (in order to remember to 

release the previously acquired transactional locks upon a transaction 

commit or abort).  
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Figure 5.20: Implementation of LockBased aspect – Part I 

 

The execution order of these aspects is crucial. An unspecified 

precedence may not produce the desired result and has the risk of 

becoming deadlocked. For instance, one transaction might have the 

transactional lock of an object and need the mutual exclusion Shared 

lock whereas another transaction has the mutual exclusion Shared lock 

of the same object and is waiting for the transactional lock. The 

desired execution order in this case is: LockBased, AutoRecoverable, 

Tracked, Versioned and Shared (line 6) because the update strategy has 

to be set to in-place by LockBased before AutoRecoverable executes, the 

object is then Tracked, the operation directed to the main version by 
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Versioned, and mutual exclusion to the state of the object ensured by 

Shared. 

 The field and method necessary to support transactional locks 

are introduced on lines 8 to 9. The pointcut for intercepting calls to 

LockBased objects is presented on lines 11 to 12. The before advice 

(lines 14 to 32) forces a transaction to obtain the appropriate 

transactional lock on a LockBased object, sets the update strategy to in-

place (line 31) before permitting the execution of an operation. 

AccessClassified is used in determining the type of transactional lock 

associated with a given operation (lines 15 to 16).  

 

 
Figure 5.21: Implementation of LockBased aspect – Part II 
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The second part of the LockBased aspect implementation shows how 

previously acquired transactional locks are released (figure 5.21). 

Unlike Shared, LockBased holds onto the transactional locks until the 

outcome of the transaction is known. One of two global methods 

(commitLockBased() or abortLockBased()) can be used in signalling 

the outcome of a transaction. The pointcut for intercepting calls to 

these methods is presented on lines 45 to 47. The after advice (lines 

49 to 72) then releases the acquired transactional locks with the 

assistance of Tracked. Tracked provides LockBased with the set of 

objects Read (line 52), Written-to (line 59), or updated (line 66). 

These objects are down-casted to ILockBased (lines 54, 61 and 68) 

before releasing the previously acquired locks. 

 
Discussion

The LockBased aspect also has two of the three drawbacks discussed in 

section 5.3.4 (Shared), namely: Weak aspect-to-class binding (because 

the calls or executions of indirectly introduced methods on an 

ILockBased object cannot be captured; consequently, cannot be forced 

to obtain transactional locks) and Reflection/Super-class method execution 

dilemma (because reflective calls or executions of non-overridden 

inherited methods cannot also be forced to obtain transactional locks). 

As a result, the state consistency of ILockBased objects cannot be 

absolutely guaranteed. 

 

5.3.11 Multi-Version LockBased 
Summary of functionality  

• This aspect provides support for pessimistic Multi-Version Lock-

Based concurrency control with in-place update. 

• It encapsulates two sets of states per transactional object: a 

history of committed states (HCS) and the main version. 
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• Write and Update operations are executed on the main version 

and must acquire the appropriate transactional lock before 

invoking an operation on the object. 

• Read operations are executed on the appropriate objects in the 

HCS; therefore, they do not have to acquire either Shared locks 

or transactional locks. 

 
Implementation

 
Figure 5.22: Implementation of Multi-Version LockBased – Part I 
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Figure 5.22 presents the first half of the implementation of this aspect. 

The declare parents (lines 4 to 5) and declare precedence (line 6) 

statements of this implementation are the same as in the LockBased 

aspect for similar reasons. Write and Update operations are also treated 

similarly – they must acquire the associated transactional locks on the 

main version and set the update strategy to in-place before executing 

(lines 21-25, 19 respectively). 

 

 
Figure 5.23: Implementation of Multi-Version LockBased – Part II 
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The transaction commit phase of a Multi-Version object is handled 

differently (Figure 5.23). Multi-Version relies on Tracked in identifying 

the objects modified by the committing transaction. The sets of objects 

written-to and updated are obtained on lines 47 and 58 respectively. 

The state of each modified object is duplicated (lines 50-51, 62-63), 

annotated with a commit timestamp (lines 52, 64) and added to the 

HCS (lines 53,65) before releasing the previously acquired locks (lines 

55-56, 68-69). 

Read-only transactions are handled differently. They do not have 

to acquire transactional locks before proceeding because they are 

executed on the objects in the HCS. As discussed above, each object 

in the HCS has a timestamp during which its state was valid. 

Consequently, read-only transactions must also be assigned creation 

timestamps to determine the objects in the HCS on which they should 

be executed (lines 72 to 76 - figure 5.22). Upon the interception of a 

read-only transaction (lines 26 to 38 – figure 5.21), Multi-Version looks 

through the HCS to determine the object on which to execute the 

operation. The creation timestamp of the transaction is obtained on 

line 18, lines 28 to 35 searches for a version of the target object (i.e., 

versionID) in the history of committed states with the highest 

timestamp that is lower than the timestamp of the read-only transaction 

and line 37 assigns this versionID to the view of the invoking 

transaction using Versioned.setCurrentVersion(ObjectName, versionID). 

 

Discussion

Populating the HCS only at transaction commit time insinuates that 

read-only transactions on a transactional object must be preceded by at 

least one write or update transaction. This is not necessarily the case 

in practice; several read-only transactions may be executed on an 
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object before a Write or an Update. To accommodate this, an after 

advice (lines 12 to 16 – figure 5.21) intercepts the creation of every 

Multi-version object, duplicates its state (line 13), annotates the 

duplicated state with a commit timestamp (line 14) and adds it to the 

HCS (line 15). 

This implementation has three drawbacks. First, the objects in 

the HCS are accessed exclusively by read-only operations. Read-only 

operations do not conflict; hence the functionality of Shared is not 

necessary for the objects in the HCS. The Shared aspect should 

therefore be disabled on these objects so as to optimize system 

performance. As explained before, AspectJ does not support runtime 

disabling and re-enabling of pointcuts and the if(Boolean) pointcut at 

best, disables only an advice. 

The second limitation of this implementation is the well-

discussed Weak aspect-to-class binding. Method calls or executions of 

indirectly introduced methods on a Multi-Version object cannot be 

captured. Lastly, this implementation cannot capture reflective calls or 

executions of non-overridden inherited methods (Reflection/Super-class 

method execution dilemma). The ramifications of these deficiencies are 

the same as in the LockBased aspect. 

 

5.3.12 Optimistic 
Summary of functionality  

• This aspect provides support for optimistic concurrency control 

with deferred update and backward validation. 

• Each concurrent modifier transaction works on a local copy of 

the state of a transactional object. 

• The modifications on the local copies are made global upon 

successful transaction validation.  
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Implementation

The first part of the implementation of the Optimistic aspect is 

presented in figure 5.24. This aspect relies on AccessClassified (in 

distinguishing between Read, Write and Update operations), Shared (in 

preventing threads within a transaction from currently modify an 

object’s state), AutoRecoverable (in creating local copies of the state of 

a transactional object), and Tracked (in identifying the transactional 

objects modified by a given transaction) - lines 4 to 5. The desired 

execution order of these aspects is specified on line 7 (i.e., Optimistic, 

AutoRecoverable, Tracked, Versioned, Shared,). The update strategy has 

to be set to deferred by Optimistic before AutoRecoverable executes; 

otherwise, a local version wouldn’t be created in time for the 

transaction and the operation will mistakenly be executed on the main 

version. The object is then Tracked, the operation directed to the 

appropriate local object by Versioned, and mutual exclusion to the state 

of the object ensured by Shared. 

The static crosscutting behaviours (fields and methods) 

necessary to the support the Optimistic aspect are presented on lines 9 

to 11. The poincut for capturing calls to an Optimistic object is defined 

on lines 14 to 15. The before advice (lines 17 to 24) sets the update 

strategy to deferred for Write and Update operations. This signals 

AutoRecoverable to create a local copy of the transactional object state 

for the current executing transaction. This process is repeated for each 

concurrently executing transaction, giving rise to multiple 

uncommitted versions of the transactional object. The update strategy 

for read-only transactions is in-place - by default. This means that 

read-only transactions are always executed on the main version (that 

holds the committed states) of a transactional object. 
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Modifier operations executed on Optimistic transactional objects must be 

validated before the changes are committed (i.e., becomes global). 

Transactions signal their need for validation by invoking the global 

method: commitOptimisticTransaction(). The pointcut on lines 25 to 26 

intercepts the request for transaction commit, and the before advice 

(lines 28 to 34) validates the committing transaction (line 29) and 

commits the changes upon a successful validation (line 30).  

 

 
Figure 5.24: Implementation of Optimistic – Part I 
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Figure 5.25: Implementation of Optimistic – Part II 

 

Figure 5.25 presents a stripped-down version of the implementation of 

the validation and writes phases of a transaction. Using Tracked, the 

validation phase (lines 42 to 60) first obtains the set of objects modified 

by all transactions (excluding the validating transaction) between 

Tbegin (i.e., the start time of the transaction) and Tend (i.e., 

timestamp of the most recently committed transaction) – lines 47 to 

53. Validation is successful if the intersection set between the 

aforementioned set of modified objects and the set of objects modified 
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by the validating transaction (Track.getModifiedObject()) is empty; 

otherwise, validation is unsuccessful – lines 55 to 59. The write phase 

(lines 62 to 75) assigns a commit timestamp to each of the local 

versions of the committing transaction before making these versions 

the main versions of the respective objects.  

 

Discussion

The Optimistic aspect suffers from Weak aspect-to-class binding and 

Reflection/Super-class method execution dilemma. 
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Chapter 6 ~ Encountered AspectJ Limitations and Possible 
Improvements 

_________________________________________________________________ 
 

In chapter 5, I discussed the implementation of the aspects proposed 

in the case study and highlighted the encountered AspectJ limitations. 

This chapter provides an in-depth discussion of these limitations, 

possible work-around solutions (where possible), and potential 

improvements to the AspectJ language features (where appropriate).    

 

6.1 Lack of support for runtime disabling and re-enabling of pointcuts 
Limitation 

Aspects are statically deployed in AspectJ; i.e., the crosscutting 

behaviours specified in the aspects become effective in the base 

applications once they are woven together and these crosscutting 

behaviours cannot be altered at runtime. For instance, assuming that 

the Account class is IShared and we have an Account object 

(AccountObject) that is accessed only by observer operations (such as in 

the history of committed states – section 3.2.2), the Shared aspect 

would unnecessarily obligate these operations to obtain a read lock on 

AccountObject before proceeding even though these operations do not 

conflict. Ideally, we should be able to disable the Shared aspect of 

Account objects that are accessed only by observer operations so as to 

maximize system performance. This limitation is not unique to 

transaction frameworks. Given that an aspect attached to an object 
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consumes significant system resources, an application server may 

want to disable this aspect when the object is cached and re-enable it 

upon a request for the object.  

 The if(BooleanExpression) pointcut of AspectJ is often promoted as 

the construct for achieving runtime disabling and re-enabling of 

aspects but this claim is only partially true. This pointcut is typically 

used to determine whether the advice(s) to be applied at a target-

joinpoint should be executed. This implies that the target-joinpoint will 

always be intercepted but the execution of its associated advice is 

conditional on the value of BooleanExpression. Consequently, the 

if(BooleanExpression)  pointcut can only be used  in disabling or enabling 

advices not aspects as it is believed.  The use of this pointcut in our 

case (i.e., on objects in the history of committed states) implies that 

read locks are no longer acquired before executing observer operations; 

however, every observer operation invoked on AccountObject would still 

unnecessarily be intercepted by Shared. The performance overhead 

incurred by the execution of an observer operation is therefore 

unnecessary increased by the runtime static check. These performance 

overheads can easily add up in read-dominant applications. 

 

Possible solution(s)

Ideally, the performance overhead for executing an observer operation 

on a Shared Account object in the history of committed states should be 

comparable to the performance overhead of executing the same 

observer operation on an Account object that does not implement 

IShared. To achieve this, AspectJ would have to provide new program 

constructs to support runtime disabling and re-enabling of the 

pointcuts within an aspect on a per-object basis. This would eliminate 

the need for the if(BooleanExpression) pointcut and the performance 
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overhead associated with it since an advice cannot be executed once 

its associated pointcut(s) are disabled.  

I propose the addition of two static aspect methods: 

enablePointcut(PointcutPattern) and disablePointcut(PointcutPattern). The 

assumption is that all pointcuts (both named and anonymous) within an 

aspect are originally enabled and only named pointcuts can be disabled 

or enabled at runtime. The disablePointcut(PointcutPattern) static method 

should support runtime disabling of named pointcuts that matches the 

pattern PointcutPattern. For instance, the following statement: 

Shared.aspectOf(AccountObject).disablePointcut(PointcutPattern) should disable all 

the pointcuts with name matching the pattern PointcutPattern  within 

the instance of the Shared aspect associated with the AccountObject. 

That is, the join points that were to be captured by the pointcut(s) of 

pattern PointcutPattern in the instance of the Shared aspect associated 

with the AccountObject should no longer be intercepted. The static 

method enablePointcut(PointcutPattern) should support runtime re-

enabling of previously disabled pointcuts in a similar manner. 

  

6.2 Weak aspect-to-class binding 
Limitation 

Abstract introduction (also known as indirect introduction) [19, 20] has been 

proposed as a strategy for implementing reusable static crosscutting 

behaviours that can be used in different contexts. It allows us to 

“collect several extrinsic properties from different perspectives within one unit 

and defers the binding to existing objects” [19]. As explained in section 5.2, 

the target unit (also known as introduction container) can either be a 

class or an interface in AspectJ. A Class cannot be effectively used as an 

introduction container; firstly, because multiple-inheritance is not 

supported in Java and secondly, because a class cannot be an ancestor 
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to an interface. In our case, these extrinsic static crosscutting behaviors 

were collected within dummy interfaces (via the inter-type member 

introduction concept of AspectJ) and these interfaces were later bind to 

application classes using the declare parents construct. For instance, 

declaring the Account class as implementing ICopyable introduces two 

additional public operations: replaceState(SourceObject) and clone() into 

every Account object to support state replacement and cloning 

respectively.  

 Assuming that the Account class also implements IShared (such as 

in LockBased), it is logical to assume that the call and execution of 

Account.replaceState(SourceObject) would be captured by the pointcuts 

call(public * IShared+.*(..)) and execution(public * IShared+.*(..)) respectively 

of the Shared aspect since the method replaceState(SourceObject) was 

actually introduced into the Account class and the Account class is 

IShared. This is unfortunately not the case because the actual call and 

execution join points of the replaceState(SourceObject) method are 

call(ICopyable.replaceState(..)) and execution(ICopyable.replaceState(..)) 

respectively. That is, AspectJ associates the call and the execution join 

points of indirectly introduced methods with the introduction container 

instead of the application class (Weak aspect-to-class binding). In the 

terminology of [20], AspectJ binds the self-reference this of the 

indirectly introduced methods to the container type (ICopyable) and not 

the target class (Account). Therefore, there is the possibility of cloning 

or replacing the state of the Shared Account object through the 

indirectly introduced operations (i.e., clone() and replaceState(..)) while it 

is being modified by a different concurrent transaction. The use of 

indirect introduction as a means for providing default interface 

implementation although effective is therefore not equivalent to its 
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Java counterpart (i.e., implementing the methods inherited from super 

interfaces within the subclasses). 

 The same can be said for other aspects such as AutoRecoverable 

and Tracked. Transactional objects by nature assume multiple roles as 

they move through the execution of a transaction. For instance, a 

LockBased AccountObject would assume the roles of IShared, ICopyable, 

IAutoRecoverable and ITracked from the perspective of the corresponding 

aspects. It is therefore desirable that the call and execution join points 

of the operations (be it declared, inherited or introduced) of a 

transactional object be associated with the object instead of the 

introduction container so as to effectively enforce the ACID properties of 

transactions. It is worth noting that this deficiency is not restricted to 

transaction frameworks only. Any aspect-oriented framework that 

works at the granularity of methods is a potential victim to the weak 

aspect-to-class binding problem. 

 

Possible solution(s)

A crude work-around solution for this problem is to declare the 

ICopyable interface as implementing IShared using the declare parents 

construct of AspectJ. This would obligate the replaceState(SourceObject) 

and clone() methods of the AccountObject to acquire the appropriate lock 

from the Shared aspect before executing. A similar work-around 

solution can be created for the other aspects (such as Tracked, 

AutoRecoverable and Versioned) that share this deficiency. Although this 

work-around solution addresses this deficiency, it is too specific to be 

generalized (i.e., it is not effectively reusable) and often results in a 

complex inheritance hierarchy.   

 The Weak aspect-to-class binding problem can be traced back to 

the weaving process of indirect introductions in AspectJ. These bindings 
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are performed at method introduction time (i.e., as soon as the 

methods are introduced into the dummy interfaces) when the target 

classes are not yet known; hence, the association of the self-reference 

this with the interfaces instead of the target classes. Although AspectJ 

effectively collects these extrinsic static crosscutting behaviours within 

an interface, it fails in deferring the bindings of member functions to 

the target classes. An ideal solution for this problem would therefore 

involve deferring the binding of the self-reference this of indirectly 

introduced methods to the time when all the target classes are known. 

This would ensure that the call and execution join points of indirectly 

introduced methods occur at the target classes and not the 

introduction container - interfaces. 

The interface construct is inherited from the underlying language 

of AspectJ (i.e., Java); hence, modifications to the binding process 

may not be backward compatible. This highlights a need for an 

AspectJ-specific abstraction that will effectively support the reuse of 

static crosscutting behaviours and eliminate the Weak aspect-to-class 

binding problem. I propose the addition of a new class-like construct 

called a placeholder. As opposed to classes and interfaces, the fields 

and methods should not be structurally bound to the placeholder; that 

is, its functionality should exclusively be to hold static crosscutting 

behaviours that would later be injected into the target classes at 

weave-time. A placeholder should not be instantiable and should never 

have a super-class, super-interface or be part of the inheritance 

hierarchy. 
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Figure 6.1: Proposed language construct: placeholder

 

Figure 6.1[a] shows a potential declaration of a placeholder for the 

Copyable aspect and figure 6.1[b] suggest a new construct for injecting 

and binding the fields and methods to the target class. As 

aforementioned, direct introduction associates the call and execution join 

points of fields and methods with the target classes. The declare 

introductions construct should therefore mimic the activity of a 

developer in directly introducing fields and methods into the target 

classes. The net effect of this approach should be equivalent to a direct 

introduction of the static crosscutting behaviours into the target classes. 

The only difference is that the weaver would be responsible for 

performing the introduction of the methods and fields into the target 

classes instead of the developer – eliminating the weak aspect-to-class 

binding problem. In addition, the placeholder makes these behaviours 

reusable; hence, the use of an interface as an introduction container is 

no longer necessary.  

 The placeholder concept may sound much like mixins [25] but it 

is fundamentally different. In mixins, the call and execution of a mixin 

method is delegated to the mixin class not the target class. This 

implies that the call and the execution joint points of such methods 

occurs on the mixin class not the target class - Weak aspect-to-class 

binding. Consequently, mixin is actually functionally equivalent to the 
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indirect introduction idiom not the placeholder concept. In addition, unlike 

mixins, the placeholder never becomes part of the inheritance hierarchy 

of the target class. 

 

6.3 Lack of support for explicit inter-aspect configurability 
Limitation 

The proposed case study exhibits complex aspect dependencies and 

interferences. As demonstrated in chapter 3, some aspects cannot 

function properly without the functionality offered by other aspects. 

For instance, the LockBased aspect depends on the functionalities of 

the AccessClassified aspect (in distinguishing between Read, Write and 

Update operations), Shared aspect (in preventing threads within a 

transaction from currently modify an object’s state), AutoRecoverable 

aspect (in facilitating the undo functionality - in event of a transaction 

abort) and the Tracked aspect (in keeping track of the objects accessed 

by a given trasaction) in order to effectively implement a pessimistic 

lock-based concurrency strategy. AspectJ has no construct that 

enables aspects to express these dependencies (i.e., inter-aspect 

configurability). Support for this functionality is essential to the 

implementation of reusable aspect-oriented frameworks. Ideally, 

aspects should be able to express their need of the functionality 

offered by other aspects while preserving obliviousness (or at least, 

minimize aspect-coupling). 

 

Possible solution(s)

A work-around solution for the inter-aspect configurability problem 

involves associating a dummy interface with each of the aspects 

proposed in the case study. For instance, the interface IShared is 

associated to the aspect Shared, IAutoRecoverable is associated to 
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AutoRecoverable and so on. Each aspect is then implemented to apply 

its functionality to all the classes that implements its associated 

interface (e.g., the Shared aspect is applied to all classes that 

implements the IShared interface). Aspects express their needs for 

other aspects by having their associated interface implement the 

interfaces of the aspects they depend on. For instance, inter-aspect 

configurability was achieved in the LockBased aspect by having 

ILockBased implement IAccessClassified, IShared, IAutoRecoverable, 

ITracked. This enables the LockBased aspect to configure the Shared, 

AccessClassified, and AutoRecoverable aspects on all ILockBased objects.  

 An obvious deficiency of this work-around solution is the 

introduction of a complex inheritance hierarchy. In addition, the aspect 

dependency relationship is non-hierarchical and therefore 

counterintuitive to represent as an inheritance hierarchy. This 

highlights a need for an AspectJ specific inter-aspect configurability 

solution. A major challenge is how to express aspect dependencies 

while preserving inter-aspect obliviousness (or at least, minimize 

aspect-coupling).  

 

 
Figure 6.2: Proposed “declare dependencies” construct 

 

Inter-aspect configurability can be expressed as proposed in figure 6.2 

but achieving its ideal functionality is non-trivial. Naïvely, the advice of 

the AccessClassified, Shared, AutoReciverable and Tracked should be 

applied to all the join points pick out by LockBased. Ideally, LockBased 

should be able to selectively decide where each of the aspects it 

98 



 
 

 
depends on is to be applied and the order in which they are to be 

executed. 

 

6.4 Reflection/Super-class method execution dilemma 
Limitation 

The enforcement of the ACID properties of transactional objects occurs 

at the level of method invocations. To achieve these, the 

AspectOPTIMA framework must be able to intercept every method 

invocation (both reflective and non-reflective) on a transactional object 

and perform the appropriate pre and post actions. AspectJ provides 

two pointcuts for intercepting the call and execution of a method: 

call(MethodPattern) and execution(MethodPattern).  

 The method call pointcut - call(MethodPattern) - would intercept 

non-reflective calls to declared and inherited methods of an object but not 

reflective calls to these methods. For instance, the pointcut call(public * 

SavingAccount.*(..)) would intercept the method call SavingAccount.debit(0) 

but not debit.invoke(SavingAccountObject , parameters) – a reasonable 

conscious design decision made by the AspectJ team not to “delve into 

the Java reflection library to implement call semantics” [9]. Consequently, 

concurrent reflective modifications on an object cannot be prevented 

and the modifications made through reflective calls on the 

transactional objects of an aborting transaction cannot be undone - 

placing the system in an inconsistent state.  

 The method execution pointcut - execution(MethodPattern) – is 

typically used to address this deficiency. This pointcut on the other 

hand would intercept the execution (both reflective and non-reflective) of 

declared and overridden-inherited methods of an object but not the 

execution (both reflective and non-reflective) of non-overridden-inherited 

methods because their execution join points occur in their respective 
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super classes. For instance, the pointcut execution(public * 

SavingAccount.*(..)) would intercept both the reflective and non-reflective 

execution of SavingAccount.debit(0) but not SavingAccount.getBalance() 

because the getBalance() method was not overridden in SavingAccount; 

hence, its execution join point occurs in Account and not SavingAccount. 

As stated before, the ramifications of this deficiency may be costly. 

 Composing the call(MethodPattern) and execution(MethodPattern) 

pointcuts with an OR operator is neither a feasible solution because 

reflective invocations of getBalance() would still not be intercepted. 

Developers must therefore decide between exploiting the code reuse 

benefits of inheritance (i.e., by not unnecessarily overriding inherited 

implementations) or capturing reflective method executions but not 

both. 

 

Possible solution(s)

As explained above, a naïve solution would be to manually override all 

the inherited methods from the super classes in the subclasses. This 

implies relinquishing the code reuse benefit of inheritance - making 

this solution undesirable. 

A second solution would be to use a pointcut – 

target(SavingAccount) && execution(public * Account+.*(..))  - that intercepts 

the execution of all the methods of an instance of an Account object 

when the target is SavingAccount. This pointcut will intercept both 

reflective and non-reflective executions of SavingAccount.getBalance() and 

SavingAccount.debit(0) because SavingAccount is a subclass of Account. In 

addition, we do not have to worry about unnecessarily intercepting the 

executions of operations on CheckingAccount objects because the target 

of the pointcut is SavingAccount. Although this solution solves the 

problem, it is application-specific and cannot be reused in a generic 
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context. In order words, we have to know precisely what the name of 

the target subclass is to avoid the erroneous application of advices to 

other subclasses of the same super class. This solution is therefore not 

applicable in our case because our objective is to implement a reusable 

aspect-oriented ACID framework for transactional objects. 

As demonstrated, none of these work-around solutions 

adequately satisfy our needs. This expresses a need to reconsider the 

design decision made by the AspectJ team not to intercept reflective 

method calls. Support for this functionality is essential in implementing 

a reusable and robust aspect-oriented framework. I propose the 

addition of an inheritance-conscious method execution pointcut: 

superexecution(MethodPattern). Given a class with no super-classes (e.g., 

Account), this pointcut should behave exactly as the 

execution(MethodPattern) pointcut (i.e., it should intercept both reflective 

and non-reflective execution of declared methods).  When used on a 

class with super-classes (e.g., SavingAccount), it should signal a need 

for the weaver to inline stub-methods with calls to their corresponding 

non-overridden inherited methods (i.e., public double getBalance() – in this 

case) within the body of the target-class (i.e., SavingAccount). This 

ensures that the execution join points of non-overridden inherited 

methods occur in the target sub-classes - eliminating the 

reflection/super-class method execution dilemma problem. The space 

requirement of this approach is not significant since each non-

overridden method will need just a stub with a single delegation call.  
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6.5 Lack of support for per-object association of aspects 
Limitation 

An often-desired functionality in complex aspect-oriented frameworks 

(e.g., distributed and multi-user systems) is the ability to selectively 

apply different aspects to different objects of the same class. For 

instance, one might want to have half of the Account objects be 

LockBased, and the other half Optimistic. This requirement is 

fundamentally different from the need of runtime disabling and re-

enabling of pointcuts (section 6.1) because in this case, we either 

apply an entire aspect to an object of a class or not, and the pointcuts 

of an aspect that wasn’t applied to an object cannot be later enabled 

at runtime.  

 As explained before, aspects are statically deployed in AspectJ; 

therefore, the crosscutting behaviours become effective in every object 

of a class once the base application is woven together with the 

aspects. Therefore, the current AspectJ implementation does not 

permit a developer to selectively decide at runtime the objects of a 

class to which an aspect should be applied.  

 

Possible solution(s)

Support for per-object association of aspects should not eliminate per-

class association of aspects currently supported by AspectJ. 

Developers should be given the option to decide on a per-aspect basis 

the desired association. A potential solution for per-object association 

of aspects might involve splitting the aspect application process in 

AspectJ into two phases: the preparation phase and the activation phase. 
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Preparation Phase 

The preparation phase should occur at compile-time. Potential per-object 

aspects should be tagged with the keyword “prepare” as shown in 

figure 6.3[a]. During this phase, the crosscutting behaviours specified 

in the aspects should be applied in a dormant fashion to the respective 

join points of interest in the base classes. Being dormant implies that 

the join points of interest are byte-code instrumented but the 

functionalities of the aspects are not currently available to the objects 

of the base application. That is, without explicit activation, the 

execution of the application would be unaffected by the dormant 

aspects. 

 

Activation Phase 

The activation phase of the dormant aspects should occur at runtime and 

on a per-object basis. AspectJ should provide a program construct to 

support the activation of any (or all) of the dormant aspects (applied to 

a given class during the preparation phase) on a per-object basis at 

runtime. This phase therefore enables developers to selectively decide 

whether the functionalities of an aspect should be made available to a 

given object of a previously prepared class. Obviously, only aspects 

that were applied to a given class during the preparation phase can be 

activated at runtime.  

 An obvious concern of this approach is a compromise of the 

aforementioned oblivious property of aspect-oriented programming. 

This is because the base application may have to be aware of the 

aspects advising it in order to decide which aspects of a prepared 

object should be activated. The primary objective of aspect-oriented 

programming is to modularize crosscutting concerns; hence, partial 

compromise of obliviousness can be overlooked. If need be, previously 
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prepared aspects could be activated by other aspects – figure 6.3[b]. 

These aspects will obviously require some runtime information 

(ObjectRuntimeCondition) about the objects to determine whether or not 

they should be activated.  

 

 
Figure 6.3 : Proposed “prepare” construct and activation 
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Chapter 7 ~ Related Work 
_________________________________________________________________ 
 

The identification of AspectJ limitations or its application in the context 

of concurrency control and recovery is not unique to this thesis.  I 

present some of the works related to this thesis in this section and 

also discuss how other AOP tools have attempted to address some of 

the limitations of AspectJ. 

 

7.1 Other AOP tools 

CaesarJ 

In [7, 23], Mezini et al. identified several deficiencies of AspectJ’s join 

point interception model, namely:  

• Lack of support for sophisticated mappings: the authors argued 

that the mapping from aspect abstractions to base classes via 

the declare parents construct is effective only when each aspect 

abstraction has a corresponding base class. Using examples, 

they demonstrated the deficiency of AspectJ in handling 

sophisticated mappings that deviate from the norm. 

• Lack of support for reusable aspect bindings: it was further 

argued that the aspect-to-class binding achieved via the declare 

parents construct strongly binds an aspect to a particular base 

class; hence, such bindings cannot be effectively reused. 
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• Lack of support for aspectual polymorphism: this limitation is 

comparable to the lack of support for per-object association of 

aspects identified in this thesis. The paper argued that it is 

currently not possible in AspectJ to determine at runtime 

whether an aspect should be applied or not, or which 

implementation of the aspect to apply. 

 
The authors then proposed a new aspect-oriented programming tool 

called CaesarJ [23] to address these deficiencies. CaesarJ is based on 

Aspect Collaboration Interfaces (ACI). In ACI, the aspect 

implementation is decoupled from the aspect binding, with each 

defined in an independent but indirectly connected module. This tool 

relies on a new type called weavelet for composing the implementation 

and the binding of the aspect into a final system. Different weavelets 

can combine an aspect binding with different aspect implementations, 

and different weavelets can also be used in combining a particular 

aspect implementation with different aspect bindings; making both the 

aspect bindings and implementations independently reusable. As 

opposed to AspectJ, compiling these bindings (i.e., weavelet) with the 

base application does not have any effect on the execution of the 

application. This is because the weavelets must be explicitly deployed to 

activate their pointcuts and advices. These weavelets can also be 

deployed statically or dynamically; hence, the support for runtime 

deployment of aspects on a per-object basis. Although CaesarJ looks 

like our ideal AOP tool, it shares some of the deficiencies of AspectJ 

identified in this thesis. For instance, the pointcut(s) of a deployed 

weavelet cannot be disabled and later re-enabled at runtime on a per-

object basis. 
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JBossAOP 

JBossAOP [5, 26] is another aspect-oriented programming tool in my 

opinion which comes close to addressing the encountered limitations 

discussed in this thesis. It supports both per-instance association of 

aspects and hot deployment of aspects (i.e., the ability to unregister 

existing advice bindings – pointcuts - and deploy new bindings to 

previously instrumented join points at runtime). This dynamism is 

accomplished using the “prepare” statement of JBossAOP which 

instruments target join points so that pointcuts and advices can be 

later applied at runtime. Notwithstanding, this tool suffers from the 

weak aspect-to-class binding problem. This is because the 

implementation of reusable static crosscutting behaviours can only be 

achieved through mixins in JBossAOP. This implies that the call and 

execution of a mixin method is delegated to the mixin class, hence, 

the call and execution join points of such methods are associated with 

the mixin class not the target class.  

 

7.2 Other Concurrency Control and Persistence frameworks 

Cunha et al. [24] explored the possibility of implementing a reusable 

aspect-oriented implementation of concurrency control patterns and 

mechanisms for Threads in AspectJ. The authors illustrated how 

abstract pointcut interfaces and annotations (newly introduced in Java 

1.5) can be used in implementing one-way calls, synchronization 

barriers, reader/writer locks, scheduler, active objects and futures. The 

paper also compared the performance overhead, reusability and the 

(un)pluggability between conventional object-oriented 

implementations and AOP implementations. It was concluded that the 

AspectJ implementation was more reusable and pluggable but incurs a 

noticeable performance overhead. In addition, the authors argued that 
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AspectJ has a limitation in acquiring local join point information in 

concrete aspects because the abstract pointcuts presets the contextual 

information available to its sub-aspects. The work of Cunha et al. 

differs from that of this thesis in the amount of effort required to 

harness the framework’s functionality. In [24], developers must 

provide concrete pointcuts for each of the abstract pointcuts to have 

their applications advised. This implies that developers are not 

completely oblivious of the inner workings of the framework; a luxury 

that is not always possible (e.g., some third-party software libraries 

provide only byte codes or executables). Conversely, the only work 

required by developers to acquire the functionality provided by the 

aspects in this thesis is to bind their application classes to the 

appropriate aspects via the declare parents construct. This requires no 

knowledge of the inner workings of the framework and can be 

accomplished even if the source code isn’t available because AspectJ 

supports byte code weaving.  

 Rashid et al. [15] also explored the possibility of implementing a 

reusable and oblivious aspect-oriented framework for persistence in 

AspectJ. Using a database application as an example, the authors 

demonstrated incrementally how reusable aspects for database 

connections, data storage and updates, data retrieval and data 

deletion can be implemented. Unlike the Persistence aspect in this 

thesis that relies on other well-defined reusable aspects (Serializeable, 

Copyable and Named), their implementation of persistence relies on 

other database specific aspects that cannot be reused in a non-

database persistent context. Similar to the work of Cunha et al., 

developers must also provide concrete pointcuts for each of the 

abstract pointcuts in the persistence framework to have their 

applications advised - hindering obliviousness.  
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Chapter 8 ~ Conclusions and Future Work 
_________________________________________________________________ 
 

8.1 Conclusions 

This thesis had two objectives. Firstly, to ascertain whether the 

decomposition of Concurrency Control and Recovery (i.e., the ACID 

properties of transactional objects) into reusable aspects proposed in 

[8] (see chapter 3) can be realistically implemented and recomposed 

in an aspect-oriented system to provide the desired functionality. 

Secondly, to evaluate the adequacy of the language features of AspectJ 

in implementing a reusable framework for the ACID properties of 

transactional objects. 

 As demonstrated in chapter 5, the reusable aspects proposed in 

the case study can be individually implemented and later recomposed 

in AspectJ to achieve various Concurrency Control and Recovery 

strategies. The implementation was achieved by associating a dummy 

interface to each of the aspects in the case study and by implementing 

the aspects to apply their functionalities to the classes that implement 

their associated interface. The binding of a reusable aspect to a base 

class can be accomplished either through the declare parents construct 

of AspectJ or the implements keyword of Java. The proposed 

decomposition of the ACID properties of transactional objects into 

reusable aspects was therefore successfully implemented in AspectJ, 

notwithstanding the encountered limitations. 
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That said, AspectJ’s language features were not always explicitly 

helpful in implementing the reusable ACID framework. The language 

features were found to be inadequate in certain circumstances (section 

6.4 and 6.5). This thesis identified five significant limitations of the 

current language features of AspectJ, namely: lack of support for inter-

aspect configurability, lack of support for runtime disabling and re-

enabling of pointcuts on a per-object basis, lack of support for per-

object association of aspects, weak aspect-to-class binding and 

reflection/super-class method execution dilemma. Work-around 

solutions were utilised where possible but these solutions incur 

unnecessary complexity and potential performance overhead in the 

base applications. Finally, I proposed new language constructs and 

concepts towards achieving an ideal AspectJ tool (see Chapter 6 for 

detailed discussion of these limitations and the proposed solutions). 

 

8.2 Future Work 

Anecdotal evidence suggests that the AspectJ implementation of the 

ACID properties for transactional objects (i.e., the AspectOPTIMA 

framework) might incur a significant performance overhead and 

memory footprint relative to its object-oriented counterpart – OPTIMA 

[11]. A reasonable future work would involve optimizing the current 

AspectJ implementation of the AspectOPTIMA framework, obtaining the 

performance overhead and memory footprint for both AspectOPTIMA 

and OPTIMA, and determining whether there is a noticeable penalty in 

the migration from an object-oriented platform to an aspect-oriented 

platform.  

 Another by-product of this thesis deserving further investigation 

is the performance cost associated with the automatic classification of the 

operations of transactional objects (section 5.3.1). As mentioned 
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before, the efficiency of any concurrency control or recovery 

framework is conditional on its ability to accurately distinguish observer 

operations from modifier operations. Traditionally, frameworks rely on 

naming conventions or user-defined metadata (such as annotations in 

Java) in distinguishing observer operations from modifier operations - a 

technique susceptible to developer classification error with potentially 

costly ramifications. Other frameworks avoid this risk by treating every 

operation as a modifier – incurring additional performance overhead. 

Automatic classification is therefore ideal since it eliminates the risks 

associated with erroneous classification; however, it would be counter 

productive if its performance overhead exceeds that of frameworks 

that treats every operation as a modifier. I intend to conduct a 

comparative performance study of these classification strategies in the 

near future. 

 The Versioned aspect, Tracked aspect and AutoRecoverable aspect 

share a common need for a well-defined region of interest per-

transaction within which certain actions (such as object accesses) are 

to be monitored. This is a crosscutting concern of the aspects rather 

than the transactional objects. In this thesis, I have focussed on the 

identification and implementation of aspects that crosscut objects not 

aspects that crosscut other aspects. A long-term goal includes the 

identification and modularization of concerns that crosscut other 

aspects.  
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