Lecture 3: Conditional independence and graph structure

e Independence maps (I-maps)
e Factorization theorem
e The Bayes ball algorithm and d-separation
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Recall from last time

e Bayesian networks are a graphical model representing
conditional independence relations

e The nodes of the graphs represent r.v.’s

e Each node has associated with it a conditional probability
distribution (CPD) for the corresponding r.v., given its parents

e The joint probability distribution can be computed by multiplying
the local CPDs
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Example: A Bayesian (belief) network

p(E) p(B)

E=1| E=0 B=1 |[B=0
0.005 0.995 a e 0.0110.99
p(RIE) e Q p(AIB,E)
R:l R=O A=1 A_O

E=0| 0.0001 |0.9999 B=0,E=0/0.001 0.999
E=11065 035 B=0E=1/03 |07
p(CIA) @ B=1,E=0, 0.8 |0.2

C=1| C=0 B=LE=1| 0.95 |0.05

A=00.05]0.95
A=1107 103

® The nodes represent random variables
e The arcs represent “influences”
e At each node, we have a conditional probability distribution (CPD) for

the corresponding variable given its parents
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Recall: I-Maps

A directed acyclic graph (DAG) G whose nodes represent random
variables X1, ..., X, is an I-map (independence map) of a

distribution p if p satisfies the independence assumptions:

X; 1L Nondescendents(X;)| X~,,Vi =1,...n

where X, are the parents of X;
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Example

Consider all possible DAG structures over 2 variables. Which graph

is an |I-map for the following distribution?

z y | plz,vy)

0O O 0.08
o 1 0.32
1 0 0.32
1 1 0.28

What about the following distribution?

z y | plz,vy)

0O O 0.08
o 1 0.12
1 0 0.32
1 1 0.48
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Factorization theorem

G is an I-map of p if and only if p factorizes according to G-

mn

p(xh R ,mn) = Hp(xz|x7ﬁ)7vxl S QXi

=1

Proof: —

Assume that 7 is an I-map for p. By the chain rule,

p(x1,...,zn) =[], p(xi|z1, ..., zi—1). Without loss of
generality, we can order the variables x; according to G. From this
assumption, X, C {X1,..., X;—1}. This means that
{X1,...,Xi—1} = Xx, U Z, where Z C Nondescendents(X;).
Since G is an I-map, we have X;_ Il Nondescendents(X;)|Xx,, so:

p(zilz1,. .., zi—1) = p(zi|z, 2x;) = P(@i|Tx;)

and the conclusion follows.
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Factorization theorem (2)

Proof: <=

Assume the p factorizes over GG. Let X p, denote the descendents
of X; and X, denote nondescendents. Note that

{X1... X} ={X:} U X, UXp, UXn,. We have:

p(xi, xﬂi)xNi)

z;€Qx, p(xia xﬂ'i?xNi)

p(wilxm ) xNi) =
>
We compute the numerator:

p(xivxTrwwNi) :Zp(xi7m7"i’xNi7xDi) = Z Hp(xj’xﬂj)
Tp.

7 TD; j=1
=p(zi|zx,) H p(xj|x7rj) H p(xk‘xﬂk)z: Hp(xl|m7fz>
CCJECENZ CCkECEﬂ-Z. wDileXDi
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Factorization theorem (3)

The last factor above is 1
The denominator of the fraction is:

Z p(xi7x7"i7xNi) = Z p(:ci\:cm) H p(:l?j‘ij)H p(xk‘xﬂk)

z€Qx, T, €Qx, T;ETN, TpETr,
= ][ p(jlax) [] plaxlza,)
xjechi mkeccwz.

Putting these back together in the fraction, we get:
p(Ti|Tr,, 2N;) = p(xilzr,) = Xi L XN, [ Xr,

which means that GG is an I-map of p.
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Factorization example
(E) (B
Oy

©

The factorization theorem allows us to represent p(c, a, r, e, b) as:

p(c,a,r,e,b) = p(b)p(e)p(alb, e)p(c|la)p(r|e)
instead of:

p(c,a,r,e,b) = p(b)p(e|b)p(ale, b)p(c|a, e, b)p(r|a, e, c,b)
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Complexity of factorized representations

e If k£ is the maximum number of ancestors for any node in the
graph, and we have binary variables, then every conditional
probability distribution will require < 2% numbers to specify

e The whole joint distribution can then be specified with < n - 2%
numbers, instead of 2"

e The savings are big if the graph is sparse (kK < n).
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Minimal I-maps

e The fact that a DAG G is an I-map for a joint distribution p might
not be very useful.
E.g. Complete DAGs (where all arcs that do not create a cycle

are present) are I-maps for any distribution (because they do

not imply any independencies).
e A DAG G is minimal I-map of p if:

1. Gisan |-map of p
2. If G’ C G then G’ is not an I-map for p
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Constructing minimal I-maps

The factorization theorem suggests an algorithm:
1. Fix an ordering of the variables: X1, ..., X,
2. For each X, select its parents X, to be the minimal subset of
{X1,...,Xi—1} such that
Xl ({Xq,..., Xic1} — Xx,) | Xx,.

This will yield a minimal I-map
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Non-uniqueness of the minimal I-map

e Unfortunately, a distribution can have many minimal I-maps,

depending on the variable ordering we choose!
e The initial choice of variable ordering can have a big impact on

the complexity of the minimal I-map:

(B (B B
Ol &%
Ordering: £, B, A, R,C Ordering: C,R, A, E, B
e A good heuristic is to use causality in order to generate an

Example:

ordering.
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DAGs and independencies

e Given a graph (&, what sort of independence assumptions does

it imply? E.g. Consider the alarm network:

o ee

e In general the lack of an edge corresponds to lack of a variable

in the conditional probability distribution, so it must imply some

independencies
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Implied independency

e The fact that a Bayes net is an I-map for a distribution implies a
set of conditional independencies that always hold, and allows
us to compute join probabilities (and hence make inference) a
lot faster in practice

e In practice, we also have evidence about the values of certain
variables.

e |s there a way to say what are all the independence relations
implied by a Bayes net?
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A simple case: Indirect connection

X Y Z
O—0O—0

e Think of X as the past, Y as the present and Z as the future
e This is a simple Markov chain

e We interpret the lack of an edge between X and Z as a

conditional independence, X 1L Z|Y. Is this justified?
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Indirect connection (continued)

X Y Z
e We interpret the lack of an edge between X and Z as a
conditional independence, X 1L Z|Y'. Is this justified?
e Based on the graph structure, we have:

p(X,Y, Z) = p(X)p(Y|X)p(Z|Y)

e Hence, we have:

WXV, Z)  p(X)p(Y|X)p(Z]Y)
PEIXY) =S %Yy — poopviy PN

e Note that the edges that are present do not imply dependence.

But the edges that are missing do imply independence.
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A more interesting case: Common cause

Y

X Z

O

e Again, we interpret the lack of edge between X and Z as
XU Z|Y. Why is this true?

(X%, 2) _p0 (X p(AY) _
WA= — oy P

e This is a “hidden variable” scenario: if Y is unknown, then X

and Z could appear to be dependent on each other
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The most interesting case: V-structure

X Z

Y

O

In this case, the lacking edge between X and Z is a statement

of marginal independence: X 1l Z.

In this case, once we know the value of Y, X and Z might
depend on each other.

E.g., suppose X and Z are independent coin flips, and Y is
true if and only if both X and Z come up heads.

Note that in this case, X is not independent of Z given Y'!

This is the case of “explaining away”.
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Bayes ball algorithm

Suppose we want to decide whether X 1l Z|Y for a general
Bayes net with corresponding graph G.

We shade all nodes in the evidence set, Y

We put balls in all the nodes in X, and we let them bounce
around the graph according to rules inspired by these three
base cases

Note that the balls can go in any direction along an edge!

If any ball reaches any node in Z, then the conditional

independence assertion is not true.
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Base rules

e Head-to-tail
X «— Y «— Z X Y Z
O—0O—0O O—@—0O
- s
Y unknown, path unblocked Y known, path blocked
e Tail-to-tail

Y Y
” Q
Y unknown, path unblocked Y known, path blocked

e Head-to-head

e

Y unknown, path BLOCKED Y known, path UNBLOCKED
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