Lecture 5: d-separation. Bayes nets in practice

e Bayes ball revisited
e d-separation

e Constructing Bayes nets

Recall from last time

e A Bayesian network is a DAG G over variables X1,..., Xy,
together with a distribution P that factorizes over G. P is
specified as the set of conditional probability distributions (local
probability models) associated with G’s nodes.

e (G is an I-map (independence map) for P. l.e., for any node X,
we have:

X; 1L Nondescendents (X )|Parents(X;))

e \What other independencies can be “read off” G?




Recall: Bayes ball algorithm

Suppose we want to decide whether X 1l Z|Y for a general
Bayes net with corresponding graph G.

We shade all nodes in the evidence set, Y

We put balls in all the nodes in X, and we let them bounce
around the graph according to rules inspired by these three
base cases

Note that the balls can go in any direction along an edge!

If any ball reaches any node in Z, then the conditional

independence assertion is not true.

Base rules
Head-to-tail
X «— Y = Z X Y z
O—0O—0 O—@—=0O
Y unknown, path unblocked Y known, path blocked
Tail-to-tail
Y Y
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Y unknown, path unblocked Y known, path blocked

Head-to-heag

e Y

Y unknown, path BLOCKED Y known, path UNBLOCKED




Example: The alarm network
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d-separation

® Suppose we want to show that a conditional independence
relation, X Il Z|Y’, is implied by a DAG G in which X, Y, Z are
non-intersecting sets of nodes.

® A path is said to be blocked if it includes a node such that:

1. the arrows in the path do not meet head-to-head at the node,
and the node is in the conditioning set Y (this covers the
head-to-tail and tail-to-tail cases)

2. the arrows do meet head-to-head and neither the node nor
its descendents are in Y

e If, given the set of conditioning nodes Y, all paths from any

node in X to any node in Z are blocked, then X is d-separated

from Z given Y




Important results

e “Soundness”: If a joint distribution P factorizes according to a
DAG G, and if X, Y and Z are subsets of nodes such that Y
d-separates X and Z in G, then P satisfies X 1L Z|Y'.

e “Completeness”: if Y does not d-separate X and Z in DAG G,
then there exists at least one distribution P which factorizes

over G and in which X NZ|Y

Isolating a node

Suppose we want the smallest set of nodes U such that X is
independent of all other nodes in the network given U’
XU ({X1...Xn}—{X}—U)|U. What should U be?
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Markov blanket

e Clearly, at least X's parents and children should be in U
e But this is not enough if there are v-structures; U sill also have
to include X's “spouses” - i.e. the other parents of X's children
The set U consisting of X'’s parents, children and other parents of
his children is called the Markov blanket of X.
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Moral graphs

Given a DAG G, we define the moral graph of GG to be an

undirected graph U over the same set of vertices, such that the
edge (X,Y)isin U if X isin Y’s Markov blanket
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e |f G is an I-map of P, then U will also be an I-map of P
e But many independencies are lost when going to a moral graph
e Moral graphs will prove to be useful when we talk about

inference.
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Perfect maps

A DAG G is a perfect map of a distribution P if it satisfies the

following property:

XU Z|Y < Y d-separates X and Z

e A perfect map captures all the independencies of a distribution

e Perfect maps are unique, up to DAG equivalence

e How can we construct a perfect map for a distribution?
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Some distributions do not have perfect maps!

Example: We have two independent unbiased coins that we toss. If

both

coins come up the same, a bell rings with probability 2/3.

Here, there are three minimal I-maps (which?) but none is a perfect

map.
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Constructing Bayes nets in practice

Usually, we do not construct Bayes nets based on knowledge of the
joint probability distribution P. We have some vague idea of the
dependencies in the world, and we need to make that precise in a

Bayes net. This involves several steps:

e Formulating the problem
e Choosing random variables
e Choosing independence relations

e Assigning probabilities in the CPDs

13

Choosing random variables

e Variables must be precise. What are the values, how are they

defined, and how are they measured?
E.g. Weather - what values will it take? When do we assign the
bitter-cold value?
e If the variables are continuous and we discretize them, a coarse
discretization may introduce additional dependencies.
e There several kinds of variables:
— Observable
— Sometimes observable (e.g. medical tests)
— Hidden - these may or may not be useful to include,

depending on the other independencies that they generate
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Choosing the structure

e Causal connections tend to make the graphs sparser. Note that
we must judge causality in the world!

® In general, these models are approximate. There is a trade-off
between precision and the size and sparsity of the graph.

E.g., see the alarm network
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Choosing numbers for the CPDs

e Conditional probabilities could come from a few sources:
— An expert
* People hate picking numbers!
* Having a good network structure usually makes it easier to
elicit numbers from people too.
— An approximate analysis (e.g. in card games)
— Guessing
— Learning
e Bad news: In all these cases, the numbers are approximate!
e Good news: the numbers usually do not matter all that much.
e Sensitivity analysis can help in deciding whether certain

numbers are critical or not for the conclusions
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Important factors when choosing probabilities

Avoid assigning zero probability to any events!

The relative values (or ordering) of conditional probabilities for
P(X|Parents(X)), given different values of Parents(X) is
important

Having probabilities that are orders of magnitude different can

cause problems in the network

17

Example: Pathfinder (Heckerman, 1991)

Medical diagnostic system for lymph node diseases

Large net! 60 diseases, 100 symptoms and test results, 14000
probabilities

Network built by medical experts

— 8 hours to determine the variables

— 35 hours for network topology

— 40 hours for probability table values

Experts found it easy to invent causal links and probabilities
Pathfinder is now outperforming world experts in diagnosis
Commercialized by Intellipath and Chapman Hall Publishing;

extended to other medical domains
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