
Lecture 5: d-separation. Bayes nets in practice

� Bayes ball revisited
� d-separation
� Constructing Bayes nets
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Recall from last time

� A Bayesian network is a DAG
�

over variables ���������	���
��� ,

together with a distribution 
 that factorizes over
�

. 
 is

specified as the set of conditional probability distributions (local

probability models) associated with
�

’s nodes.
� �

is an I-map (independence map) for 
 . I.e., for any node ��� ,
we have:

������� Nondescendents ��������� Parents ���������
� What other independencies can be “read off”

�
?
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Recall: Bayes ball algorithm

� Suppose we want to decide whether ��������� � for a general

Bayes net with corresponding graph
�

.
� We shade all nodes in the evidence set, �
� We put balls in all the nodes in � , and we let them bounce

around the graph according to rules inspired by these three

base cases
� Note that the balls can go in any direction along an edge!
� If any ball reaches any node in � , then the conditional

independence assertion is not true.
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Base rules

� Head-to-tail

Y known, path blocked

X Y Z X Y Z

Y unknown, path unblocked

� Tail-to-tail

Y known, path blocked

Y

X Z

Y

X Z

Y unknown, path unblocked

� Head-to-head

Y known, path UNBLOCKED

X Z

Y

X Z

Y

Y unknown, path BLOCKED
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Example: The alarm network

C

E B

R A

Is !�����"��$#&%
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d-separation

� Suppose we want to show that a conditional independence

relation, �����&�'�$� , is implied by a DAG
�

in which � , � , � are

non-intersecting sets of nodes.
� A path is said to be blocked if it includes a node such that:

1. the arrows in the path do not meet head-to-head at the node,

and the node is in the conditioning set � (this covers the

head-to-tail and tail-to-tail cases)

2. the arrows do meet head-to-head and neither the node nor

its descendents are in �
� If, given the set of conditioning nodes � , all paths from any

node in � to any node in � are blocked, then � is d-separated

from � given �
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Important results

� “Soundness”: If a joint distribution 
 factorizes according to a

DAG
�

, and if � , � and � are subsets of nodes such that �
d-separates � and � in

�
, then 
 satisfies �����(��� � .

� “Completeness”: if � does not d-separate � and � in DAG
�

,

then there exists at least one distribution 
 which factorizes

over
�

and in which ����� )*�'�$�
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Isolating a node

Suppose we want the smallest set of nodes + such that � is

independent of all other nodes in the network given + :

����� ��,�� � �	���
� �.-0/ ,�� -1/ +(�2�3+ . What should + be?

X
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Markov blanket
� Clearly, at least � ’s parents and children should be in +
� But this is not enough if there are v-structures; + sill also have

to include � ’s “spouses” - i.e. the other parents of � ’s children

The set + consisting of � ’s parents, children and other parents of

his children is called the Markov blanket of � .

X
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Moral graphs

Given a DAG
�

, we define the moral graph of
�

to be an

undirected graph + over the same set of vertices, such that the

edge ���4�
�5� is in + if � is in � ’s Markov blanket

� If
�

is an I-map of 
 , then + will also be an I-map of 

� But many independencies are lost when going to a moral graph
� Moral graphs will prove to be useful when we talk about

inference.
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Perfect maps

A DAG
�

is a perfect map of a distribution 
 if it satisfies the

following property:

�����(�'�$� 6 � d-separates � and �
� A perfect map captures all the independencies of a distribution
� Perfect maps are unique, up to DAG equivalence
� How can we construct a perfect map for a distribution?
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Some distributions do not have perfect maps!

Example: We have two independent unbiased coins that we toss. If

both coins come up the same, a bell rings with probability 2/3.

Here, there are three minimal I-maps (which?) but none is a perfect

map.
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Constructing Bayes nets in practice

Usually, we do not construct Bayes nets based on knowledge of the

joint probability distribution 
 . We have some vague idea of the

dependencies in the world, and we need to make that precise in a

Bayes net. This involves several steps:

� Formulating the problem
� Choosing random variables
� Choosing independence relations
� Assigning probabilities in the CPDs
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Choosing random variables

� Variables must be precise. What are the values, how are they

defined, and how are they measured?

E.g. Weather - what values will it take? When do we assign the

bitter-cold value?
� If the variables are continuous and we discretize them, a coarse

discretization may introduce additional dependencies.
� There several kinds of variables:

– Observable

– Sometimes observable (e.g. medical tests)

– Hidden - these may or may not be useful to include,

depending on the other independencies that they generate
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Choosing the structure

� Causal connections tend to make the graphs sparser. Note that

we must judge causality in the world!
� In general, these models are approximate. There is a trade-off

between precision and the size and sparsity of the graph.

E.g., see the alarm network
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Choosing numbers for the CPDs

� Conditional probabilities could come from a few sources:

– An expert
7 People hate picking numbers!
7 Having a good network structure usually makes it easier to

elicit numbers from people too.

– An approximate analysis (e.g. in card games)

– Guessing

– Learning
� Bad news: In all these cases, the numbers are approximate!
� Good news: the numbers usually do not matter all that much.
� Sensitivity analysis can help in deciding whether certain

numbers are critical or not for the conclusions
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Important factors when choosing probabilities

� Avoid assigning zero probability to any events!
� The relative values (or ordering) of conditional probabilities for


���� � Parents �����
� , given different values of Parents ����� is

important
� Having probabilities that are orders of magnitude different can

cause problems in the network
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Example: Pathfinder (Heckerman, 1991)

� Medical diagnostic system for lymph node diseases
� Large net! 60 diseases, 100 symptoms and test results, 14000

probabilities
� Network built by medical experts

– 8 hours to determine the variables

– 35 hours for network topology

– 40 hours for probability table values
� Experts found it easy to invent causal links and probabilities
� Pathfinder is now outperforming world experts in diagnosis
� Commercialized by Intellipath and Chapman Hall Publishing;

extended to other medical domains
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