

Evaluating the Expressivity of AspectJ in

Implementing a Reusable Framework for the ACID

Properties of Transactional Objects

By

Ekwa J. Duala-Ekoko

School of Computer Science

McGill University, Montreal

June 2006

A THESIS SUBMITTED TO MCGILL UNIVERSITY IN PARTIAL

FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

Copyright© 2006 Ekwa J. Duala-Ekoko

Abstract
Aspect-Oriented Programming (AOP) continues to gain increasing

popularity in both academia and industry for its effectiveness in

localizing and modularizing crosscutting concerns. Two recurring

criticisms of AOP tools are their deficiency (or inflexibility) in language

features and the potential performance overhead that may be incurred

from adopting this technology. Using AspectJ as the target AOP tool, I

investigate the language features necessary to support aspect

dependencies, aspect interactions, aspect interference and aspect

reuse in the context of implementing the ACID properties of

transactional objects in a flexible and reusable way. Five encountered

limitations are identified, namely; lack of support for inter-aspect

configurability, lack of support for runtime disabling and re-enabling of

pointcuts on a per-object basis, lack of support for per-instance

association of aspects, lack of support for stronger and intuitive

aspect-to-class binding of reusable static crosscutting behaviours, and

the reflection/super-class method execution dilemma. Finally, I discuss

the deficiencies of work-around solutions and suggest potential

language improvements for addressing these limitations.

i

Résumé
De plus en plus de personnes du monde académique et industriel

utilisent la programmation orienté-aspect (AOP) pour mieux structurer

et modulariser leur code source. Beaucoup d'environments de

programmation orientés-aspect ont été critiqués à cause de

l'inflexibilié de leur language AOP et à cause du ralentissement de la

vitesse d'exécution qui resulte de leur utilisation. Cette these évalue la

capacité du language orienté-aspect AspectJ à exprimer les

dépendences entre aspects, à exprimer et résoudre les interferences

entre aspects, et à écrire du code orienté-aspect réutilisable.

L'évaluation est effectuée en implémentant AspectOPTIMA, un cadre

applicatifs qui guaranti les propriétés ACID (atomicité, cohérence,

isolation et durabilité) pour les objets transactionnels. Cinq limitations

du language AspectJ ont été identifiées: le language n'offre pas de

méchanisme pour spécifier les dépendances entre aspects, le language

ne permet pas d'associer un aspect à un objet (mais seulement à une

classe), le language ne permet pas d'activer et de désactiver un aspect

pendant l'execution du programme, les introductions statiques

d'attributs dans une classe fait par un aspect ne se comportent pas

comme les attributs standards face à l'héritage, et l'incompatibilité

entre l'utilisation de la réflection et les aspects. La thèse explique

également quelles concessions ont dû être faites pour implémenter

AspectOPTIMA malgré ces limitations. En conclusion, la thèse suggère

des améliorations possible pour le language AspectJ.

ii

Acknowledgements
I am truly grateful to all those who have supported me directly or

indirectly throughout my Master’s program. The support and guidance

I received from my thesis supervisor - Jörg Kienzle – during the thesis

phase of this program was invaluable and greatly appreciated. Many

thanks to my family and wife in particular for the countless sacrifices

made during this phase of my life.

iii

Dedication

To my dad - for his consistent support throughout my university life.

iv

Table of Contents
Abstract ...i
Résumé..ii
Acknowledgements ... iii
Dedication..iv
Table of Contents...v
List of Tables .. vii
List of Figures ... viii
Chapter 1 ~ Introduction ... 1

1.1 Motivation.. 1
1.2 Summary of Contributions... 3
1.3 Thesis outline.. 6

Chapter 2 ~ Fundamentals of Transactions and Aspect-Oriented Programming . 7
2.1 Transactions.. 7

2.1.1 Transactional Objects... 7
2.1.2 The ACID Properties of Transactions... 8
2.1.3 Concurrency Control and Recovery ... 10

2.2 Aspect Oriented Programming (AOP)... 13
2.3 Summary... 16

Chapter 3 ~ The Case Study .. 17
3.1 Aspectual Decomposition of Concurrency Control and Recovery 18

3.1.1 AccessClassified .. 18
3.1.2 Named.. 19
3.1.3 Copyable .. 19
3.1.4 Shared.. 20
3.1.5 Serializeable... 20
3.1.6 Versioned ... 21
3.1.7 Tracked .. 22
3.1.8 Recoverable ... 23
3.1.9 AutoRecoverable.. 24
3.1.10 Persistent ... 24
3.1.11 Summary .. 25

3.2 Aspectual Re-composition of Concurrency Control and Recovery 26
3.2.1 Pessimistic Lock-Based Concurrency Control with In-Place Update . 26
3.2.2 Pessimistic Multi-Version Lock-Based Concurrency Control with In-Place
Update... 28
3.2.3 Optimistic Concurrency Control with Deferred Update and Backward
Validation... 30

3.3 Summary... 32
Chapter 4 ~ Implementation Platform ... 34

4.1 Annotations ... 34
4.2 AspectJ ... 36

4.2.1 Dynamic Crosscutting .. 36
4.2.2 Static Crosscutting ... 40

Chapter 5 ~ AspectJ Implementation of the ACID framework 43
5.1 Sample Base Application .. 43
5.2 Reusability through the Abstract Introduction Idiom.................................. 44
5.3 Implementing the ACID Framework .. 47

v

5.3.1 AccessClassified .. 48
5.3.2 Named.. 54
5.3.3 Copyable .. 56
5.3.4 Shared.. 59
5.3.5 Serializeable... 63
5.3.6 Versioned ... 65
5.3.7 Tracked .. 70
5.3.8 Recoverable ... 73
5.3.9 AutoRecoverable.. 76
5.3.10 LockBased.. 78
5.3.11 Multi-Version LockBased.. 81
5.3.12 Optimistic.. 85

Chapter 6 ~ Encountered AspectJ Limitations and Possible Improvements 90
6.1 Lack of support for runtime disabling and re-enabling of pointcuts........... 90
6.2 Weak aspect-to-class binding ... 92
6.3 Lack of support for explicit inter-aspect configurability.............................. 97
6.4 Reflection/Super-class method execution dilemma 99
6.5 Lack of support for per-object association of aspects 102

Chapter 7 ~ Related Work .. 105
7.1 Other AOP tools .. 105
7.2 Other Concurrency Control and Persistence frameworks....................... 107

Chapter 8 ~ Conclusions and Future Work... 109
8.1 Conclusions... 109
8.2 Future Work .. 110

Bibliography .. 112

vi

List of Tables
Table 2.1: Strict Concurrency Control conflict table ..11
Table 4.1: Sample pointcut definitions ..39

vii

List of Figures
Figure 2.1: Three phases of a transaction ...12
Figure 2.2: Re-composing concerns into final system...15
Figure 3.1: Aspect dependencies and interference ..26
Figure 3.2: Aspect Collaboration for the LockBased Aspect28
Figure 3.3: Control Flow for Multi-Version Concurrency Control......................29
Figure 3.4: Control Flow for Optimistic Concurrency Control31
Figure 4.1: Sample marker annotation..35
Figure 4.2: Method and Constructor call join points..37
Figure 4.3: Method and Constructor execution join points..38
Figure 4.4: Sample before, after and around advice...40
Figure 4.5: Data member and method introduction...41
Figure 4.6: Modifying the hierarchy of a class using: declare parents42
Figure 5.1: Sample base application...44
Figure 5.2: Abstract introduction ...45
Figure 5.3: Aspect-to-class binding...46
Figure 5.4: Inter-aspect configurability ..47
Figure 5.5: Automatic classification of operations..49
Figure 5.6: Manual classification of operations ...52
Figure 5.7: Implementation of the Named aspect ...54
Figure 5.8: Implementation of the Copyable aspect – Part I ...57
Figure 5.9: Implementation of the Copyable aspect – Part II ..58
Figure 5.10: Implementation of the Shared aspect ...60
Figure 5.11: Implementation of the Serializeable aspect ..64
Figure 5.12: Implementation of Versioned – Part I..66
Figure 5.13: Implementation of Versioned – Part II...67
Figure 5.14: Implementation of Versioned – Part III..68
Figure 5.15: Implementation of Tracked – Part I...71
Figure 5.16: Implementation of Tracked – Part II..72
Figure 5.17: Implementation of Recoverable – Part I..74
Figure 5.18: Implementation of Recoverable – Part II...75
Figure 5.19: Implementation of AutoRecoverable...77
Figure 5.20: Implementation of LockBased aspect – Part I ..79
Figure 5.21: Implementation of LockBased aspect – Part II ...80
Figure 5.22: Implementation of Multi-Version LockBased – Part I82
Figure 5.23: Implementation of Multi-Version LockBased – Part II83
Figure 5.24: Implementation of Optimistic – Part I ..87
Figure 5.25: Implementation of Optimistic – Part II ...88
Figure 6.1: Proposed language construct: placeholder...96
Figure 6.2: Proposed “declare dependencies” construct ..98
Figure 6.3 : Proposed “prepare” construct and activation ...104

viii

Chapter 1 ~ Introduction

1.1 Motivation

Object-oriented programming [1] revolutionized the process of

software development with its introduction of object abstraction,

encapsulation, inheritance and polymorphism. These concepts have

proven to be effective in modeling common hierarchical behaviours but

fall short in modeling behaviours that spans across (i.e., crosscut)

several unrelated modules. Attempts to implement such crosscutting

concerns (i.e., system goals, concepts or areas of interest, non-

functional requirements [14]) in object-oriented programming often

results in systems that are difficult to reuse or maintain [2,3]. Aspect-

oriented programming (AOP) [3,4] has been proposed as a new

programming paradigm for addressing these deficiencies - resulting in

a proliferation of AOP tools (AspectJ [4], JbossAOP [5], Spring AOP [6],

CaesarJ [7]). The concepts and constructs of AOP have proven

effective in localizing and modularizing crosscutting concerns; and

consequently facilitating their reuse and evolution.

 As expected of any new technology, the AOP user community

continues to apply these concepts and tools in their respective

domains and proposes new aspect-oriented language features to

address their needs. However, the examples used for justifying new

language features have been criticized as being too specialized to be

convincing. The Software Engineering Lab at McGill University

1

proposed a case study [8] to “serve as a “benchmark” for evaluating new

AOP approaches, programming language features and aspect-oriented software

development and modeling approaches in general”. The case study was a

by-product of an ongoing work to migrate OPTIMA [9] – a framework

that provides transaction support for concurrent object-oriented

programming languages - from an object-oriented to an aspect-

oriented platform. The case study proposed a language-independent

decomposition of the necessary runtime support to implement the

ACID properties (Atomicity, Consistency, Isolation and Durability) of

transactional objects used in transactions into reusable aspects. It

then describes how these aspects can be recomposed to implement

various Concurrency Control and Recovery strategies for transactional

objects. The language independent design of this case study makes it

ideal for evaluating AOP tools.

 This thesis has two objectives. First, I verify the effectiveness of

the design proposed in the case study; that is, does the proposed

decomposition of Concurrency Control and Recovery into reusable aspects

effectively capture all the required functionalities and can these

aspects be seamlessly implemented in an AOP platform? Second, I

evaluate the expressiveness of the language features of the current

state of the art AOP tool – AspectJ - in the context of the case study.

Simple stated, I attempt to answer the following question: Are the

current programming language features of AspectJ (version 1.5.0)

adequate for implementing a reusable framework for the ACID

Properties of Transactional Objects (hereafter called the AspectOPTIMA

framework)? If not, what are the encountered language limitations and

how can these limitations be resolved? My definition of a reusable

framework of aspects is comparable to the oblivious property

suggested in [21] – i.e., developers do not have to modify an existing

2

system to accommodate these aspects and the base application is

completely ignorant of their existence. The enormous benefits of

aspect-oriented software development (AOSD) in general and AOP in

particular would be inconsequential to a specific domain unless the

current AOP tools provide adequate and flexible programming

language features to make this possible. The investigation of these

questions will therefore take us a step closer to broadening the

application base of both AOSD and AOP technologies.

1.2 Summary of Contributions

AspectJ has come a long way since its inception and its most recent

release (AspectJ 5) is a testament of the commitment to broaden its

application base. Notwithstanding, I identify several limitations in the

context of the case study, namely:

• Lack of support for runtime disabling and re-enabling of pointcuts

The if(BooleanExpression) pointcut of AspectJ is often promoted as

the construct for achieving runtime disabling and re-enabling of

aspects but this claim is only partially true. At best, this poincut

supports the disabling and re-enabling of an advice within an aspect

at runtime, not the join points of interest to which the advice is to

be applied. This means that the join point(s) of the advice in

question would still be intercepted but its execution is conditional

on the value of BooleanExpression. This thesis argues that the

performance overhead of unnecessarily intercepting join points and

the evaluation of if(BooleanExpression) is not optimal for

performance-sensitive applications. I propose new language

constructs for facilitating runtime disabling and re-enabling of

3

pointcuts (and consequently, target join points) so as to mitigate

this deficiency.

• Lack of support for per-instance association of aspects

Aspects in AspectJ are statically deployed. That is, once compiled

with a base class, the aspects become effective in every object of

that class. Consequently, the application of different concurrency

control and recovery strategy aspects to different objects of the

target application is not an option. I highlight a need for the support

of this functionality, suggest a potential solution and discuss some

challenges of supporting per-instance association of aspects.

• Lack of support for explicit inter-aspect configurability

The functionality of some of the aspects in the case study requires

the presence of other aspects; hence, such aspects should be able

to express their need for other aspects while preserving

obliviousness. AspectJ does not currently provide explicit support

for inter-aspect configuration. I demonstrate how this can be

achieved with the use of interfaces and discuss its limitations.

• Weak aspect-to-class binding

Abstract introduction [19,20] has been promoted as the strategy for

creating reusable static crosscutting aspects that can be used in

different contexts. This sounds like the perfect strategy for

implementing the reusable concurrency control and recovery

aspects proposed in the case study since these aspects will

obviously be used in various contexts. I expose the pitfalls of this

strategy and propose potential solutions.

4

• Reflection/Super-class method execution dilemma

The method call pointcut (call(MethodPattern)) of AspectJ does not

pick out reflective calls; a deliberate decision made by the AspectJ

team not to “delve into the Java reflection library to implement call

semantics” [9]. Developers are advised to use the method execution

pointcut (execution(MethodPattern)) instead. The method execution

pointcut on the other hand does not pick out the execution of non-

overridden inherited methods when the context and target is the

subclass. Developers must therefore choose between capturing

reflective calls or the execution of non-overridden inherited

methods, but both functionalities can not be provided

simultaneously. I discuss the ramifications of this dilemma in the

context of implementing a reusable aspect-oriented framework of

transactional objects and suggest potential language

improvements.

In addition to these AspectJ limitations, this work also makes the

following contributions:

• It provides a tertiary contribution to the proposed case study by

refining the decomposition and dependencies between the

aspects.

• It validates the decomposition proposed in the case study.

• It provides a reusable aspect-oriented framework for the ACID

properties of transactional objects - AspectOPTIMA. I discuss at

a higher level how this was achieved and provide a stripped-

down version of the implementation.

5

1.3 Thesis outline

The motivation and contributions of this thesis have been discussed in

this chapter. Chapter 2 covers the fundamentals of transactions

(transactional objects, ACID properties of transactions, concurrency

control and recovery strategies) and AOP as it applies in the context of

the case study and this thesis. A summary of the case study is

presented in chapter 3. I introduce the implementation platform

(JavaTM and AspectJ) in chapter 4. In chapter 5, I discuss the

implementations of the aspects presented in the case study, critiquing

each implementation and highlighting the encountered limitations. The

encountered AspectJ limitations and potential improvements are

discussed in chapter 6. Chapter 7 covers related work; chapter 8

contains the conclusions of the thesis and future work.

6

Chapter 2 ~ Fundamentals of Transactions and Aspect-
Oriented Programming

This thesis brings together concepts from two different domains -

transactions and aspect-oriented programming. This chapter

introduces those concepts of these domains used in this thesis. Section

2.1 presents the fundamentals of transactions (transactional objects,

ACID properties of transactions, concurrency control and recovery

strategies). Aspect-oriented programming is introduced in section 2.2

of this chapter.

2.1 Transactions

2.1.1 Transactional Objects

A transaction [10,11] groups together operations involving one or

more data objects (also known as transactional objects) that must either

succeed or fail as a group. This ensures that the execution of these

operations on transactional objects appears indivisible from the

perspective of concurrent competing transactions. Three standard

operations are used for marking transaction boundaries: begin, commit

and abort.

The begin operation is used for signalling the beginning of a new

transaction or sub-transaction. A transaction abort may be triggered

voluntarily or involuntarily (in event of an exception) during the

execution of a transaction. Upon abort, all the changes (writes or

7

updates) made on the accessed transactional objects by the aborting

transaction must be undone (also known as rollback). Upon a successful

completion, all the modifications made by the committing transaction

on transactional objects become permanent and visible to other

transactions.

In classical transaction models, each transaction is executed by

a single thread. More advanced models (such as Open Multi-Threaded

Transaction model [11]) allow several threads to jointly participate in the

execution of a transaction. The AspectOPTIMA framework provides

support for both classical and advanced transaction models.

2.1.2 The ACID Properties of Transactions

Frameworks providing transaction support must be able to detect and

resolve the execution of conflicting concurrent operations on

transactional objects in order to preserve data consistency. To achieve

these, frameworks must enforce the famous ACID properties (Atomicity,

Consistency, Isolation and Durability) of transactions.

Atomicity

The Atomicity property guarantees the execution of either all or none of

the operations within a transaction; hence, its synonymity to the all-or-

nothing (or at-most-once) property of transactions. The net effect from

an external viewpoint should be a jump from the initial state to the

result state (in the event of a successful transaction commit) or no state

change (in the event of a transaction abort). The execution of only a

subset of the operations of a transaction is not acceptable as this may

place the system in an inconsistent state. Consequently, Atomicity is

said to be unconditional, i.e. it must hold under every potential

catastrophic circumstances - including a crash of the operating system.

8

Consistency

Given a consistent state to start with, the Consistency property

guarantees that the execution of a transaction (whether successful or

not) will produce another consistent state. The results from a

transaction must satisfy the validation constraints of the target

application to be considered consistent. Inconsistent intermediate

states within a transaction do not pose a problem since these are not

visible to other transactions. This property is considered impossible to

achieve without explicit programmer support, hence there is great

reliance on the application developer to write consistency-preserving

transactions.

Isolation

The isolation property prevents interference between concurrent

executing transactions even when they access a common set of

transactional objects. In other words, all the modifications made by a

transaction on transactional objects cannot be based on data

computed by other transactions still in progress. Consequently, the

results produced by concurrently executing a set of transactions

should be equivalent to the result produced by executing the same set

of transactions in some arbitrary sequential order.

Durability

The Durability property guarantees that the results of successfully

committed transactions survive program termination or system crash,

even if the computer crashes immediately after a commit. That is,

upon a successful transaction commit, the system must be able to re-

establish its results (either by re-executing the same sequence of

9

operations in event of an immediate system failure or by retrieving it

from a stable storage) irrespective of subsequent failures.

2.1.3 Concurrency Control and Recovery

Transactions interact with transactional objects through well-defined

public interfaces in properly designed systems. Implementing the ACID

properties of transactional objects involves intercepting these

interactions and performing the appropriate pre-actions and post-

actions. These activities have been traditionally divided in to

concurrency control and recovery. This section introduces the concepts of

concurrency control and recovery necessary for this thesis.

Concurrency Control

The concurrency control component of a transaction framework

guarantees the isolation and consistency properties of transactions. To

achieve these, the concurrency control component must be able to

distinguish between observer operations (i.e., read-only operations)

and modifier operations (i.e., write and update operations), and must

also be able to detect and resolve the execution of conflicting

operations. There are two main techniques for conflict detection [11]:

strict concurrency control and semantic-based concurrency control, but the

latter is out of the scope of this work.

 Strict concurrency control (Table 2.1) is used in distinguishing

between read, write and update operations. Read operations do not

modify the state of transactional objects, hence, they do not conflict

with other read operations. A Write (i.e., a write-only operation) or an

Update (a read followed by a write) operation on the other hand

conflicts with other writes, updates or read operations because they

10

modify the state of the transactional object on which they are

executed.

 Read Write Update

Read No Yes Yes

Write Yes Yes Yes

Update Yes Yes Yes

Table 2.1: Strict Concurrency Control conflict table

Concurrency control can be achieved either pessimistically [10] or

optimistically [12], each having its advantages and disadvantages.

Pessimistic Concurrency Control

This technique requires a transaction to obtain permission from the

concurrency control manager associated with a transactional object

before executing an operation on it. The concurrency control manager

first checks if the execution of this operation would conflict with other

operations in progress. If so, the calling transaction is blocked or

aborted. Otherwise, the transaction is given the permission to proceed,

with an implicit guarantee of isolation.

Optimistic Concurrency Control

This technique allows the execution of conflicting operations on a

transactional object but only persists the results of those transactions

that do not violate system consistency. In order to accomplish this, the

execution of a transaction is divided into three phases: a read phase, a

validation phase and a conditional write phase (Figure 2.1). A transaction

executes its write and update operations on a local copy of a

11

transactional object during the read phase. The results of a transaction

are only made global in the write phase if the validation phase succeeds.

Figure 2.1: Three phases of a transaction

The validation phase can be further categorized as either forward or

backward [13] based on the way in which conflicts are detected.

Forward validation ensures that committing transactions do not

invalidate the results of the transactions still in progress. Backward

validation ensures that the result of a committing transaction has not

been invalidated by recently committed transactions.

Recovery

The recovery component of a transaction framework guarantees the

atomicity and durability of state modifications on transactional objects

irrespective of system failures (transaction abort or system crash). In the

event of a transaction abort (be it voluntarily or involuntarily), the

recovery manager must undo all the modifications made by the

aborting transaction. In the event of a system crash, the recovery

manager must successfully abort all uncommitted transactions and

undo all the modifications made on transactional objects by these

transactions. It must then ensure that the results of transactions that

committed before the crash are reflected in the appropriate

transactional objects. Two types of techniques for performing updates

12

and recovery of transactional objects have been identified in literature

[11]: in-place and deferred update.

In-place update

This update strategy executes operations on behalf of the calling

transactions on the main copy of a transactional object. This implies

that all updates on transactional objects are instantly made global. The

undo functionality (also known as rollback) is facilitated by taking a

snapshot (also known as a checkpoint) of the state of a transactional

object before it is modified. The states of transactional objects can be

conveniently restored by rolling back to a previously established

checkpoint - in the event of a transaction abort or system crash.

Deferred update

This strategy supports recovery/updates by creating a local copy of a

transactional object per transaction the first time it executes a state

modifying operation. Subsequent operations are executed on the local

copy, making these changes invisible to the outside world. These

changes are made global upon a successful transaction commit either

by replacing the state of the main copy with that of the local copy or

by re-executing these operations on the main copy. Undoing state

modifications in the event of a transaction abort or system crash

simply involves discarding the local copies of the appropriate

transactions.

2.2 Aspect Oriented Programming (AOP)

Object-oriented programming (OOP) revolutionized the process of

software development with its introduction of object abstraction,

encapsulation, inheritance and polymorphism. These concepts have

13

proven effective in modeling common hierarchical behaviours but fall

short in modeling behaviours that spans across several unrelated

modules. Attempts to implement such crosscutting behaviours in OOP

often result in systems that are difficult to reuse or maintain. Aspect-

oriented programming [3,4] has been proposed as a new

programming paradigm for addressing these deficiencies.

 AOP is not intended to be a replacement methodology to OOP

but a complementary addition. It introduces new concepts and

constructs that enable the modularization of crosscutting concerns,

resulting in systems that are easier to understand, maintain and reuse.

The most fundamental concept of AOP is the Join Point Model (JPM). The

JPM specifies how crosscutting concerns interact with a base

application. Specifically, it defines the locations in a base program

were crosscutting concerns can be applied, a way for selecting these

locations and a means of affecting the behaviour at these locations.

The development of an AOP system typically involves three distinct

phases [14]:

Aspectual Decomposition

This phase involves the identification of crosscutting and core system

concerns (i.e., goals, concepts or areas of interest). Given a banking

application for example, a developer may identify credit and debit

activities as core concerns, and authentication, persistence and

concurrency control as crosscutting concerns.

Concern Implementation

This phase involves the implementation of the concerns identified in

phase one. The flexibility of AOP permits the independent/oblivious

implementation of the core concerns in either a procedural (such as C)

14

or an object-oriented (such as C++ or Java) platform. The crosscutting

concerns (i.e., aspects) are typically implemented in an AOP-extension

of the base language.

Aspectual Re-composition

The rules for re-composing the concerns implemented in phase two

into a final system are specified in this phase. These rules are typically

specified in the same language in which the concerns were

implemented and within an AOP class-like construct named aspect.

Other AOP tools such as JBoss AOP and Spring AOP supports the

specification of these rules in XML files. A weaver then re-composes

these concerns using the specified weaving rules into a final system

(see figure 2.2).

Figure 2.2: Re-composing concerns into final system

15

2.3 Summary

The foundational concepts of this thesis have been introduced in this

chapter. Specifically, I introduced the ACID properties of transactions,

concurrency control and recovery strategies, and the basics of AOP. In

chapter 3, I show how the aspectual decomposition concept of AOP

was employed by the Software Engineering Lab at McGill University to

decompose the implementation of the ACID properties into reusable

aspects.

16

Chapter 3 ~ The Case Study

This chapter presents the case study [8] proposed by the Software

Engineering Lab at McGill University for evaluating AOP approaches

and AOP language features. The case study argues that although

concurrency control and recovery look like two separate concerns at a

higher level, they cannot be completely separated at the

implementation level. There exist both conflicts and common grounds

between these two concerns. For instance, pessimistic concurrency

control can only work with in-place update and both concerns must be

able to distinguish observer operations from modifier operations.

Motivated by this incomplete separation of concerns, the study

proposed a potential aspectual decomposition of concurrency control and

recovery (presented in section 3.1) into well-defined reusable aspects.

It then showed how these aspects can be re-composed to provide

various concurrency control and recovery strategies (presented in

section 3.2). This thesis provides a tertiary contribution to the case

study - some of these aspects have been refined where necessary to

achieve a more elegant and functional decomposition. The version of

the case study discussed below reflects these contributions.

17

3.1 Aspectual Decomposition of Concurrency Control and Recovery

This section presents a brief description of each of the aspects

proposed in the case study. Specifically, I discuss the motivation,

dependencies (i.e., other aspects that the current aspect depends on

or other aspects that require the functionality provided by the current

aspect) and interferences (i.e., aspects that have to modify their

behaviours in the presence of other aspects) of each aspect. The

justifications of the reusability of the aspects can be found in [8] and

the implementation details are separately discussed in chapter 5 of this

thesis.

3.1.1 AccessClassified

Motivation

The AspectOPTIMA framework must be able to identify the operations

of a transactional object, which if executed concurrently may

compromise the object’s state consistency. To this end, the operations

of transactional objects must be classified into three categories: read

operations (i.e., operations that do not modifier the state of an object),

write operations (i.e., write-only) and update operations (i.e., a read,

followed by a write). The AccessClassified aspect provides this

functionality.

Dependencies

• Depends on: None

• Interferes with: None

• Is used by: Shared, Tracked, AutoRecoverable and Concurrency Control

18

3.1.2 Named

Motivation

One of the fundamental properties of an object is its identity because

it helps in distinguishing it from other objects. A memory reference is

typically used to uniquely identify an object at runtime. Transactional

objects by nature have need of a lifespan that is not tied either to the

lifetime of a memory location or an application. Consequently, there

must be a way for uniquely identifying transactional objects that will

transcend program termination and the lifetime of an application.

The Named aspect provides this functionality. A transactional

object should be given a name at creation time and the name should

remain valid throughout its lifetime. It should be possible to obtain the

name of a given object and to retrieve an object given its name.

Dependencies

• Depends on: None

• Interferes with: None

• Is used by: Tracked, Persistent, Serializeable and Versioned

3.1.3 Copyable

Motivation

An object encapsulates state. At times (e.g., as in recovery strategies

using deferred update), it may be necessary to duplicate an object’s

state or to replace the state of one object with that of another object

of the same class. These functionalities are provided by Copyable. This

aspect should detect the presence of Shared and Named. The name of

an object must not be changed by the state replacement operation and

the state replacement or duplication of a Shared object should occur in

mutual exclusion.

19

Dependencies

• Depends on: None

• Interferes with: Shared and Named

• Is used by: Serializeable and Versioned

3.1.4 Shared

Motivation

Transactional objects are shared data structures. Threads running

concurrently within the same transaction may simultaneously execute

conflicting operations on a transactional object - producing an

inconsistent state. It is therefore necessary to prevent the threads that

jointly participate in the execution of a transaction from concurrently

modifying an object’s state. The Shared aspect provides this

functionality. It provides exclusive access of a transactional object to

either a single state modification operation (modifier) or multiple

concurrent read operations (observers) - assuming no modification

operation is in progress. Shared depends on AccessClassified in order to

distinguish observer operations from modifier operations.

Dependencies

• Depends on: AccessClassified

• Interferes with: None

• Is used by: Concurrency Control

3.1.5 Serializeable

Motivation

The state of a transactional object is not restricted to main memory.

Certain functionalities (e.g., Persistence) require an object’s state be

moved to a different location such as a file or a database. The main

memory representation of the object must therefore be transformed to

20

the appropriate representation of the destination location. The

Serializeable aspect provides this functionality. It enables a

transactional object to be able to write its state to a backend requiring

varying representation formats, read its state from a back end and

create a new object - initialized with the state read from a backend.

Serializeable relies on Copyable in replacing the state of an object with

that of a previously serialized object of the same class. Serializeable

also interferes with Shared and Named. A shared transactional object

should only be serialized when there is no other transaction modifying

it. This aspect should also detect the presence of Named and serialize

an object’s name together with its state.

Dependencies

• Depends on: Copyable

• Interferes with: Shared and Named

• Is used by: Persistent

3.1.6 Versioned

Motivation

State modifications made by a transaction on transactional objects

must be isolated from other transactions until the outcome of the

transaction is known. To facilitate this, each transaction must have its

own view of the transactional objects it accesses and threads should

only see the updates made by other participants of the same

transaction but not the updates made from within other transactions.

Consequently, multi-version concurrency control strategies, as well as

snapshot-based recovery techniques have to create multiple copies of

the state of a transactional object. The Versioned aspect provides this

functionality.

21

A Versioned object encapsulates several versions of the state of a

transactional object, with one version designated as the main version.

Versions are linked to the views of transactions. A method invocation

on a transactional object is either directed to the version of a particular

view - if the invoking transaction has a view - or to the main version -

otherwise. Versioned relies on Copyable (for duplicating the state of an

object) and Named (for uniquely identifying an object). It indirectly

interferes with Shared (a new version should only be created when an

object’s state is not being modified by another transaction) but

Copyable has already taken care of this.

Dependencies

• Depends on: Copyable and Named

• Interferes with: None

• Is used by: Recoverable and Concurrency Control

3.1.7 Tracked

Motivation

The AspectOPTIMA framework must keep track of all the transactional

objects accessed by transactions (or threads) in order to effectively

ensure the ACID properties of transactions. For instance, the list of

modified transactional objects is required to support rollbacks or global-

updates in the event of a transaction abort or a transaction commit

respectively. The Tracked aspect provides this functionality. It enables

threads to define regions in which object accesses can be monitored in

a generic way. The tracked region is delimited by begin and end

operations. A thread should be able to obtain all read, written-to or

updated transactional objects for the given region at any point in time.

Tracked relies on AccessClassified (to distinguish observer operations

from modifier operations) and Named (to avoid duplicates). Tracked

22

should detect the presence of Versioned to avoid tracking different

versions of the same object.

Dependencies

• Depends on: AccessClassified and Named

• Interferes with: Versioned

• Is used by: Concurrency Control and Recovery

3.1.8 Recoverable

Motivation

The AspectOPTIMA framework must be able to undo (also known as

rollback) all state modifications made on transactional objects by

aborting transactions in order to ensure the all-or-nothing property of

transactions. The Recoverable aspect provides this functionality. It

provides transactional objects with the ability to save their state (also

known as establishing a checkpoint) and restore it at a later time, if

need be. It should be possible to establish multiple checkpoints and to

rollback an object’s state to any of the previously established

checkpoints. The Recoverable aspect should also support both in-place

and deferred updates.

Recoverable depends on Versioned in establishing a checkpoint. It

indirectly interferes with Shared (a checkpoint should only be

established when an object’s state is not being modified by another

transaction) but Versioned has already taken care of this.

Dependencies

• Depends on: Versioned

• Interferes with: None

• Is used by: AutoRecoverable and Recovery.

23

3.1.9 AutoRecoverable

Motivation

A potential performance issue when establishing multiple checkpoints

of an object is the possibility of no state changes between successive

checkpoints. An optimal solution may be to establish a checkpoint only

when it is determined that the execution of an operation would modify

the object’s state. The AutoRecoverable aspect provides this

functionality. It allows a thread to define a region within which a

checkpoint is automatically established before the execution of a state

modification operation. This region is delimited by begin and end

operations and all state modifications made within this region can be

undone at any time. AutoRecoverable relies on AccessClassified (to

distinguish observer operations from modifier operations) and

Recoverable (to provide undo functionality).

Dependencies

• Depends on: Recoverable and AccessClassified

• Interferes with: None

• Is used by: Recovery.

3.1.10 Persistent

Motivation

The state of persistent objects must outlive program termination. To

support this, persistent objects must be able to write their state to

stable storage (such as a database [15] or a file) and subsequently

restore the object’s state based on the content of the storage device. A

storage device should be specified at object creation time and it should

be possible to destroy the object when no longer needed.

The Persistent aspect depends on Serializeable (for transforming the

object’s state into the appropriate format), Copyable (for restoring the

24

state of an object) and Named (for designating a valid storage location

on the storage device). It interferes with Versioned (i.e., of all the

versions, only the main version should be persisted) and Recoverable (a

recoverable object should be persisted together with its checkpoints).

The indirect interference between Persistent and Shared (i.e., an

object’s state should only be persisted when it is not being modified by

another transaction) has already been taken care of by Serializeable.

Dependencies

• Depends on: Serializeable, Copyable and Named

• Interferes with: Versioned and Recoverable

• Is used by: Recovery

3.1.11 Summary

I have discussed the decomposition of concurrency control and

recovery into reusable aspects in this section. Specifically, I presented

the motivation, dependencies and interferences of each aspect. Figure

3.1 shows a UML diagram of the dependencies and interferences

between these aspects. The solid arrows depict dependencies and the

broken arrows depict interferences. The Concurrency Control and

Recovery aspects have been added to represent general concurrency

control and recovery strategies. Those highlighted in grey represent

implementation overlap between Concurrency Control and Recovery.

Finally, aspects that have to intercept calls/executions to transactional

objects are stereotyped <<interceptor>>.

25

Figure 3.1: Aspect dependencies and interference

3.2 Aspectual Re-composition of Concurrency Control and

Recovery

This section describes how the aforementioned aspects can be re-

composed to achieve different concurrency control and recovery

strategies for transactional objects. It is assumed that the transaction

framework creates a tracked zone, a recovery zone and a view for each

transaction when it begins, and that it ends these zones upon

transaction abort or commit.

3.2.1 Pessimistic Lock-Based Concurrency Control with In-

Place Update

The objective of the LockBased aspect is to provide a pessimistic lock-

based concurrency control for transactional objects. When a

transaction invokes an operation on a transactional object, this aspect

obligates the transaction to obtain permission (i.e., a lock) from the

AspectOPTIMA framework before execution the operation. Each public

operation is assumed to have a read, write or an update lock associated

with it. LockBased depends on AccessClassified in determining the type

26

of lock requested by a given operation. The lock is only granted if it

does not conflict with a lock held by another transaction currently in

progress. Otherwise, the calling transaction is blocked till the

requested lock is released. LockBased then selects an in-place update

strategy by calling Recoverable before allowing the call to proceed.

 The AspectOPTIMA framework needs to know all the

transactional objects accessed by a transaction in order to be able to

release the acquired transactional locks upon a transaction abort or

commit. For this, LockBased depends on Tracked. LockBased also

depends on AutoRecoverable (to prepare for rollback by establishing a

checkpoint before state modification operations), on Versioned (to

direct the operation call to the main version of the transactional object)

and on Shared (to ensure that no two threads within a transaction can

modify the object’s state concurrently).

The Shared aspect releases the mutual exclusion lock

immediately after the execution of the operation. Transactional locks,

however, are held till the outcome of the transaction is known. The

execution order of conflicting transactions is determined by the order

in which transactional locks are granted. This implies that transactions

acquire locks during their execution phase (phase one) and release

them once the outcome of the transaction is known (phase two) – a

process known as two-phase [13] locking. The sequence diagram below

(Figure 3.2) shows how a call to a transactional object (TAObjects) is

intercepted and how all the aspects involved in this concurrency

control strategy collaborate to achieve the desired functionality.

27

Figure 3.2: Aspect Collaboration for the LockBased Aspect

3.2.2 Pessimistic Multi-Version Lock-Based Concurrency Control

with In-Place Update

A major weakness of the lock-based concurrency control strategy

presented above (section 3.2.1) is that read-only transactions

(observers) can be blocked by modifier transactions. This may greatly

impact the performance of applications with many short-lived observer

transactions and few long-lived modifier transactions. The MultiVersion

aspect addresses this problem. The MultiVersion aspect encapsulates

two sets of states per transactional object, namely: a history of

committed states (HCS) and the main version. Observer operations are

executed on the appropriate objects in the HCS whereas modifier

operations are executed on the main version. The HCS is populated by

creating new versions of a transactional object upon a successful

28

transaction commit. Each object in the HCS is assigned a logical

timestamp during which it state was valid.

 Read-only transactions are assigned logical timestamps at

creation time and they no longer have to acquire locks before

observing the states of transactional objects. Notwithstanding,

MultiVersion has to intercept read-only transactions, find a committed

version with the highest timestamp that is lower than the transaction

timestamp and assigns this version to the view of the invoking

transaction. MultiVersion depends on Versioned to direct the call to the

selected version and on Tracked - to record read accesses. The

AutoRecoverable and Shared aspects are not needed for read-only

transactions since these transactions do not modify the state of

transactional objects.

Figure 3.3 illustrates the control flow when an operation is

invoked on a MultiVersion transactional object. The versions old1 to old4

represents the history of committed states of the transactional object

(TAObject). Ideally, the Shared aspect should be disabled for the

versions old1 to old4 of the TAObject but enabled for the main version

(main) to optimize performance.

Figure 3.3: Control Flow for Multi-Version Concurrency Control

29

Modifier transactions are handled in the same way as in the LockBased

aspect. First, MultiVersion attempts to acquire the appropriate lock

(Write or Update lock) on the main version of the transactional object

(TAObject). If granted, the transaction is allowed to proceed;

otherwise, it blocks. MultiVersion then depends on Tracked to record

object accesses, on Recoverable for selecting an in-place update

strategy and on AutoRecoverable for establishing a checkpoint. Versioned

then directs this call to the main version and Shared ensures mutual

exclusion for concurrently executing conflicting threads. As before,

Shared releases the lock immediately after the execution of the

operation but the transactional locks are held till the outcome of the

transaction is known.

3.2.3 Optimistic Concurrency Control with Deferred Update and

Backward Validation

The Optimistic aspect implements an optimistic concurrency control

strategy with deferred update and backward validation. As discussed in

section 2.1.3, the execution of a transaction is divided up into three

phases (Read, Validation and Write) when using optimistic concurrency

control.

Read Phase

Transactions always read the most recently committed state of a

transactional object during this phase. The Optimistic aspect intercepts

and classifies method calls on transactional objects with the assistance

of AccessClassified.

If the method call is an observer operation, it is first forwarded to

Tracked to record object accesses. Then, Versioned forwards the call to

the main version since it contains the most recently committed state.

30

The Shared and AutoRecoverable aspects are not necessary in this case

because it is a read-only call.

If the method call is a modifier operation, Optimistic first selects a

deferred-update strategy by calling Recoverable. The call is then

forwarded to Tracked to record the object access. Next, AutoRecoverable

creates a new version of the transactional object using the selected

update strategy. Finally, Versioned forwards the call to the newly

created version and Shared ensures mutual exclusion as usual. All

subsequent reads performed by this transaction are executed on the

local version of the transactional object.

 AutoRecoverable creates a local version per-transaction for each

concurrent modification call. Consequently, there might exist several

uncommitted versions of a transaction object at a given time, each

belonging to a different transaction. Figure 3.4 illustrates the control

flow through the aspects for observer and modification operations. We

have four active transactions, each with its own local copy of the

transaction object. Observer operations are executed on the main version

and have no need for AutoRecoverable or Shared.

Figure 3.4: Control Flow for Optimistic Concurrency Control

31

Validation Phase

The results of transactions have to be successfully validated before

they are committed. To achieve this, the Optimistic aspect requires the

timestamp of the most recently committed transaction both when a

transaction begins (Tbegin) and when a transaction is about to begin

its validation phase (Tend). It then computes the union of all the

transactional objects modified by transactions (excluding the current

validating transaction) between Tbegin and Tend using Tracked and

intersects this union with the set of transactional objects modified by

the validating transaction.

A transaction successfully validates only if the intersection set is

empty. It then receives a commit timestamp before proceeding to the

write phase. Otherwise, validation is considered unsuccessful and the

validating transaction is aborted. Recoverable is then informed to

rollback the changes, resulting in the deletion of the local versions of

the transaction.

Write Phase

This phase is responsible for making the results of a successfully

validated transaction global and for discarding the local versions of a

transactional object.

3.3 Summary

I have discussed the decomposition of the ACID properties of

transactions into reusable aspects proposed by [8]. I also discussed

how these aspects could be re-composed to achieve different

concurrency control and recovery strategies for transactional objects.

A surface examination of the decomposition and re-composition

32

scenarios highlights some preliminary requirements that a typical AOP

tool should provide:

• Inter-aspect configurability(i.e., aspect dependencies)

Some aspects require the functionality of other aspects in order to

function (e.g., AutoRecoverable depends on Recoverable and

AcessClassified). An AOP tool should provide a construct for

explicitly expressing these dependencies.

• Inter-aspect ordering

The ability to define the execution order of aspects is crucial in

certain cases. Optimistic for instance, requires AutoRecoverable to

create a new version of a transactional before Versioned directs and

executes the call on the appropriate version.

• Per-instance aspect association

An often-desired functionality is the possibility to apply different

concurrency control and recovery strategies to different objects of

the same class. It should therefore be possible to apply Lockbased,

MultiVersion and Optimistic to objects, instead of classes.

• Dynamic aspects

There is no need of the Shared aspect on transactional objects that

are accessed only by observer operations. The presence of Shared

on such objects may be a cause for concern for performance

sensitive applications. An AOP tool should therefore provide support

for runtime enable or disabling of aspects.

33

Chapter 4 ~ Implementation Platform

This chapter introduces the concepts and constructs of Java and

AspectJ that are of importance to this thesis. I introduce user-defined

annotations (supported as of Java 5) in Section 4.1. These annotations

are used for classifying the operations of transactional objects as Read,

Write or Update. AspectJ is introduced in section 4.2.

4.1 Annotations

Before the advent of user-defined annotations, frameworks (such as

Junit [16]) relied on naming conventions for identifying methods that

require special treatment at runtime. This approach is restrictive and

prone to implementation and evolutionary errors. As of release 5.0

(also known as Tiger) [17], the Java platform now provides a versatile

approach for annotating program elements (fields, methods,

parameters, constructors, local variables, packages, annotations,

classes, interfaces and enumerations).

The declaration of an annotation takes an at-sign (@), followed

by the interface keyword and the name of the annotation. Annotations

also have a target program element, a retention policy (Source, Class

or Runtime) and an inheritance policy. These policies are specified using

meta-annotations (predefined annotations used for annotating other

annotations). Java currently supports three types of annotations:

marker annotations (i.e., annotations with no elements), single-value

34

annotations (i.e., annotations with a single element) and multi-value

annotations (i.e., annotations with multiple elements).

I use marker annotations in distinguishing between the read, write

and update operations of a transactional object. Figure 4.1 shows the

Read marker annotation used in this work. It is equivalent to the Write

and Update annotations, except for the difference in name. As shown

below, these annotations have a runtime retention policy (i.e., they

are retained by the virtual machine so that they can be read

reflectively at run-time), can be inherited (i.e., annotations on super-

classes are automatically inherited by subclasses) and their target is

method declarations.

 @Retention(RetentionPolicy.RUNTIME)

 @Target(ElementType.METHOD)

 @Inherited

 public @interface Read {}

Figure 4.1: Sample marker annotation

Unfortunately, method annotations on super-interfaces cannot be

inherited by implementing classes [18]. The framework must therefore

employ a different strategy for classifying methods inherited from

super-interfaces to avoid the performance overhead that come from

using worst-case classification. These strategies are discussed in the

implementation of AccessClassified (section 5.3.1).

35

4.2 AspectJ

AspectJ [4] is an aspect-oriented extension of the Java programming

language. It emerged from a research work at Xerox PARC aimed at

modularizing crosscutting concerns and is currently considered to be

the most mature AOP implementation. This section introduces those

concepts and constructs of AspectJ that are used in this thesis (see

[14] for an in-depth coverage on AspectJ). AspectJ supports two types

of crosscutting behaviours: dynamic and static crosscutting. These

crosscutting behaviours are encapsulated in an AspectJ class-like

construct known as an aspect. Similar to a Java class, an aspect can

contain both data members and method declaration but it cannot be

explicitly instantiated.

4.2.1 Dynamic Crosscutting

Dynamic crosscutting techniques are used for defining behaviours that

modify the runtime execution of a system either by augmenting or

replacing it. I introduce the AspectJ constructs used for modifying a

system’s dynamic behaviour in this section.

Join point

Join points are well-defined points in the execution of a program. The

integration of crosscutting concerns with base applications occurs at

these points. A program’s execution contains several join points but

AspectJ exposes only the following: method call and execution,

constructor call and execution, read or write access to a field, object

and class initialization execution, exception handler execution, and

advice execution. These join points also have states associated with

them such as the current executing object, the target object or the list

of arguments.

36

This thesis makes use of method call and execution, constructor call

and execution, and advice execution join points. My discussion of join

points is therefore limited to these.

Method and Constructor call join points

The method and constructor call join points are equivalent in

definition. Both occur at the places where they are being invoked

(Figure 4.2). The constructor call join point of the Account object occurs

at the statement that requests the creation of a new object. Similarly,

the method call join point of the getBalance() method of the Account

object occurs at the point where it is being invoked.

Figure 4.2: Method and Constructor call join points

Method, Constructor and Advice execution join points

The method, constructor and advice execution join points are also

equivalent in definition. These occur when the code within the body of

the corresponding construct executes. Figure 4.3 shows an example of

the getBalance() method and the Account constructor execution join

points of the Account object.

37

Figure 4.3: Method and Constructor execution join points

AspectJ provides a special reference variable – thisJoinPoint – that

contains the dynamic information associated with an advised join

point. This variable provides direct access to information such as the

target object (thisJoinPoint.getTarget()), the current executing object

(thisJoinPoint.getThis()), and method arguments (thisJoinPoint.getArgs()).

Other information such as the name of the current executing method

can also be extracted (indirectly) from this variable using the Java

reflection API.

Pointcut

A pointcut is a construct used for capturing join points of interest and

their associated context - such as the current executing object

(this(ObjectIdentifier)), the target object of a call or execution

(target(ObjectIdentifier)) and the arguments of the join point (args(…)).

AspectJ supports both named and anonymous pointcuts. Named

pointcuts are declared using the keyword pointcut and can be reused in

multiple places. Pointcuts can also be composed using Boolean

operators (AND, OR, NOT) to build other pointcuts. Below is the syntax

of a named pointcut:

38

[access modifier] pointcut pointcut-name ([arguments]): pointcut-definition

The access modifier can be public, private or protected; the pointcut-name

can be any valid user-defined non-keyword and arguments are used for

exposing context of interest to the advice. Table 4.1 introduces the

pointcut-definition of interest to my work.

Pointcut-definition Description

call(public * Account+.*(..))

Picks out all public method calls to Account or its

subclasses, taking zero or more arguments.

execution(public * Account+.*(..))

Picks out all public method execution on Account

or its subclasses, taking zero or more arguments.

call(public Account+.new(..))

Picks out public constructor calls to Account or its

subclasses, taking zero or more arguments.

execution(public Account+.new(..))

Picks out public constructor execution on Account

or its subclasses, taking zero or more arguments.

target(Account)

Picks out all join points where the target is an

instance of Account.

Adviceexecution() Picks out the execution join point of an advice.

!cflow(Adviceexecution())

Picks out all join points that are not in the control

flow of the executing advice.

if(BooleanExpression)

Picks out all join point where the Boolean

expression evaluates to true.

Table 4.1: Sample pointcut definitions

Advice

An advice defines the actions to be taken at the join point(s) captured

by a pointcut. AspectJ supports three types of advice: before, after and

around advice. The before advice runs just before the captured join

point; the after advice runs immediately after the captured join point;

the around advice surrounds the captured join point and has the ability

39

to augment, bypass or allow its execution. The after advice comes in

three flavours: after returning (i.e., after the successful execution of a

join point), after throwing (i.e., after the advised join point throws an

exception), and after (i.e., irrespective of the return status of the join

point).

Figure 4.4: Sample before, after and around advice

Figure 4.4 shows an example before, after and around advice for the

pointcut call(public float Account.getBalance()). The proceed() statement of

the around advice passes control back to the captured join point.

Omitting this statement will bypass the captured join point.

4.2.2 Static Crosscutting

The static crosscutting constructs are used for modifying the static

structure (i.e., classes, interfaces and aspects) of a system. I

introduce the AspectJ constructs that support this type of crosscutting

in this section.

Inter-type member declarations (also known as Introductions)

The member introduction concept of AspectJ is a feature that is

extensively used in this thesis. This concept facilitates the introduction

of data members and methods - with implementation - into classes and

interfaces. Figure 4.5 illustrates the introduction of a private accountID

40

field, with public setter (public void setAccountID(int id)) and getter (public

int getAccountID()) methods into the Account class. This type of

introduction is called direct introduction because the data members are

introduced directly in the target class. Indirect introduction introduces

data members into an interface and later binds the interface to the

target class. A significant difference between direct and indirect

introduction of relevance to this thesis is the association of the joint

points of the introduced methods. The call and execution joint points

of directly introduced methods are associated with the target classes

whereas those of indirectly introduced methods are associated with the

interface.

Figure 4.5: Data member and method introduction

Modifying the class hierarchy

AspectJ also provides a construct (declare parents) for modifying the

inheritance hierarchy of existing classes. This construct can declare

new super-classes and super-interfaces for an existing class as

demonstrated in figure 4.6. The Account class is now serializable and a

subclass of Bank.

41

Figure 4.6: Modifying the hierarchy of a class using: declare parents

Aspect precedence

Multiple crosscutting behaviours may apply to the same join point in a

system with multiple aspects. The outcome of an unspecified execution

order of crosscutting behaviours at common join points is not only

unpredictable; it may also be undesirable. AspectJ provides the declare

precedence construct for controlling the execution order of advices at

these common join points. This construct takes the following form:

declare precedence: TypePattern1, TypePattern2, …;

The aspects matching Typepattern1 have a higher precedence than

those matching Typepattern2, and so on. What this means from the

viewpoint of an advice is: the before and around advice of higher

precedence aspects executes before those of lower precedence aspects

whereas the after advice of lower precedence aspects executes before

those of higher precedence aspects.

42

Chapter 5 ~ AspectJ Implementation of the ACID
framework

I have introduced the foundational concepts (transactions, aspect-

oriented programming, AspectJ and the case study) of this thesis in

the preceding chapters. In this chapter, I present and critique potential

AspectJ implementations for each of the aspects introduced in the case

study. I also highlight the encountered implementation limitations for

each aspect. In chapter 6, I provide an in-depth evaluation of these

limitations, accompanied with potential AspectJ improvements.

Section 5.1 of this chapter introduces the sample base

application used in this thesis. I introduce abstract introductions – a

popular idiom for implementing reusable static crosscutting aspects -

in section 5.2. A stripped-down implementation of the aspects and

their limitations are discussed in section 5.3.

5.1 Sample Base Application

The sample application that will be used for demonstrating the

implementation of reusable aspects is presented in figure 5.1. This is a

simplified version of a typical account class and is intended just for

demonstration purposes. The application consists of one abstract super

class (Account) and two concrete subclasses (SavingAccount and

CheckingAccount). The Account class has one field (balance), two

abstract methods (credit(…) and debit(…)) and one non-abstract method

43

(getBalance()). The subclasses provide a constructor and

implementations for the inherited abstract methods but do not

override the inherited non-abstract method (i.e., getBalance()).

Figure 5.1: Sample base application

5.2 Reusability through the Abstract Introduction Idiom

As discussed in chapter 3 (the case study), the functionality of some

aspects can only be achieved through the assistance provided by other

aspects (e.g., AutoRecoverable depends on Recoverable and

AccessClassified). Aspects therefore require an oblivious way for

expressing their need of the functionalities (i.e., both static and dynamic

crosscutting behaviours) provided by other aspects (i.e., inter-aspect

44

configurability). In addition, these aspects should be generic enough to

be used in different contexts besides ensuring the ACID properties of

transactional objects. Hence, we also require an oblivious way for

identifying the classes to which an aspect should be applied (i.e.,

aspect-to-class binding).

The abstract introduction idiom (also known as indirect introduction)

[19,20] has been proposed as a strategy for implementing aspects

that can be reused in different contexts. It allows us to “collect several

extrinsic properties from different perspectives within one unit and defers the

binding to existing objects” [19]. In other words, the target classes of the

static and dynamic crosscutting behaviors are unknown until weave-

time. This strategy has three participants (figure 5.2):

• Introduction container: a construct used as the target for the inter-type

member declarations.

• Introduction loader: the aspect that introduces crosscutting behaviors and

ancestors to the introduction container.

• Container connector: the aspect used for connecting the introduction

container to the base application classes.

Figure 5.2: Abstract introduction

45

The introduction container serves a dual purpose in the context of this

thesis. First, it enables the aspects (i.e., both static and dynamic

crosscutting behaviours) to be reused in different contexts; second, it

helps in identifying the classes to which the crosscutting behaviours of

an aspect should be applied. The introduction container can either be a

class or an interface in AspectJ. A class would not be an appropriate

introduction container for our purpose because multiple-inheritance is not

supported in Java and an aspect might rely on the functionalities of

several other aspects. In addition, a class cannot be an ancestor to an

interface. Consequently, interfaces are used as the introduction container

for each of the aspects in this thesis.

I associate a dummy interface to each of the aspects identified in

the case study. For instance, the interface IShared is associated to the

aspect Shared, IAutoRecoverable is associated to AutoRecoverable and so

on. Each aspect is then implemented to apply its functionality to all the

classes that implements its associated interface (e.g., the Shared

aspect is applied to all classes that implements the IShared interface).

Aspect-to-class binding is typically achieved through the declare parents

construct of AspectJ (figure 5.3) but explicit support for inter-aspect

configurability is not yet supported. Inter-aspect configurability was

achieved by having the associated interface of an aspect implement

the interfaces of the aspects it depends on. For instance, inter-aspect

configurability was achieved in the AutoRecoverable aspect by having

IAutoRecoverable implement IAccessClassified, IRecoverable, (as

demonstrated figure 5.4).

Figure 5.3: Aspect-to-class binding

46

Figure 5.4: Inter-aspect configurability

Figure 5.3 brands the Account class as IShared; hence, the crosscutting

behaviours of the Shared aspect would be applied to all the objects of

the Account class at runtime. Figure 5.4 expresses the need of the

AutoRecoverable aspect for the functionalities provided by the

Recoverable and AccessClassified aspects (see section 3.1.9). Hence, an

AutoRecoverable object is by default Recoverable and AccessClassified.

Observe that the use of interfaces in achieving aspect-to-class binding

and inter-aspect configurability satisfies the oblivious property as

suggested in [21] – developers do not have to modify their systems to

accommodate these aspects and the base application is completely

ignorant of their existence.

5.3 Implementing the ACID Framework

I discuss and critique the implementations of each of the aspects

identified in the case study in this section. Encountered AspectJ

limitations are also highlighted but will be addressed in detail in

chapter 6.

Be reminded that an object in an AspectJ environment has three

types of methods: those inherited from super-classes and super-

interfaces, those declared by the class, and those introduced through

direct or indirect introductions (as opposed to just inherited and declared

methods in Java). The same is true for data members. An AOP

transaction framework must therefore recognize this new dimension

and handle it accordingly. These implementations also assume that the

interactions between the transaction framework and the transactional

47

objects occur through well-defined public interfaces. Consequently, the

enforcement of the ACID properties of transactions is addressed only

at this level.

5.3.1 AccessClassified

Summary of functionality

• This aspect classifies every public method (inherited, declared,

introduced) of an object as either a read, a write or an update

operation.

Implementation

Option-1: Implementation

The effectiveness of an ACID transactional framework is conditional on

its ability to accurately identify the access type of the operations of a

transactional object. An unnoticeable erroneous classification might

place the system in an inconsistent state - with potential costly

consequences. An ideal solution would therefore involve an automation

of the method classification process instead of relying on developers.

 An automated solution would have to anticipate all field

references within the control flow of a given operation and classify the

operation accordingly. An operation with only get field references in its

control flow would be classified as a read, an operation with only set

field references in its control flow would be classified as a write, and an

operation with both get and set field references in its control flow would

be classified as an update.

 AspectJ provides two pointcuts for capturing get and set field

references: get(FieldPattern) and set(FieldPattern). Figure 5.5 illustrates

how these pointcuts can be used in automating the operation

classification process.

48

Figure 5.5: Automatic classification of operations

The get and set pointcuts for capturing field references on

IAutoAccessClassified objects are defined on lines 5 and 6 respectively,

line 7 defines a pointcut for capturing public calls to

IAutoAccessClassified objects. The around advice (lines 9 to 21)

intercepts and classifies all field references in the control flow of the

current executing public operation with target IAutoAccessClassified. The

getMethodName(thisJoinPoint.toString()) function is a helper method for

obtaining the name of the current executing method from the

49

thisJoinPoint aspect variable. Observe that there is no proceed()

statement in either of the around advices (i.e., the captured join points

are not executed). The after advice (lines 23 to 31) then determines

the access type of the operation based on the kinds of field references

in its control flow and stores this information in a HashMap. The

getAccessKind(String methodName) method (lines 33 to 35) returns the

access type of the method with name methodName on the

IAutoAccessClassified object.

Option-1: Discussion

Although this implementation successfully automates the operation

classification process, it has four significant drawbacks. First, every

operation must be executed twice (although invoked only once by the

developer): the first time to determine its access type (classification

phase) and the second time, to actually execute the operation by

reflection (execution phase). Additional aspects are obviously required to

mask this complexity from the developer. Theoretically, the execution

time of an operation would double the first time it is executed in the

presence of automatic classification.

Secondly, conditional state modification statements (e.g., set

field references within an if-statement) within an operation may not be

executed the first time it executes. This implies that an update

operation may be erroneously classified as a read operation. There is

therefore the potential of corrupting the state of an object since

subsequent requests for an operation’s access type is obtained from

the hash map.

Thirdly, the field reference pointcuts (lines 5 and 6) captures

accesses to the fields of transactional objects only. This implies that

set field references on non-transactional objects in the control flow of

50

transactional operations will always be executed twice - during the

classification phase and the execution phase – putting the system in an

inconsistent state. Our implementation assumes that transactional

operations do not access non-transactional objects.

Finally, this solution relies on the if(Boolean) pointcut (lines 11, 18

and 24) to avoid classifying an operation every time it is invoked. That

is, operations are only classified once and their access type

subsequently obtained from the HashMap. This implies that an

operation call will always be intercepted by the pointcuts but not

necessarily classified. The performance overhead introduced by the

if(Boolean) pointcut cannot be significantly reduced at runtime since

AspectJ does not currently support runtime disabling and re-enabling

of pointcuts (AspectJ limitation). Ideally, all the pointcuts of the

AutoAccessClassified aspect should be disabled as soon as the access

type of all the public operations is known. The performance overhead

introduced by this deficiency, combined with the need for dual

operation execution might outweigh the benefits of automatic

classification.

The runtime performance overhead may be significantly reduced

or even eliminated if the classification process is performed at compile-

time. Some AOP compilers already support the identification of get and

set field references in the control flow of a method at compile-time.

Such compilers may therefore be optimized to use this information in

classifying and annotating the methods of a class with metadata at

compile-time. However, this is out of the scope of this thesis.

51

Option-2: Implementation

This option places the burden of classifying the operations of a

transactional object on the developer. Developers are required to

classify every public method (inherited, declared, introduced) of a

transactional object as either a read, a write or an update using the

marker annotations introduced in section 4.1. The AccessClassified

aspect (figure 5.6) introduces a method (getAccessType(String

methodName)) to every IAccessClassified object that examines these

annotations by reflection at runtime and classify each operation

accordingly.

Line 8 obtains all the methods (inherited, declared, introduced)

of the object, lines 9 to 18 determines the annotation type associated

with the method of interest using the Method.isAnnotationPresent(..)

method of the Java reflection framework.

Figure 5.6: Manual classification of operations

52

AspectJ currently supports direct introduction of annotated methods

(i.e., @Read int Account.getAccountID()) into a target class. These

methods will therefore be appropriately classified. However, Indirect

introduction of annotated methods (i.e., introducing @Read int

getAccountID() into the interface IExample - @Read int

IExample.getAccountID() - and later binding the Account class to

IExample as illustrated in section 5.2) into a target class is not yet

supported in AspectJ. That is, the getAccountID() method will be

introduced into the target interface (IExample) without the annotation

(@Read) and later bound to the target application (Account) without

the annotation (AspectJ limitation). The framework must therefore

make worst-case assumptions (line 16) when such methods are

encountered to ensure system consistency.

Option-2: Discussion

This option also has two significant drawbacks. First, its reliance on the

developer in classifying the methods of transactional objects is a time

bomb with potential costly consequences. Also, developers may ignore

or forget to classify the methods of transactional objects, resulting in a

system where all the operations are considered conflicting. This may

greatly affect the performance of such a system. Second, observer

operations introduced by indirect introduction are by default classified as

modifiers – another performance concern.

Ideally, the correctness of the classification should be verified at

compile time and the appropriate warning/error message emitted. For

instance, there shouldn’t be any set field references in the control flow

of a method annotated as read. This cannot be accomplished with the

declare error and declare warning constructs of AspectJ because the cflow()

pointcut is not statically determinable. Our ideal AOP tool should

provide a pointcut that supports such functionality at compile-time.

53

5.3.2 Named

Summary of functionality

• Every object creation operation must associate a unique name to

the object that is created.

• Every named object knows its name and it should be possible to

retrieve an object given its name.

• An object’s name must remain unchanged throughout its

lifetime.

Implementation

Figure 5.7: Implementation of the Named aspect

54

Figure 5.7 illustrates a possible implementation of the Named aspect.

Line 7 introduces a private field named myName into the object that

the aspect is applied to, line 8 introduces a public method

(getMyName()) for retrieving the object’s name, and line 9 introduces a

private method (setMyName(String)) for setting the object’s name. The

private method setMyName(String) is accessible only within this aspect

(i.e., it cannot be accessed even by the base application to which the

aspect is bound). Hence, once initialized, the object’s name cannot be

changed.

 The pointcut for picking out the constructor execution of an

INamed object is defined on lines 11 to 12, and lines 14 to 20 defines

an after advice for setting the object’s name. The object’s name is the

fully qualified name the class name (i.e., the full package path) plus a

unique ID (line 15) and therefore unique. Lines 22 to 30 defines a

method (getObject()) for retrieving an object given its name.

Discussion

As demonstrated, reusable implementations may require the

introduction of additional information (data members and methods)

into their target classes to facilitate their functionality. With several

aspects in a system, there is the possibility of introducing methods or

fields with the same name into the target class - resulting in naming

conflicts. An alternative implementation is to keep the additional

information within the aspect and associate an instance of the aspect

state to every instance of an INamed object. This sounds good, except

that the aspect-to-object association must occur at a captured join

point but purely static crosscutting aspects (such as the manual

AccessClassified aspect – figure 5.6) do not contain join points.

Consequently, the name conflict issue is unavoidable (AspectJ

limitation).

55

Another deficiency worth nothing is the inability of the set pointcut of

AspectJ in capturing reflective field references; hence, reflective

changes of an object’s name cannot be prevented. Why not just

declare the name field final to prevent reflective changes – you ask?

First, because a final field can only be initialized within a constructor

and the constructor execution pointcut (lines 10 to 11) does not satisfy

this requirement even though its join point occurs within the body of

the constructor (see section 4.2.1). Secondly, indirect initialization of a

final field using a set-field method from within an advice that picks out

a constructor execution (such as in lines 13 to 17) is also not feasible.

5.3.3 Copyable

Summary of functionality

• An ICopyable object is Cloneable, i.e., this aspect enables an

object to create an identical copy of itself.

• An ICopyable object can also replace its state with that of

another object of the same class.

Implementation

The Copyable aspect (figure 5.8) introduces static crosscutting

behaviours to all classes that implement the ICopyable interface to

facilitate the state replacement and cloning functionality. Line 3

enables all classes that implement the ICopyable interface to be

Cloneable. Lines 11 to 29 present one possible implementation of the

clone method. This implementation requires the target class (including

its composed classes) to be serializable so as to support deep cloning.

The decision of whether to support deep or shallow cloning of an object’s

state is application dependent - each having its strengths and

weaknesses - and certainly not an AspectJ issue. This cloning strategy

is therefore intended just for demonstration purposes. Developers can

56

seamlessly override this cloning implementation by providing a custom

clone() implementation within classes that implement the ICopyable

interface.

Figure 5.8: Implementation of the Copyable aspect – Part I

Lines 5 to 9 provide the method (replaceState(Object)) for replacing the

state of one object with that of another object of the same class. The

copyFields(this, source) method – figure 5.9 - performs a field-by-field

copy of the state (inherited, declared, introduced and those of composed

objects) of the source object to the invoking object.

57

Figure 5.9: Implementation of the Copyable aspect – Part II

Discussion

Fields declared as final cannot be replaced - even by reflection. The

state replacement method cannot therefore replace the value of a final

field. This implementation also detects the presence of the Named

aspect to avoid modifying the identity (Constants.OBJECT_NAME – line

59) of an INamed object.

58

5.3.4 Shared

Summary of functionality

• This aspect obligates a transaction to obtain a read, write, or an

update lock before executing a method (inherited, declared and

introduced) of an IShared object.

• Previously acquired locks are released when returning from the

method invocation.

Implementation

The implementation of the Shared aspect is presented in figure 5.10.

The Shared aspect expresses its need for the functionality provided by

AccessClassified on line 3, lines 6 to 7 introduce the static crosscutting

behaviours for synchronizing access to an object’s state, and lines 10

to 12 introduce fields and methods for supporting runtime enabling or

disabling of advices on a per-object basis (e.g., for disabling the

Shared advice on the objects in the history of committed states). This

aspect relies on AccessClassified to distinguish observer operations from

modifier operations.

The around advice (lines 17 to 37) obligates every thread

executing an operation (with the exception of static methods because

they do not have a this reference) on a Shared object to acquire the

appropriate lock (lines 21 to 31) before proceeding (line 32). The

previously acquired lock is then released (lines 34 to 35) after the

operation is executed. A well-known problem with lock-based solutions

is the possibility of deadlock. For instance, deadlock can occur in this

implementation if a thread with a read lock on an object wants to

execute another method on the same object that requires a write lock

without releasing its read lock. This implementation allows a thread to

upgrade its lock in such instances in a deadlock-free manner (the code

has been edited out for clarity).

59

Figure 5.10: Implementation of the Shared aspect

Discussion

This implementation has three significant drawbacks. First, as

explained in section 3.2.2 (Multi-version lock based concurrency

control), there is no need of the Shared aspect on objects that are

accessed only by observer operations. At best, AspectJ supports only

the disabling of advices through the if(BooleanExpression) pointcut (line

18). This implies that the target-joinpoint (lines 14 to 15) will always be

60

intercepted but the execution of its associated advice is conditional on

the value of BooleanExpression. Consequently, every operation call to

the objects in the history of committed states will unnecessarily be

intercepted - incurring an unnecessary performance overhead (AspectJ

limitation). Disabling the pointcut(s) that intercept target-joinpoint(s)

would eliminate the unnecessary interception of operation calls. Our

ideal AOP tool should therefore provide support for runtime disabling

and re-enabling of pointcuts so as to optimize system performance.

Secondly, a method call pointcut does not capture reflective calls

to operations on Shared objects, making it impossible to detect and

prevent the concurrent execution of conflicting operations. This is a

deliberate decision made by the AspectJ team not to “delve into the Java

reflection library to implement call semantics” [9]. Developers are advised to

use the method execution pointcut (execution(public * IShared+.*(..)))

instead. The method execution pointcut on the other hand does not

pick out the execution (reflective or non-reflective) of non-overridden

inherited methods when the target is the subclass. For instance,

assuming that CheckingAccount is IShared, the execution of

CheckingAccount.getBalance() is not captured by the aforementioned

method execution pointcut; firstly, because the getBalance() method is

not overridden in the CheckingAccount subclass; and secondly, because

the execution join point of getBalance() occurs in the Account super

class. Making the super class (i.e., Account) IShared would solve the

problem but at the expense of obligating all its subclasses (e.g.,

SavingAccount) to also be IShared. Composing call(public * IShared+.*(..)))

and execution(public * IShared+.*(..))) with an OR operator is also not a

feasible solution because reflective invocations of getBalance() will not

be captured. Developers must therefore decide between exploiting the

benefits of inheritance (i.e., by not unnecessarily overriding inherited

61

implementations) or capturing reflective method executions but not

both (Reflection/Super-class method execution dilemma) – AspectJ limitation.

 Finally, transactional objects by nature assume multiple roles as

they move through the execution of a transaction. For instance, if the

SavingAccount class implements both ICopyable and IShared, then

SavingAccount objects would be treated as ICopyable from the

perspective of the Copyable aspect and as IShared from the perspective

of the Shared aspect. However, the Shared aspect must intercept every

public method call (inherited, declared and introduced) on a SavingAccount

object; including those introduced by Copyable (i.e., replaceState() and

clone()). It is logical to assume that the call and execution of

SavingAccount.replaceState() would be captured by both (call(public *

IShared+.*(..))) and (execution(public * IShared+.*(..))) respectively since the

method replaceState() was actually introduced into the SavingAccount

class. This is however not the case because AspectJ associates the call

and execution join point of replaceState() with ICopyable, instead of

SavingAccount (Weak aspect-to-class binding). Therefore, there is the

possibility of cloning or replacing the state of a Shared object while it is

being modified by a concurrent transaction. The use of indirect

introduction as a means for providing default interface implementation

although effective, is therefore not equivalent to its Java counterpart

(i.e., implementing the methods inherited from super interfaces within

the subclasses) that actually associates these join points with

SavingAccount – AspectJ limitation.

62

5.3.5 Serializeable

Summary of functionality

• An ISerializeable object knows how to write its state (declared,

inherited and introduced) to a backend, restore its state by

reading it from the backend and create a new object - initialized

with the state read from the backend.

Implementation

The implementation of the Serializeable aspect is presented in figure

5.11. As with Copyable, this aspect introduces only static crosscutting

behaviours into the target class to support the desired functionality.

The backend in this case is an OutputStream and it is assumed that the

object is serializable (i.e., implements java.io.Serializable) – line 3. As

before, this is not an AspectJ issue and this implementation is intended

just for demonstration purposes.

The Serializeable aspect expresses its need for the functionality

provided by the Copyable aspects on line 3. The Copyable aspect is

required for replacing the state of an object with its backend state.

Lines 6 to 13 introduce the method (serialize(..)) for writing an object’s

state to an OutputStream, lines 16 to 18 introduce the method

(deserialize(..)) for restoring an object’s state from the backend, and

lines 21 to 33 introduces the method (createObject(..)) for creating a

new object from a previously saved state. This implementation expects

each transaction to specify a unique OutputStream for serializing its

perspective of the state of a transactional object.

63

Figure 5.11: Implementation of the Serializeable aspect

Discussion

An ideal Serializeable aspect should support multiple backend

representation formats (e.g., a database, a file or remote machine)

and a mechanism for selecting a desired format. It is my opinion that

an implementation of such an aspect will not reveal any additional

AspectJ limitation. Consequently, my implementation of the

Serializeable aspect is limited to OutputStream only.

64

5.3.6 Versioned

Summary of functionality

• Versioned encapsulates multiple versions of the state of an

IVersioned object; with one version designated as the main

version.

• Versioned objects are linked to the views of transactions (i.e.,

each transaction has its own perspective of a transactional

object).

• A method invocation on a transactional object is directed either

to the version in the view of the invoking transaction (if the

calling transaction has joined a specific view) or the main version

of the target object.

• Versioned also provides operations for managing transaction

views and the versions of an object.

Implementation

Part I of the Versioned aspect implementation is presented in figure

5.12. The functionalities provided by the Named and Copyable aspects

are requested on line 3. Copyable is required for duplicating the state

of an object, Named is required for uniquely identifying an object.

InheritableThreadLocal (line 5) is used for assigning views to

threads (i.e., transactions). Lines 21 to 33 provides the methods for

creating a new view (View newView()), joining an existing view

(joinView(View)) and destroying the view of a thread (deleteView()). The

constructor execution of a Versioned object is captured at line 12 and

the version ID initialized with an after advice (lines 15 to 19). By

default, objects created with the constructor are considered the main

version.

65

Figure 5.12: Implementation of Versioned – Part I

Part II of the Versioned aspect implementation is presented in figure

5.13. Besides being the main version (MVObject), MVObject also serves as

a handle to all the other versions of an object. The method call poincut

(lines 40 to 41) captures calls to MVObject and the around advice (lines

43 to 59) is used for determining the appropriate version of the object

on which to execute the operation. The version of the object in the

View of the calling transaction is used, if one exist (lines 47 to 49);

otherwise, the operation is executed on the main version (lines 50 to

52). Once determined, the framework executes the operation by

66

reflection (lines 54 to 59) on the target version of the object. The use

of the around advice is critical to the Versioned aspect implementation.

This is because the captured join point always occurs on the main

version but the target-version of the operation might be different;

hence, the intercepted join point must be bypassed (by omitting the

proceed() statement).

Figure 5.13: Implementation of Versioned – Part II

67

The code on lines 61 to 71 provides a method (setCurrentVersion(…))

for modifying the current version of an object associated with the view

of a given thread.

Figure 5.14: Implementation of Versioned – Part III

Part III (figure 5.14) of this implementation provides additional static

crosscutting behaviours required by the Versioned aspect. The method

for querying the current version of an object associated with the view

a given thread is presented on lines 74 to 79 (getCurrentVersion(…)).

The code on lines 81 to 98 provides methods for creating a new

version of an object (Version newVersion()), and for designating a given

version of an object as the main version (setToMainVersion()).

68

Discussion

There is the danger of infinite recursion in this implementation since

Versioned has to intercept method invocations on Versioned objects (the

call phase), and then execute the methods by reflection on the

appropriate version (the execution phase). The inability of the call

poincut (lines 40 to 41 – figure 5.12) in picking out reflective calls or

executions has proven beneficial in this context. It picks out the call

phase but not the execution phase of a method invocation, eluding

infinite recursion. The execution pointcut (execution(public *

IVersioned+.*(..))), if used on its own will result in infinite recursion since

both the call phase and the execution phase of a method invocation will be

captured. However, the net effect of composing the method execution

join point with cflow() and adviceexecution() (producing execution(public *

IVersioned+.*(..)) && !cflow(adviceexecution())) is equivalent to the call

pointcut.

This implementation shares two of the three drawbacks

discussed in section 5.3.4 (Shared), namely: Weak aspect-to-class

binding and Reflection/Super-class method execution dilemma. The former,

because the calls or executions of indirectly introduced methods on

Versioned objects cannot be captured; hence, such methods will not be

executed on the correct version of the object. The later, because

reflective calls or execution of non-overridden inherited methods are

also not intercepted, incurring similar ramifications as the former

deficiency.

69

5.3.7 Tracked

Summary of functionality

• Provides operations for defining a zone (in the execution of a

thread) in which object accesses are monitored.

• Objects accessed within the defined zone are divided into three

categories: read, written-to and updated.

• Provides operations for requesting the set of objects read,

written-to or updated by a transaction.

Implementation

Figure 5.15 presents the first half of the implementation of the Tracked

aspect. The Tracked aspect depends on AccessClassified (line 4) for

distinguishing between observer and modified operations, and on Named,

to avoid tracking different copies of the same transactional object.

InheritableThreadLocal (line 6) is used for designating the track zone of a

thread. Track zones are requested by executing the aspect method

beginTrackZone() - lines 8 to 13.

 The poincut for capturing accesses to Tracked objects is defined

on lines 14 to 15. The after advice (lines 17 to 38) places the target

object in the appropriate category with the assistance received from

the AccessClassified aspect (lines 19 to 20). This categorization is

performed only for threads with an existing track zone (line 18).

70

Figure 5.15: Implementation of Tracked – Part I

The second half of the implementation of the Tracked aspect is

presented in figure 5.16. The code on lines 58 to 71 provides

operations for requesting the set of objects read (getReadObjects())

written-to (getWriteObjects()) or updated (getUpdatedObjects()) by a

transaction. The operations for managing track zones are presented on

lines 42 to 56. A thread can end its track zone (endTrackedZone()),

join an existing track zone (joinTrackedZone()), leave a track zone

71

(leaveTrackedZone()), and request a reference to its track zone

(getMyTrackedZone()).

Figure 5.16: Implementation of Tracked – Part II

Discussion

This implementation shares two of the three drawbacks discussed in

section 5.3.4 (Shared), namely: Weak aspect-to-class binding (because

the calls or executions of indirectly introduced methods on Tracked

objects cannot be tracked) and Reflection/Super-class method execution

72

dilemma (because reflective calls or execution of non-overridden

inherited methods cannot be tracked). The ramifications of these

deficiencies may be costly; for example, state changes executed on

transactional objects by indirectly introduced or non-overridden

inherited methods cannot be undone in the event of a transaction

abort.

5.3.8 Recoverable

Summary of functionality

• An IRecoverable object knows how to take a snapshot of its

state (i.e., establish a checkpoint), restore its state from a

previously established checkpoint, discard a checkpoint and

switch its update strategy to either in-place or deferred update.

Implementation

Figure 5.17 presents the first part of the implementation of the

Recoverable aspect. The functionality provided by the Versioned aspect

is requested on line 3. Recoverable relies on Versioned for creating a

new version of an object (line 9). Line 4 introduces a variable for

assigning the update strategy of an object. Lines 6 to 33 of this code

introduces a method (int establishCheckpoint()) for establishing a

checkpoint of an object. The return value of this method provides a

handle to the established checkpoint.

After creating a new version of an object (line 9), Recoverable

has to determine whether this new version should be assigned to the

View of the invoking transaction or not based on the current update

strategy. If the current update strategy is deferred (lines 13 to 17),

then the version of the object visible to the invoking transaction (i.e.,

in its View) is changed to the version of the newly created object (line

73

15). This results in a unique local copy of an object per transaction for

the deferred update strategy (see section 3.2.3). If the current update

strategy is in-place (lines 18 to 22), then the version of the object

visible to the invoking transaction (i.e., in its View) continues to be the

main version (line 20).

Figure 5.17: Implementation of Recoverable – Part I

74

Figure 5.18: Implementation of Recoverable – Part II

Figure 5.18 presents the second half of the implementation of the

Recoverable aspect. Lines 39 to 52 introduces the method

(restoreCheckpoint(CheckpointID)) for restoring an object’s state to a

previously established checkpoint. The input parameter of this method

is the checkpoint ID of a previously establish checkpoint. Restoring a

checkpoint simply involves changing the version of the object in the

View of the invoking transaction to the checkpoint ID of a previously

establish checkpoint (line 46). The method for discarding a checkpoint

is introduced on lines 54 to 56 (discardCheckpoint(checkpointID)), and lines

58 to 60 introduces the method for switching between update

strategies (setDeferred(Boolean)).

75

Discussion

The Recoverable aspect provides a versatile implementation for undoing

state changes on a transactional object. It supports multiple

checkpoints of the state of an object and multiple rollbacks to any of

the previous established checkpoints.

5.3.9 AutoRecoverable
Summary of functionality

• This aspect provides operations for delimiting and managing

recoverable zones (in the execution of a thread) in which object

accesses are monitored.

• A checkpoint is automatically established the first time an

IAutoRecoverable object is modified within the defined zone.

Implementation

The implementation of the AutoRecoverable aspect is presented in figure

5.19. This aspect relies on AccessClassified in distinguishing modifier

operations from observer operations (line 4), and on Recoverable in

establishing and rolling back checkpoints (line 4). InheritableThreadLocal

(line 5) is once more used for designating the recoverable zone of a

thread. Recoverable zones are requested by executing the aspect

method beginRecoverableZone(View) - lines 23 to 29.

 The poincut for intercepting operation calls to AutoRecoverable

objects is presented on lines 7 to 8. The before advice (lines 10 to 21)

is executed only if the current executing thread had previously defined

a recoverable zone (line 11). The access type of the operation is

determined (lines 12 - 13), and a checkpoint established for the target

object if the operation is a modifier (lines 15 - 21) and a checkpoint has

not been previously established for this object (line 17).

76

Figure 5.19: Implementation of AutoRecoverable

 The methods for managing recoverable zones are presented on lines

30 to 38 of the implementation. A thread can end its recoverable zone

(endRecoverableZone()), join an existing recoverable zone

(joinRecoverableZone()), or leave a previously joined recoverable zone

(leaveRecoverableZone()).

77

Discussion

This implementation also shares two of the three drawbacks discussed

in section 5.3.4 (Shared): Weak aspect-to-class binding (because the

calls or executions of indirectly introduced methods on an

IAutoRecoverable object cannot be captured and check-pointed) and

Reflection/Super-class method execution dilemma (because reflective calls

or execution of non-overridden inherited methods cannot be not

captured). The ramifications of these deficiencies may also be costly;

for instance, state changes executed on transactional objects by

indirectly introduced or non-overridden inherited methods cannot be

rolled-back by Recoverable in the event of a transaction abort.

5.3.10 LockBased
Summary of functionality

• This aspect provides support for pessimistic lock-based

concurrency control with in-place update.

• The appropriate transactional lock (Read, Write or Update) must

be acquired before invoking an operation on a LockBased object.

• Unlike Shared, transactional locks are released only after the

outcome of the transaction is known.

Implementation

Figure 5.20 presents the first part of the implementation of the

LockBased aspect. LockBased (lines 3 to 4) relies on AccessClassified (in

distinguishing between Read, Write and Update operations), Shared (in

preventing threads within a transaction from currently modify an

object’s state), AutoRecoverable (in facilitating the undo functionality -

in event of a transaction abort) and Tracked (in order to remember to

release the previously acquired transactional locks upon a transaction

commit or abort).

78

Figure 5.20: Implementation of LockBased aspect – Part I

The execution order of these aspects is crucial. An unspecified

precedence may not produce the desired result and has the risk of

becoming deadlocked. For instance, one transaction might have the

transactional lock of an object and need the mutual exclusion Shared

lock whereas another transaction has the mutual exclusion Shared lock

of the same object and is waiting for the transactional lock. The

desired execution order in this case is: LockBased, AutoRecoverable,

Tracked, Versioned and Shared (line 6) because the update strategy has

to be set to in-place by LockBased before AutoRecoverable executes, the

object is then Tracked, the operation directed to the main version by

79

Versioned, and mutual exclusion to the state of the object ensured by

Shared.

 The field and method necessary to support transactional locks

are introduced on lines 8 to 9. The pointcut for intercepting calls to

LockBased objects is presented on lines 11 to 12. The before advice

(lines 14 to 32) forces a transaction to obtain the appropriate

transactional lock on a LockBased object, sets the update strategy to in-

place (line 31) before permitting the execution of an operation.

AccessClassified is used in determining the type of transactional lock

associated with a given operation (lines 15 to 16).

Figure 5.21: Implementation of LockBased aspect – Part II

80

The second part of the LockBased aspect implementation shows how

previously acquired transactional locks are released (figure 5.21).

Unlike Shared, LockBased holds onto the transactional locks until the

outcome of the transaction is known. One of two global methods

(commitLockBased() or abortLockBased()) can be used in signalling

the outcome of a transaction. The pointcut for intercepting calls to

these methods is presented on lines 45 to 47. The after advice (lines

49 to 72) then releases the acquired transactional locks with the

assistance of Tracked. Tracked provides LockBased with the set of

objects Read (line 52), Written-to (line 59), or updated (line 66).

These objects are down-casted to ILockBased (lines 54, 61 and 68)

before releasing the previously acquired locks.

Discussion

The LockBased aspect also has two of the three drawbacks discussed in

section 5.3.4 (Shared), namely: Weak aspect-to-class binding (because

the calls or executions of indirectly introduced methods on an

ILockBased object cannot be captured; consequently, cannot be forced

to obtain transactional locks) and Reflection/Super-class method execution

dilemma (because reflective calls or executions of non-overridden

inherited methods cannot also be forced to obtain transactional locks).

As a result, the state consistency of ILockBased objects cannot be

absolutely guaranteed.

5.3.11 Multi-Version LockBased
Summary of functionality

• This aspect provides support for pessimistic Multi-Version Lock-

Based concurrency control with in-place update.

• It encapsulates two sets of states per transactional object: a

history of committed states (HCS) and the main version.

81

• Write and Update operations are executed on the main version

and must acquire the appropriate transactional lock before

invoking an operation on the object.

• Read operations are executed on the appropriate objects in the

HCS; therefore, they do not have to acquire either Shared locks

or transactional locks.

Implementation

Figure 5.22: Implementation of Multi-Version LockBased – Part I

82

Figure 5.22 presents the first half of the implementation of this aspect.

The declare parents (lines 4 to 5) and declare precedence (line 6)

statements of this implementation are the same as in the LockBased

aspect for similar reasons. Write and Update operations are also treated

similarly – they must acquire the associated transactional locks on the

main version and set the update strategy to in-place before executing

(lines 21-25, 19 respectively).

Figure 5.23: Implementation of Multi-Version LockBased – Part II

83

The transaction commit phase of a Multi-Version object is handled

differently (Figure 5.23). Multi-Version relies on Tracked in identifying

the objects modified by the committing transaction. The sets of objects

written-to and updated are obtained on lines 47 and 58 respectively.

The state of each modified object is duplicated (lines 50-51, 62-63),

annotated with a commit timestamp (lines 52, 64) and added to the

HCS (lines 53,65) before releasing the previously acquired locks (lines

55-56, 68-69).

Read-only transactions are handled differently. They do not have

to acquire transactional locks before proceeding because they are

executed on the objects in the HCS. As discussed above, each object

in the HCS has a timestamp during which its state was valid.

Consequently, read-only transactions must also be assigned creation

timestamps to determine the objects in the HCS on which they should

be executed (lines 72 to 76 - figure 5.22). Upon the interception of a

read-only transaction (lines 26 to 38 – figure 5.21), Multi-Version looks

through the HCS to determine the object on which to execute the

operation. The creation timestamp of the transaction is obtained on

line 18, lines 28 to 35 searches for a version of the target object (i.e.,

versionID) in the history of committed states with the highest

timestamp that is lower than the timestamp of the read-only transaction

and line 37 assigns this versionID to the view of the invoking

transaction using Versioned.setCurrentVersion(ObjectName, versionID).

Discussion

Populating the HCS only at transaction commit time insinuates that

read-only transactions on a transactional object must be preceded by at

least one write or update transaction. This is not necessarily the case

in practice; several read-only transactions may be executed on an

84

object before a Write or an Update. To accommodate this, an after

advice (lines 12 to 16 – figure 5.21) intercepts the creation of every

Multi-version object, duplicates its state (line 13), annotates the

duplicated state with a commit timestamp (line 14) and adds it to the

HCS (line 15).

This implementation has three drawbacks. First, the objects in

the HCS are accessed exclusively by read-only operations. Read-only

operations do not conflict; hence the functionality of Shared is not

necessary for the objects in the HCS. The Shared aspect should

therefore be disabled on these objects so as to optimize system

performance. As explained before, AspectJ does not support runtime

disabling and re-enabling of pointcuts and the if(Boolean) pointcut at

best, disables only an advice.

The second limitation of this implementation is the well-

discussed Weak aspect-to-class binding. Method calls or executions of

indirectly introduced methods on a Multi-Version object cannot be

captured. Lastly, this implementation cannot capture reflective calls or

executions of non-overridden inherited methods (Reflection/Super-class

method execution dilemma). The ramifications of these deficiencies are

the same as in the LockBased aspect.

5.3.12 Optimistic
Summary of functionality

• This aspect provides support for optimistic concurrency control

with deferred update and backward validation.

• Each concurrent modifier transaction works on a local copy of

the state of a transactional object.

• The modifications on the local copies are made global upon

successful transaction validation.

85

Implementation

The first part of the implementation of the Optimistic aspect is

presented in figure 5.24. This aspect relies on AccessClassified (in

distinguishing between Read, Write and Update operations), Shared (in

preventing threads within a transaction from currently modify an

object’s state), AutoRecoverable (in creating local copies of the state of

a transactional object), and Tracked (in identifying the transactional

objects modified by a given transaction) - lines 4 to 5. The desired

execution order of these aspects is specified on line 7 (i.e., Optimistic,

AutoRecoverable, Tracked, Versioned, Shared,). The update strategy has

to be set to deferred by Optimistic before AutoRecoverable executes;

otherwise, a local version wouldn’t be created in time for the

transaction and the operation will mistakenly be executed on the main

version. The object is then Tracked, the operation directed to the

appropriate local object by Versioned, and mutual exclusion to the state

of the object ensured by Shared.

The static crosscutting behaviours (fields and methods)

necessary to the support the Optimistic aspect are presented on lines 9

to 11. The poincut for capturing calls to an Optimistic object is defined

on lines 14 to 15. The before advice (lines 17 to 24) sets the update

strategy to deferred for Write and Update operations. This signals

AutoRecoverable to create a local copy of the transactional object state

for the current executing transaction. This process is repeated for each

concurrently executing transaction, giving rise to multiple

uncommitted versions of the transactional object. The update strategy

for read-only transactions is in-place - by default. This means that

read-only transactions are always executed on the main version (that

holds the committed states) of a transactional object.

86

Modifier operations executed on Optimistic transactional objects must be

validated before the changes are committed (i.e., becomes global).

Transactions signal their need for validation by invoking the global

method: commitOptimisticTransaction(). The pointcut on lines 25 to 26

intercepts the request for transaction commit, and the before advice

(lines 28 to 34) validates the committing transaction (line 29) and

commits the changes upon a successful validation (line 30).

Figure 5.24: Implementation of Optimistic – Part I

87

Figure 5.25: Implementation of Optimistic – Part II

Figure 5.25 presents a stripped-down version of the implementation of

the validation and writes phases of a transaction. Using Tracked, the

validation phase (lines 42 to 60) first obtains the set of objects modified

by all transactions (excluding the validating transaction) between

Tbegin (i.e., the start time of the transaction) and Tend (i.e.,

timestamp of the most recently committed transaction) – lines 47 to

53. Validation is successful if the intersection set between the

aforementioned set of modified objects and the set of objects modified

88

by the validating transaction (Track.getModifiedObject()) is empty;

otherwise, validation is unsuccessful – lines 55 to 59. The write phase

(lines 62 to 75) assigns a commit timestamp to each of the local

versions of the committing transaction before making these versions

the main versions of the respective objects.

Discussion

The Optimistic aspect suffers from Weak aspect-to-class binding and

Reflection/Super-class method execution dilemma.

89

Chapter 6 ~ Encountered AspectJ Limitations and Possible
Improvements

In chapter 5, I discussed the implementation of the aspects proposed

in the case study and highlighted the encountered AspectJ limitations.

This chapter provides an in-depth discussion of these limitations,

possible work-around solutions (where possible), and potential

improvements to the AspectJ language features (where appropriate).

6.1 Lack of support for runtime disabling and re-enabling of pointcuts
Limitation

Aspects are statically deployed in AspectJ; i.e., the crosscutting

behaviours specified in the aspects become effective in the base

applications once they are woven together and these crosscutting

behaviours cannot be altered at runtime. For instance, assuming that

the Account class is IShared and we have an Account object

(AccountObject) that is accessed only by observer operations (such as in

the history of committed states – section 3.2.2), the Shared aspect

would unnecessarily obligate these operations to obtain a read lock on

AccountObject before proceeding even though these operations do not

conflict. Ideally, we should be able to disable the Shared aspect of

Account objects that are accessed only by observer operations so as to

maximize system performance. This limitation is not unique to

transaction frameworks. Given that an aspect attached to an object

90

consumes significant system resources, an application server may

want to disable this aspect when the object is cached and re-enable it

upon a request for the object.

 The if(BooleanExpression) pointcut of AspectJ is often promoted as

the construct for achieving runtime disabling and re-enabling of

aspects but this claim is only partially true. This pointcut is typically

used to determine whether the advice(s) to be applied at a target-

joinpoint should be executed. This implies that the target-joinpoint will

always be intercepted but the execution of its associated advice is

conditional on the value of BooleanExpression. Consequently, the

if(BooleanExpression) pointcut can only be used in disabling or enabling

advices not aspects as it is believed. The use of this pointcut in our

case (i.e., on objects in the history of committed states) implies that

read locks are no longer acquired before executing observer operations;

however, every observer operation invoked on AccountObject would still

unnecessarily be intercepted by Shared. The performance overhead

incurred by the execution of an observer operation is therefore

unnecessary increased by the runtime static check. These performance

overheads can easily add up in read-dominant applications.

Possible solution(s)

Ideally, the performance overhead for executing an observer operation

on a Shared Account object in the history of committed states should be

comparable to the performance overhead of executing the same

observer operation on an Account object that does not implement

IShared. To achieve this, AspectJ would have to provide new program

constructs to support runtime disabling and re-enabling of the

pointcuts within an aspect on a per-object basis. This would eliminate

the need for the if(BooleanExpression) pointcut and the performance

91

overhead associated with it since an advice cannot be executed once

its associated pointcut(s) are disabled.

I propose the addition of two static aspect methods:

enablePointcut(PointcutPattern) and disablePointcut(PointcutPattern). The

assumption is that all pointcuts (both named and anonymous) within an

aspect are originally enabled and only named pointcuts can be disabled

or enabled at runtime. The disablePointcut(PointcutPattern) static method

should support runtime disabling of named pointcuts that matches the

pattern PointcutPattern. For instance, the following statement:

Shared.aspectOf(AccountObject).disablePointcut(PointcutPattern) should disable all

the pointcuts with name matching the pattern PointcutPattern within

the instance of the Shared aspect associated with the AccountObject.

That is, the join points that were to be captured by the pointcut(s) of

pattern PointcutPattern in the instance of the Shared aspect associated

with the AccountObject should no longer be intercepted. The static

method enablePointcut(PointcutPattern) should support runtime re-

enabling of previously disabled pointcuts in a similar manner.

6.2 Weak aspect-to-class binding
Limitation

Abstract introduction (also known as indirect introduction) [19, 20] has been

proposed as a strategy for implementing reusable static crosscutting

behaviours that can be used in different contexts. It allows us to

“collect several extrinsic properties from different perspectives within one unit

and defers the binding to existing objects” [19]. As explained in section 5.2,

the target unit (also known as introduction container) can either be a

class or an interface in AspectJ. A Class cannot be effectively used as an

introduction container; firstly, because multiple-inheritance is not

supported in Java and secondly, because a class cannot be an ancestor

92

to an interface. In our case, these extrinsic static crosscutting behaviors

were collected within dummy interfaces (via the inter-type member

introduction concept of AspectJ) and these interfaces were later bind to

application classes using the declare parents construct. For instance,

declaring the Account class as implementing ICopyable introduces two

additional public operations: replaceState(SourceObject) and clone() into

every Account object to support state replacement and cloning

respectively.

 Assuming that the Account class also implements IShared (such as

in LockBased), it is logical to assume that the call and execution of

Account.replaceState(SourceObject) would be captured by the pointcuts

call(public * IShared+.*(..)) and execution(public * IShared+.*(..)) respectively

of the Shared aspect since the method replaceState(SourceObject) was

actually introduced into the Account class and the Account class is

IShared. This is unfortunately not the case because the actual call and

execution join points of the replaceState(SourceObject) method are

call(ICopyable.replaceState(..)) and execution(ICopyable.replaceState(..))

respectively. That is, AspectJ associates the call and the execution join

points of indirectly introduced methods with the introduction container

instead of the application class (Weak aspect-to-class binding). In the

terminology of [20], AspectJ binds the self-reference this of the

indirectly introduced methods to the container type (ICopyable) and not

the target class (Account). Therefore, there is the possibility of cloning

or replacing the state of the Shared Account object through the

indirectly introduced operations (i.e., clone() and replaceState(..)) while it

is being modified by a different concurrent transaction. The use of

indirect introduction as a means for providing default interface

implementation although effective is therefore not equivalent to its

93

Java counterpart (i.e., implementing the methods inherited from super

interfaces within the subclasses).

 The same can be said for other aspects such as AutoRecoverable

and Tracked. Transactional objects by nature assume multiple roles as

they move through the execution of a transaction. For instance, a

LockBased AccountObject would assume the roles of IShared, ICopyable,

IAutoRecoverable and ITracked from the perspective of the corresponding

aspects. It is therefore desirable that the call and execution join points

of the operations (be it declared, inherited or introduced) of a

transactional object be associated with the object instead of the

introduction container so as to effectively enforce the ACID properties of

transactions. It is worth noting that this deficiency is not restricted to

transaction frameworks only. Any aspect-oriented framework that

works at the granularity of methods is a potential victim to the weak

aspect-to-class binding problem.

Possible solution(s)

A crude work-around solution for this problem is to declare the

ICopyable interface as implementing IShared using the declare parents

construct of AspectJ. This would obligate the replaceState(SourceObject)

and clone() methods of the AccountObject to acquire the appropriate lock

from the Shared aspect before executing. A similar work-around

solution can be created for the other aspects (such as Tracked,

AutoRecoverable and Versioned) that share this deficiency. Although this

work-around solution addresses this deficiency, it is too specific to be

generalized (i.e., it is not effectively reusable) and often results in a

complex inheritance hierarchy.

 The Weak aspect-to-class binding problem can be traced back to

the weaving process of indirect introductions in AspectJ. These bindings

94

are performed at method introduction time (i.e., as soon as the

methods are introduced into the dummy interfaces) when the target

classes are not yet known; hence, the association of the self-reference

this with the interfaces instead of the target classes. Although AspectJ

effectively collects these extrinsic static crosscutting behaviours within

an interface, it fails in deferring the bindings of member functions to

the target classes. An ideal solution for this problem would therefore

involve deferring the binding of the self-reference this of indirectly

introduced methods to the time when all the target classes are known.

This would ensure that the call and execution join points of indirectly

introduced methods occur at the target classes and not the

introduction container - interfaces.

The interface construct is inherited from the underlying language

of AspectJ (i.e., Java); hence, modifications to the binding process

may not be backward compatible. This highlights a need for an

AspectJ-specific abstraction that will effectively support the reuse of

static crosscutting behaviours and eliminate the Weak aspect-to-class

binding problem. I propose the addition of a new class-like construct

called a placeholder. As opposed to classes and interfaces, the fields

and methods should not be structurally bound to the placeholder; that

is, its functionality should exclusively be to hold static crosscutting

behaviours that would later be injected into the target classes at

weave-time. A placeholder should not be instantiable and should never

have a super-class, super-interface or be part of the inheritance

hierarchy.

95

Figure 6.1: Proposed language construct: placeholder

Figure 6.1[a] shows a potential declaration of a placeholder for the

Copyable aspect and figure 6.1[b] suggest a new construct for injecting

and binding the fields and methods to the target class. As

aforementioned, direct introduction associates the call and execution join

points of fields and methods with the target classes. The declare

introductions construct should therefore mimic the activity of a

developer in directly introducing fields and methods into the target

classes. The net effect of this approach should be equivalent to a direct

introduction of the static crosscutting behaviours into the target classes.

The only difference is that the weaver would be responsible for

performing the introduction of the methods and fields into the target

classes instead of the developer – eliminating the weak aspect-to-class

binding problem. In addition, the placeholder makes these behaviours

reusable; hence, the use of an interface as an introduction container is

no longer necessary.

 The placeholder concept may sound much like mixins [25] but it

is fundamentally different. In mixins, the call and execution of a mixin

method is delegated to the mixin class not the target class. This

implies that the call and the execution joint points of such methods

occurs on the mixin class not the target class - Weak aspect-to-class

binding. Consequently, mixin is actually functionally equivalent to the

96

indirect introduction idiom not the placeholder concept. In addition, unlike

mixins, the placeholder never becomes part of the inheritance hierarchy

of the target class.

6.3 Lack of support for explicit inter-aspect configurability
Limitation

The proposed case study exhibits complex aspect dependencies and

interferences. As demonstrated in chapter 3, some aspects cannot

function properly without the functionality offered by other aspects.

For instance, the LockBased aspect depends on the functionalities of

the AccessClassified aspect (in distinguishing between Read, Write and

Update operations), Shared aspect (in preventing threads within a

transaction from currently modify an object’s state), AutoRecoverable

aspect (in facilitating the undo functionality - in event of a transaction

abort) and the Tracked aspect (in keeping track of the objects accessed

by a given trasaction) in order to effectively implement a pessimistic

lock-based concurrency strategy. AspectJ has no construct that

enables aspects to express these dependencies (i.e., inter-aspect

configurability). Support for this functionality is essential to the

implementation of reusable aspect-oriented frameworks. Ideally,

aspects should be able to express their need of the functionality

offered by other aspects while preserving obliviousness (or at least,

minimize aspect-coupling).

Possible solution(s)

A work-around solution for the inter-aspect configurability problem

involves associating a dummy interface with each of the aspects

proposed in the case study. For instance, the interface IShared is

associated to the aspect Shared, IAutoRecoverable is associated to

97

AutoRecoverable and so on. Each aspect is then implemented to apply

its functionality to all the classes that implements its associated

interface (e.g., the Shared aspect is applied to all classes that

implements the IShared interface). Aspects express their needs for

other aspects by having their associated interface implement the

interfaces of the aspects they depend on. For instance, inter-aspect

configurability was achieved in the LockBased aspect by having

ILockBased implement IAccessClassified, IShared, IAutoRecoverable,

ITracked. This enables the LockBased aspect to configure the Shared,

AccessClassified, and AutoRecoverable aspects on all ILockBased objects.

 An obvious deficiency of this work-around solution is the

introduction of a complex inheritance hierarchy. In addition, the aspect

dependency relationship is non-hierarchical and therefore

counterintuitive to represent as an inheritance hierarchy. This

highlights a need for an AspectJ specific inter-aspect configurability

solution. A major challenge is how to express aspect dependencies

while preserving inter-aspect obliviousness (or at least, minimize

aspect-coupling).

Figure 6.2: Proposed “declare dependencies” construct

Inter-aspect configurability can be expressed as proposed in figure 6.2

but achieving its ideal functionality is non-trivial. Naïvely, the advice of

the AccessClassified, Shared, AutoReciverable and Tracked should be

applied to all the join points pick out by LockBased. Ideally, LockBased

should be able to selectively decide where each of the aspects it

98

depends on is to be applied and the order in which they are to be

executed.

6.4 Reflection/Super-class method execution dilemma
Limitation

The enforcement of the ACID properties of transactional objects occurs

at the level of method invocations. To achieve these, the

AspectOPTIMA framework must be able to intercept every method

invocation (both reflective and non-reflective) on a transactional object

and perform the appropriate pre and post actions. AspectJ provides

two pointcuts for intercepting the call and execution of a method:

call(MethodPattern) and execution(MethodPattern).

 The method call pointcut - call(MethodPattern) - would intercept

non-reflective calls to declared and inherited methods of an object but not

reflective calls to these methods. For instance, the pointcut call(public *

SavingAccount.*(..)) would intercept the method call SavingAccount.debit(0)

but not debit.invoke(SavingAccountObject , parameters) – a reasonable

conscious design decision made by the AspectJ team not to “delve into

the Java reflection library to implement call semantics” [9]. Consequently,

concurrent reflective modifications on an object cannot be prevented

and the modifications made through reflective calls on the

transactional objects of an aborting transaction cannot be undone -

placing the system in an inconsistent state.

 The method execution pointcut - execution(MethodPattern) – is

typically used to address this deficiency. This pointcut on the other

hand would intercept the execution (both reflective and non-reflective) of

declared and overridden-inherited methods of an object but not the

execution (both reflective and non-reflective) of non-overridden-inherited

methods because their execution join points occur in their respective

99

super classes. For instance, the pointcut execution(public *

SavingAccount.*(..)) would intercept both the reflective and non-reflective

execution of SavingAccount.debit(0) but not SavingAccount.getBalance()

because the getBalance() method was not overridden in SavingAccount;

hence, its execution join point occurs in Account and not SavingAccount.

As stated before, the ramifications of this deficiency may be costly.

 Composing the call(MethodPattern) and execution(MethodPattern)

pointcuts with an OR operator is neither a feasible solution because

reflective invocations of getBalance() would still not be intercepted.

Developers must therefore decide between exploiting the code reuse

benefits of inheritance (i.e., by not unnecessarily overriding inherited

implementations) or capturing reflective method executions but not

both.

Possible solution(s)

As explained above, a naïve solution would be to manually override all

the inherited methods from the super classes in the subclasses. This

implies relinquishing the code reuse benefit of inheritance - making

this solution undesirable.

A second solution would be to use a pointcut –

target(SavingAccount) && execution(public * Account+.*(..)) - that intercepts

the execution of all the methods of an instance of an Account object

when the target is SavingAccount. This pointcut will intercept both

reflective and non-reflective executions of SavingAccount.getBalance() and

SavingAccount.debit(0) because SavingAccount is a subclass of Account. In

addition, we do not have to worry about unnecessarily intercepting the

executions of operations on CheckingAccount objects because the target

of the pointcut is SavingAccount. Although this solution solves the

problem, it is application-specific and cannot be reused in a generic

100

context. In order words, we have to know precisely what the name of

the target subclass is to avoid the erroneous application of advices to

other subclasses of the same super class. This solution is therefore not

applicable in our case because our objective is to implement a reusable

aspect-oriented ACID framework for transactional objects.

As demonstrated, none of these work-around solutions

adequately satisfy our needs. This expresses a need to reconsider the

design decision made by the AspectJ team not to intercept reflective

method calls. Support for this functionality is essential in implementing

a reusable and robust aspect-oriented framework. I propose the

addition of an inheritance-conscious method execution pointcut:

superexecution(MethodPattern). Given a class with no super-classes (e.g.,

Account), this pointcut should behave exactly as the

execution(MethodPattern) pointcut (i.e., it should intercept both reflective

and non-reflective execution of declared methods). When used on a

class with super-classes (e.g., SavingAccount), it should signal a need

for the weaver to inline stub-methods with calls to their corresponding

non-overridden inherited methods (i.e., public double getBalance() – in this

case) within the body of the target-class (i.e., SavingAccount). This

ensures that the execution join points of non-overridden inherited

methods occur in the target sub-classes - eliminating the

reflection/super-class method execution dilemma problem. The space

requirement of this approach is not significant since each non-

overridden method will need just a stub with a single delegation call.

101

6.5 Lack of support for per-object association of aspects
Limitation

An often-desired functionality in complex aspect-oriented frameworks

(e.g., distributed and multi-user systems) is the ability to selectively

apply different aspects to different objects of the same class. For

instance, one might want to have half of the Account objects be

LockBased, and the other half Optimistic. This requirement is

fundamentally different from the need of runtime disabling and re-

enabling of pointcuts (section 6.1) because in this case, we either

apply an entire aspect to an object of a class or not, and the pointcuts

of an aspect that wasn’t applied to an object cannot be later enabled

at runtime.

 As explained before, aspects are statically deployed in AspectJ;

therefore, the crosscutting behaviours become effective in every object

of a class once the base application is woven together with the

aspects. Therefore, the current AspectJ implementation does not

permit a developer to selectively decide at runtime the objects of a

class to which an aspect should be applied.

Possible solution(s)

Support for per-object association of aspects should not eliminate per-

class association of aspects currently supported by AspectJ.

Developers should be given the option to decide on a per-aspect basis

the desired association. A potential solution for per-object association

of aspects might involve splitting the aspect application process in

AspectJ into two phases: the preparation phase and the activation phase.

102

Preparation Phase

The preparation phase should occur at compile-time. Potential per-object

aspects should be tagged with the keyword “prepare” as shown in

figure 6.3[a]. During this phase, the crosscutting behaviours specified

in the aspects should be applied in a dormant fashion to the respective

join points of interest in the base classes. Being dormant implies that

the join points of interest are byte-code instrumented but the

functionalities of the aspects are not currently available to the objects

of the base application. That is, without explicit activation, the

execution of the application would be unaffected by the dormant

aspects.

Activation Phase

The activation phase of the dormant aspects should occur at runtime and

on a per-object basis. AspectJ should provide a program construct to

support the activation of any (or all) of the dormant aspects (applied to

a given class during the preparation phase) on a per-object basis at

runtime. This phase therefore enables developers to selectively decide

whether the functionalities of an aspect should be made available to a

given object of a previously prepared class. Obviously, only aspects

that were applied to a given class during the preparation phase can be

activated at runtime.

 An obvious concern of this approach is a compromise of the

aforementioned oblivious property of aspect-oriented programming.

This is because the base application may have to be aware of the

aspects advising it in order to decide which aspects of a prepared

object should be activated. The primary objective of aspect-oriented

programming is to modularize crosscutting concerns; hence, partial

compromise of obliviousness can be overlooked. If need be, previously

103

prepared aspects could be activated by other aspects – figure 6.3[b].

These aspects will obviously require some runtime information

(ObjectRuntimeCondition) about the objects to determine whether or not

they should be activated.

Figure 6.3 : Proposed “prepare” construct and activation

104

Chapter 7 ~ Related Work

The identification of AspectJ limitations or its application in the context

of concurrency control and recovery is not unique to this thesis. I

present some of the works related to this thesis in this section and

also discuss how other AOP tools have attempted to address some of

the limitations of AspectJ.

7.1 Other AOP tools

CaesarJ

In [7, 23], Mezini et al. identified several deficiencies of AspectJ’s join

point interception model, namely:

• Lack of support for sophisticated mappings: the authors argued

that the mapping from aspect abstractions to base classes via

the declare parents construct is effective only when each aspect

abstraction has a corresponding base class. Using examples,

they demonstrated the deficiency of AspectJ in handling

sophisticated mappings that deviate from the norm.

• Lack of support for reusable aspect bindings: it was further

argued that the aspect-to-class binding achieved via the declare

parents construct strongly binds an aspect to a particular base

class; hence, such bindings cannot be effectively reused.

105

• Lack of support for aspectual polymorphism: this limitation is

comparable to the lack of support for per-object association of

aspects identified in this thesis. The paper argued that it is

currently not possible in AspectJ to determine at runtime

whether an aspect should be applied or not, or which

implementation of the aspect to apply.

The authors then proposed a new aspect-oriented programming tool

called CaesarJ [23] to address these deficiencies. CaesarJ is based on

Aspect Collaboration Interfaces (ACI). In ACI, the aspect

implementation is decoupled from the aspect binding, with each

defined in an independent but indirectly connected module. This tool

relies on a new type called weavelet for composing the implementation

and the binding of the aspect into a final system. Different weavelets

can combine an aspect binding with different aspect implementations,

and different weavelets can also be used in combining a particular

aspect implementation with different aspect bindings; making both the

aspect bindings and implementations independently reusable. As

opposed to AspectJ, compiling these bindings (i.e., weavelet) with the

base application does not have any effect on the execution of the

application. This is because the weavelets must be explicitly deployed to

activate their pointcuts and advices. These weavelets can also be

deployed statically or dynamically; hence, the support for runtime

deployment of aspects on a per-object basis. Although CaesarJ looks

like our ideal AOP tool, it shares some of the deficiencies of AspectJ

identified in this thesis. For instance, the pointcut(s) of a deployed

weavelet cannot be disabled and later re-enabled at runtime on a per-

object basis.

106

JBossAOP

JBossAOP [5, 26] is another aspect-oriented programming tool in my

opinion which comes close to addressing the encountered limitations

discussed in this thesis. It supports both per-instance association of

aspects and hot deployment of aspects (i.e., the ability to unregister

existing advice bindings – pointcuts - and deploy new bindings to

previously instrumented join points at runtime). This dynamism is

accomplished using the “prepare” statement of JBossAOP which

instruments target join points so that pointcuts and advices can be

later applied at runtime. Notwithstanding, this tool suffers from the

weak aspect-to-class binding problem. This is because the

implementation of reusable static crosscutting behaviours can only be

achieved through mixins in JBossAOP. This implies that the call and

execution of a mixin method is delegated to the mixin class, hence,

the call and execution join points of such methods are associated with

the mixin class not the target class.

7.2 Other Concurrency Control and Persistence frameworks

Cunha et al. [24] explored the possibility of implementing a reusable

aspect-oriented implementation of concurrency control patterns and

mechanisms for Threads in AspectJ. The authors illustrated how

abstract pointcut interfaces and annotations (newly introduced in Java

1.5) can be used in implementing one-way calls, synchronization

barriers, reader/writer locks, scheduler, active objects and futures. The

paper also compared the performance overhead, reusability and the

(un)pluggability between conventional object-oriented

implementations and AOP implementations. It was concluded that the

AspectJ implementation was more reusable and pluggable but incurs a

noticeable performance overhead. In addition, the authors argued that

107

AspectJ has a limitation in acquiring local join point information in

concrete aspects because the abstract pointcuts presets the contextual

information available to its sub-aspects. The work of Cunha et al.

differs from that of this thesis in the amount of effort required to

harness the framework’s functionality. In [24], developers must

provide concrete pointcuts for each of the abstract pointcuts to have

their applications advised. This implies that developers are not

completely oblivious of the inner workings of the framework; a luxury

that is not always possible (e.g., some third-party software libraries

provide only byte codes or executables). Conversely, the only work

required by developers to acquire the functionality provided by the

aspects in this thesis is to bind their application classes to the

appropriate aspects via the declare parents construct. This requires no

knowledge of the inner workings of the framework and can be

accomplished even if the source code isn’t available because AspectJ

supports byte code weaving.

 Rashid et al. [15] also explored the possibility of implementing a

reusable and oblivious aspect-oriented framework for persistence in

AspectJ. Using a database application as an example, the authors

demonstrated incrementally how reusable aspects for database

connections, data storage and updates, data retrieval and data

deletion can be implemented. Unlike the Persistence aspect in this

thesis that relies on other well-defined reusable aspects (Serializeable,

Copyable and Named), their implementation of persistence relies on

other database specific aspects that cannot be reused in a non-

database persistent context. Similar to the work of Cunha et al.,

developers must also provide concrete pointcuts for each of the

abstract pointcuts in the persistence framework to have their

applications advised - hindering obliviousness.

108

Chapter 8 ~ Conclusions and Future Work

8.1 Conclusions

This thesis had two objectives. Firstly, to ascertain whether the

decomposition of Concurrency Control and Recovery (i.e., the ACID

properties of transactional objects) into reusable aspects proposed in

[8] (see chapter 3) can be realistically implemented and recomposed

in an aspect-oriented system to provide the desired functionality.

Secondly, to evaluate the adequacy of the language features of AspectJ

in implementing a reusable framework for the ACID properties of

transactional objects.

 As demonstrated in chapter 5, the reusable aspects proposed in

the case study can be individually implemented and later recomposed

in AspectJ to achieve various Concurrency Control and Recovery

strategies. The implementation was achieved by associating a dummy

interface to each of the aspects in the case study and by implementing

the aspects to apply their functionalities to the classes that implement

their associated interface. The binding of a reusable aspect to a base

class can be accomplished either through the declare parents construct

of AspectJ or the implements keyword of Java. The proposed

decomposition of the ACID properties of transactional objects into

reusable aspects was therefore successfully implemented in AspectJ,

notwithstanding the encountered limitations.

109

That said, AspectJ’s language features were not always explicitly

helpful in implementing the reusable ACID framework. The language

features were found to be inadequate in certain circumstances (section

6.4 and 6.5). This thesis identified five significant limitations of the

current language features of AspectJ, namely: lack of support for inter-

aspect configurability, lack of support for runtime disabling and re-

enabling of pointcuts on a per-object basis, lack of support for per-

object association of aspects, weak aspect-to-class binding and

reflection/super-class method execution dilemma. Work-around

solutions were utilised where possible but these solutions incur

unnecessary complexity and potential performance overhead in the

base applications. Finally, I proposed new language constructs and

concepts towards achieving an ideal AspectJ tool (see Chapter 6 for

detailed discussion of these limitations and the proposed solutions).

8.2 Future Work

Anecdotal evidence suggests that the AspectJ implementation of the

ACID properties for transactional objects (i.e., the AspectOPTIMA

framework) might incur a significant performance overhead and

memory footprint relative to its object-oriented counterpart – OPTIMA

[11]. A reasonable future work would involve optimizing the current

AspectJ implementation of the AspectOPTIMA framework, obtaining the

performance overhead and memory footprint for both AspectOPTIMA

and OPTIMA, and determining whether there is a noticeable penalty in

the migration from an object-oriented platform to an aspect-oriented

platform.

 Another by-product of this thesis deserving further investigation

is the performance cost associated with the automatic classification of the

operations of transactional objects (section 5.3.1). As mentioned

110

before, the efficiency of any concurrency control or recovery

framework is conditional on its ability to accurately distinguish observer

operations from modifier operations. Traditionally, frameworks rely on

naming conventions or user-defined metadata (such as annotations in

Java) in distinguishing observer operations from modifier operations - a

technique susceptible to developer classification error with potentially

costly ramifications. Other frameworks avoid this risk by treating every

operation as a modifier – incurring additional performance overhead.

Automatic classification is therefore ideal since it eliminates the risks

associated with erroneous classification; however, it would be counter

productive if its performance overhead exceeds that of frameworks

that treats every operation as a modifier. I intend to conduct a

comparative performance study of these classification strategies in the

near future.

 The Versioned aspect, Tracked aspect and AutoRecoverable aspect

share a common need for a well-defined region of interest per-

transaction within which certain actions (such as object accesses) are

to be monitored. This is a crosscutting concern of the aspects rather

than the transactional objects. In this thesis, I have focussed on the

identification and implementation of aspects that crosscut objects not

aspects that crosscut other aspects. A long-term goal includes the

identification and modularization of concerns that crosscut other

aspects.

111

Bibliography

[1] G. Booch. Object-Oriented Analysis and Design with Applications.

Addison-Wesley, 1993 (2nd ed.)

[2] W. Harrison and H. Ossher. Subject-oriented programming: a

critique of pure objects. In Proceedings of the 8th annual conference on

Object-oriented programming systems, languages, and applications.

Washington, D.C., United States. Pages 411 - 428. ACM Press, 1993.

[3] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.

Loingtier, and J. Irwin. Aspect-Oriented Programming. In the

proceedings of the 11 European Conference on Object-Oriented

Programming (ECOOP97), Finland,

th

June 1997.

[4] AspectJ Team. AspectJ, May 2006. Available at

http://www.eclipse.org/aspectj/.

[5] JbossAOP, May 2006. Available at

http://labs.jboss.com/portal/jbossaop/index.html.

[6] Spring AOP, May 2006. Available at http://www.springframework.org/.

[7] M. Mezini and K. Ostermann. Conquering aspects with Caesar.

Proceedings of the 2nd international conference on Aspect-oriented

software development, Boston, Massachusetts, 2003. ACM Press, Pages

90 – 99.

[8] J. Kienzle and S. Gélineau. AO Challenge - Implementing the ACID

Properties for Transactional Objects. 5 International Conference

on Aspect-Oriented Software Development (AOSD’2006)

th

, Bonn,

Germany, 2006.

112

[9] Xerox Corporation. Frequently Asked Questions about AspectJ. May 2006 -

Available at http://www.eclipse.org/aspectj/doc/released/faq.html.

[10] J. Gray and A. Reuter. Transaction Processing: Concepts and Techniques.

Morgan Kaufmann Publishers, San Francisco, CA, USA, 1993.

[11] J. Kienzle. Open Multithreaded Transactions: A Transaction Model for

Concurrent Object-Oriented Programming. Kluwer Academic Publishers,

2003.

[12] H. Kung and J. Robinson. On optimistic methods for concurrency control.

ACM Transactions on Database Systems, Volume 6 (Issue 2), Pages 213 -

226, June 1981.

[13] M. Herlihy. Apologizing versus asking permission: Optimistic concurrency

control for abstract data types. ACM Trans. on Database Systems, 15(1):

Pages 96 -124, March 1990.

[14] R. Laddad. AspectJ in Action: Practical Aspect-Oriented Programming.

Manning Publications, 2003.

[15] A. Rashid and R. Chitchyan. Persistence as an aspect. In Proceedings of

the 2nd international conference on Aspect-oriented software development,

Boston, Massachusetts, USA, March 2003, Pages 120 –129.

[16] E. Gamma and K. Beck. Junit Framework. Available at www.junit.org.

[17] Sun Microsystems. Java 2 Standard Edition (J2SE 5.0). May 2006 -

Available at: http://java.sun.com/j2se/1.5.0/.

[18] Sun Microsystems. Java Documentation - ava.lang.annotation.Inherited.

May 2006 - Available at

www.java.sun.com/j2se/1.5/docs/api/java/lang/annotation/Inherited.html.

[19] S. Hanenberg and P. Costanza. Connecting Aspects in AspectJ: Strategies

vs. Patterns. First Workshop on Aspects, Components, and Patterns for

Infrastructure Software at 1st International Conference on Aspect Oriented

Software Development (AOSD), Enschede, April, 2002.

[20] S. Hanenberg and R. Unland: Parametric Introductions, Proceedings of the

2nd International Conference on Aspect-Oriented Software Development,

Boston, MA, ACM Press, March 2003. Pages 80-89.

113

[21] R. Filman and D. Friedman. Aspect-oriented programming is quantification

and obliviousness. In OOPSLA Workshop on Advanced Separation of

Concerns, Minneapolis, USA, October 2000.

[22] E. Hilsdale and J. Hugunin. Advice weaving in AspectJ. In Proceedings of

the 3rd international conference on Aspect-oriented software development,

pages 26--35. ACM Press, 2004.

[23] M. Mezini and K. Ostermann. CaesarJ, May 2006. Available at

www.caesarj.org.

[24] C. Cunha, J. Sobral, and M. Monteiro. Reusable Aspect-Oriented

Implementations of Concurrency Control Patterns and Mechanisms. 5

International Conference on Aspect-Oriented Software

Development (AOSD’2006)

th

, Bonn, Germany, 2006.

[25] A. Schmidmeier, S. Hanenberg, and R. Unland: Implementing Known

Concepts in AspectJ. 3rd Workshop on Aspect-Oriented Software

Development of the SIG Object-Oriented Software Development of the

German Informatics Society, Essen, Germany, March 4-5, 2003.

[26] JbossAOP Documentation, May 2006. Available at

http://docs.jboss.org/aop/1.0/aspect-framework/.

114

	Abstract
	Table of Contents
	List of Tables
	List of Figures
	Chapter 1 ~ Introduction
	1.1 Motivation
	1.2 Summary of Contributions
	1.3 Thesis outline
	Chapter 2 ~ Fundamentals of Transactions and Aspect-Oriented Programming
	2.1 Transactions
	2.1.1 Transactional Objects
	2.1.2 The ACID Properties of Transactions
	2.1.3 Concurrency Control and Recovery

	2.2 Aspect Oriented Programming (AOP)
	2.3 Summary

	Chapter 3 ~ The Case Study
	3.1 Aspectual Decomposition of Concurrency Control and Recovery
	3.1.1 AccessClassified
	3.1.2 Named
	3.1.3 Copyable
	3.1.4 Shared
	3.1.5 Serializeable
	3.1.6 Versioned
	3.1.7 Tracked
	3.1.8 Recoverable
	3.1.9 AutoRecoverable
	3.1.10 Persistent
	3.1.11 Summary

	3.2 Aspectual Re-composition of Concurrency Control and Recovery
	3.2.1 Pessimistic Lock-Based Concurrency Control with In-Place Update
	3.2.2 Pessimistic Multi-Version Lock-Based Concurrency Control with In-Place Update
	3.2.3 Optimistic Concurrency Control with Deferred Update and Backward Validation

	3.3 Summary

	Chapter 4 ~ Implementation Platform
	4.1 Annotations
	4.2 AspectJ
	4.2.1 Dynamic Crosscutting
	4.2.2 Static Crosscutting

	Chapter 5 ~ AspectJ Implementation of the ACID framework
	5.1 Sample Base Application
	5.2 Reusability through the Abstract Introduction Idiom
	5.3 Implementing the ACID Framework
	5.3.1 AccessClassified
	5.3.2 Named
	5.3.3 Copyable
	5.3.4 Shared
	5.3.5 Serializeable
	5.3.6 Versioned
	5.3.7 Tracked
	5.3.8 Recoverable
	5.3.9 AutoRecoverable
	5.3.10 LockBased
	5.3.11 Multi-Version LockBased
	5.3.12 Optimistic

	Chapter 6 ~ Encountered AspectJ Limitations and Possible Improvements
	6.1 Lack of support for runtime disabling and re-enabling of pointcuts
	6.2 Weak aspect-to-class binding
	6.3 Lack of support for explicit inter-aspect configurability
	6.4 Reflection/Super-class method execution dilemma
	6.5 Lack of support for per-object association of aspects

	Chapter 7 ~ Related Work
	7.1 Other AOP tools
	7.2 Other Concurrency Control and Persistence frameworks

	Chapter 8 ~ Conclusions and Future Work
	8.1 Conclusions
	8.2 Future Work

	Bibliography

