
Lecture 7: More on Learning Theory. Introduction to
Active Learning

• VC dimension

• Definition of PAC learning

• Motivation and examples for active learning

• Active learning scenarios

• Query heuristics

With thanks to Burr Settles, Sanjoy Dasgupta, John Langford for active learning part
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The Vapnik-Chervonenkis (VC) Dimension

• The Vapnik-Chervonenkis dimension, V C(H), of hypothesis space H
defined over input space X is the size of the largest finite subset of X
shattered by H. If arbitrarily large finite sets of X can be shattered by
H, then V C(H) ≡ ∞.

• In other words, the VC dimension is the maximum number of points for
which H has no approximation error (is capable of making no mistakes,
regardless of the actual target)

• VC dimension measures how many distinctions the hypotheses from H
are able to make

• This is, in some sense, the number of “effective degrees of freedom”
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Establishing the VC dimension

• Play the following game with the enemy:

– You are allowed to choose k points. This actually gives you a lot of
freedom!

– The enemy then labels these points any way it wants
– You now have to produce a hypothesis, out of your hypothesis class,

which correctly matches these labels.

If you are able to succeed at this game, the VC dimension is at least k.

• To show that it is no greater than k, you have to show that for any set
of k + 1 points, the enemy can find a labeling that you cannot correctly
reproduce with any of your hypotheses.
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Example revisited: VC dimension of two-sided intervals

• Suppose we have a hypothesis set that labels all points inside an interval
[a, b] as class 1. What is its VC dimension?

• Can we shatter 2 points on a line with a two-sided interval?

Yes!

• Can we shatter 3 points on a line with one interval?

No! The enemy can label the most distant points 1 and the middle one
0

• What is the VC dimension of intervals?

VC dimension is 2

• Note that if we allow the class inside the interval to be 1 or 0, we could
do 3 points too, but in this case, we have an extra “degree of freedom”
(the class inside the interval, in addition to its boundaries)
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VC dimension of linear decision surfaces

• Consider a linear threshold unit in the plane.

• First, show there exists a set of 3 points that can be shattered by a line
=⇒ VC dimension of lines in the plane is at least 3.

• We do this by picking 3 non-colinear points, labelling them all possible
ways, and picking lines that correctly separate them

• To show it is at most 3, show that NO set of 4 points can be shattered.

• For this we have to consider all qualitative layouts of the points (all in a
line, 3 on a line and one off it, 3 points forming a convex hull with the
4th inside, and 4 points forming a convex hull)

• For an n-dimensional space, one can generalize this reasoning to show
that the VC dimension of linear estimators is n+ 1.
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Error bounds using VC dimension

• Recall our error bound in the finite case:

e(hemp) ≤
(
min
h∈H

e(h)

)
+ 2

√
1

2m
log
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δ

• Vapnik showed a similar result, but using VC dimension instead of the
size of the hypothesis space:

• For a hypothesis class H with VC dimension V C(H), given m examples,
with probability at least 1− δ, we have:

e(hemp) ≤
(
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h∈H

e(h)

)
+O

√V C(H)
m

log
m

V C(H) +
1

m
log

1

δ



COMP-652 and ECSE-608 (Instructor: Doina Precup), Lecture 7, January 27, 2015 6



Remarks on VC dimension

• The previous bound is tight up to log factors. In other words, for
hypotheses classes with large VC dimension, we can show that there exists
some data distribution which require a number of examples matching the
upper bound.

• For many reasonable hypothesis classes (e.g. linear approximators) the
VC dimension is linear in the number of “parameters” of the hypothesis.

• This shows that to learn “well”, we need a number of examples that is
linear in the VC dimension (so linear in the number of parameters, in
this case).

• However, in other cases (e.g. neural nets) the VC dimension may depend
on other factors (eg. the magnitude allowed for the parameters)

• An important property: if H1 ⊆ H2 then V C(H1) ≤ V C(H2).
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Structural risk minimization

e(hemp) ≤
(
min
h∈H

e(h)

)
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m
log

1

δ


• As before we can use this bound to pick the hypothesis class that

minimizes the upper bound (so, to do model selection)

• In other words, we can use the VC dimension for structural risk
minimization

COMP-652 and ECSE-608 (Instructor: Doina Precup), Lecture 7, January 27, 2015 8



Probably Approximately Correct (PAC) Learning

Let F be a concept (target function) class defined over a set of instances X
in which each instance has n attributes. An algorithm L, using hypothesis
class H is a PAC learning algorithm for F if:

• for any concept f ∈ F
• for any probability distribution P over X
• for any parameters 0 < ε < 1/2 and 0 < δ < 1/2

the learner L will, with probability at least (1− δ), output a hypothesis with
true error at most ε.

A class of concepts F is PAC-learnable if there exists a PAC learning
algorithm for F .
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Computational vs Sample Complexity

• A class of concepts is polynomial-sample PAC-learnable if it is PAC
learnable using a number of examples at most polynomial in 1

ε ,
1
δ and n.

• A class of concepts is polynomial-time PAC-learnable if it is PAC learnable
in time at most polynomial in 1

ε ,
1
δ and n.

• Sample complexity is often easier to bound than time complexity!

• Sometimes there is a trade-off between the two (if there are more
samples, less work is required to process each one and vice versa)
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Summary

• The complexity results for binary classification show trade-offs between
the desired degree of precision ε, the number of samples m and the
complexity of the hypothesis space H
• The complexity of H can be measured by the VC dimension

• For a fixed hypothesis space, minimizing the training set error is well
justified (empirical risk minimization)

• We have not talked about the relationship between margin and VC
dimension (better bounds than the results discussed)
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Passive supervised learning

• The environment provides labelled data in the form of pairs (x, y)

• We can process the examples either as a batch or one at a time, with
the goal of producing a predictor of y as a function of x

• We assume that there is an underlying distribution P generating the
examples

• Each example is drawn i.i.d. from P

• What if instead we are allowed to ask for particular examples?

• Intuitively, if we are allowed to ask questions, and if we are smart about
what we want to know, fewer examples may be necessary
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Semi-Supervised and Active Learning

Exploiting unlabeled data

A lot of unlabeled data is plentiful and cheap, eg.

documents off the web

speech samples

images and video

But labeling can be expensive.

Unlabeled points Supervised learning Semisupervised and
active learning

• Suppose you had access to a lot of unlabeled data
E.g. all the documents on the web
E.g. all the pictures on Instagram

• You can also get some labelled data, but not much

• How can we take advantage of the unlabeled data to improve supervised
learning performance?
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Active Learning

Active learning systems attempt to overcome the labeling bottleneck by asking
queries in the form of unlabeled instances to be labeled by an oracle (e.g., a human
annotator). In this way, the active learner aims to achieve high accuracy using
as few labeled instances as possible, thereby minimizing the cost of obtaining
labeled data. Active learning is well-motivated in many modern machine learning
problems where data may be abundant but labels are scarce or expensive to obtain.
Note that this kind of active learning is related in spirit, though not to be confused,
with the family of instructional techniques by the same name in the education
literature (Bonwell and Eison, 1991).

1.2 Active Learning Examples

machine learning
model

L
U

labeled
training set

unlabeled pool

oracle (e.g., human annotator)

learn a model

select queries

Figure 1: The pool-based active learning cycle.

There are several scenarios in which active learners may pose queries, and
there are also several different query strategies that have been used to decide which
instances are most informative. In this section, I present two illustrative examples
in the pool-based active learning setting (in which queries are selected from a
large pool of unlabeled instances U) using an uncertainty sampling query strategy
(which selects the instance in the pool about which the model is least certain how
to label). Sections 2 and 3 describe all the active learning scenarios and query
strategy frameworks in more detail.

5

• The learner can query an “expert” for a label on any example

• The expert could be a person or a fancy automated program

• Queries are usually expensive or slow

• What examples should we ask for next?
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Example: Drug Discovery (Warmuth et al., 2003)

Active learning example: drug design [Warmuth et al 03]

Goal: find compounds which bind to a particular target

Large collection of compounds, from:

! vendor catalogs

! corporate collections

! combinatorial chemistry

unlabeled point ≡ description of chemical compound

label ≡ active (binds to target) vs. inactive

getting a label ≡ chemistry experiment

• We have access to many libraries of chemicals from different companies
(millions of substances)

• Each chemical is described in a standard vector form (bonds, bond
angles, groups...)

• Goal: establish if the chemical binds or not with a target

• Getting a label means physically performing a chemical reaction!

COMP-652 and ECSE-608 (Instructor: Doina Precup), Lecture 7, January 27, 2015 15



Applications

• Document classification

• Document tagging (e.g. determining parts-of-speech, semantic objects
like places, names, ..)

• Image classification

• Image tagging (e.g. tag all people in a picture)

• Chemistry

• Biomedical applications (labels are obtained by asking a doctor)

• Robotics: what is the true position and velocity of the robot?
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The active learning (potential) advantage
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Figure 2: An illustrative example of pool-based active learning. (a) A toy data set of
400 instances, evenly sampled from two class Gaussians. The instances are
represented as points in a 2D feature space. (b) A logistic regression model
trained with 30 labeled instances randomly drawn from the problem domain.
The line represents the decision boundary of the classifier (70% accuracy). (c)
A logistic regression model trained with 30 actively queried instances using
uncertainty sampling (90%).

Figure 1 illustrates the pool-based active learning cycle. A learner may begin
with a small number of instances in the labeled training set L, request labels for
one or more carefully selected instances, learn from the query results, and then
leverage its new knowledge to choose which instances to query next. Once a
query has been made, there are usually no additional assumptions on the part of
the learning algorithm. The new labeled instance is simply added to the labeled
set L, and the learner proceeds from there in a standard supervised way. There are
a few exceptions to this, such as when the learner is allowed to make alternative
types of queries (Section 6.4), or when active learning is combined with semi-
supervised learning (Section 7.1).

Figure 2 shows the potential of active learning in a way that is easy to visu-
alize. This is a toy data set generated from two Gaussians centered at (-2,0) and
(2,0) with standard deviation σ = 1, each representing a different class distribu-
tion. Figure 2(a) shows the resulting data set after 400 instances are sampled (200
from each class); instances are represented as points in a 2D feature space. In
a real-world setting these instances may be available, but their labels usually are
not. Figure 2(b) illustrates the traditional supervised learning approach after ran-
domly selecting 30 instances for labeling, drawn i.i.d. from the unlabeled pool U .
The line shows the linear decision boundary of a logistic regression model (i.e.,
where the posterior equals 0.5) trained using these 30 points. Notice that most
of the labeled instances in this training set are far from zero on the horizontal

6

• Typically better accuracy, at the same number of instances, than can be
obtained by random selection

• Queries that are selected may indicate problematic examples
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Typical active learning curve
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Figure 3: Learning curves for text classification: baseball vs. hockey. Curves plot clas-
sification accuracy as a function of the number of documents queried for two se-
lection strategies: uncertainty sampling (active learning) and random sampling
(passive learning). We can see that the active learning approach is superior here
because its learning curve dominates that of random sampling.

axis, which is where the Bayes optimal decision boundary should probably be.
As a result, this classifier only achieves 70% accuracy on the remaining unlabeled
points. Figure 2(c), however, tells a different story. The active learner uses uncer-
tainty sampling to focus on instances closest to its decision boundary, assuming it
can adequately explain those in other parts of the input space characterized by U .
As a result, it avoids requesting labels for redundant or irrelevant instances, and
achieves 90% accuracy with a mere 30 labeled instances.

Now let us consider active learning for a real-world learning task: text classifi-
cation. In this example, a learner must distinguish between baseball and hockey
documents from the 20 Newsgroups corpus (Lang, 1995), which consists of 2,000
Usenet documents evenly divided between the two classes. Active learning al-
gorithms are generally evaluated by constructing learning curves, which plot the
evaluation measure of interest (e.g., accuracy) as a function of the number of
new instance queries that are labeled and added to L. Figure 3 presents learning
curves for the first 100 instances labeled using uncertainty sampling and random

7

Informed sampling strategy is uniformly better, at all data set sizes
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Relationship to supervised learning

• Active learning is a “wrapper” around a supervised learning algorithm

• Once a supervised data set has been obtained, we can used the usual
algorithms (logistic regression, naive Bayes, decision or regression trees,
SVMs, neural nets, Adaboost...) to get a hypothesis

• In principle, any query generation and sampling strategy can work with
any supervised learner (though for theoretical guarantees we may need
particular learners)

• In practice, certain combinations are better, e.g. due to the cost of
re-fitting the classifier.

COMP-652 and ECSE-608 (Instructor: Doina Precup), Lecture 7, January 27, 2015 19



Generating queries

instance 

space or input 

distribution

U
sample a large

pool of instances

sample an

instance

model generates

a query de novo

model decides to

query or discard

model selects

the best query

membership query synthesis

stream-based selective sampling

pool-based sampling query is labeled

by the oracle

Figure 4: Diagram illustrating the three main active learning scenarios.

2.1 Membership Query Synthesis
One of the first active learning scenarios to be investigated is learning with mem-
bership queries (Angluin, 1988). In this setting, the learner may request labels
for any unlabeled instance in the input space, including (and typically assuming)
queries that the learner generates de novo, rather than those sampled from some
underlying natural distribution. Efficient query synthesis is often tractable and
efficient for finite problem domains (Angluin, 2001). The idea of synthesizing
queries has also been extended to regression learning tasks, such as learning to
predict the absolute coordinates of a robot hand given the joint angles of its me-
chanical arm as inputs (Cohn et al., 1996).

Query synthesis is reasonable for many problems, but labeling such arbitrary
instances can be awkward if the oracle is a human annotator. For example, Lang
and Baum (1992) employed membership query learning with human oracles to
train a neural network to classify handwritten characters. They encountered an
unexpected problem: many of the query images generated by the learner con-
tained no recognizable symbols, only artificial hybrid characters that had no nat-
ural semantic meaning. Similarly, one could imagine that membership queries
for natural language processing tasks might create streams of text or speech that
amount to gibberish. The stream-based and pool-based scenarios (described in the
next sections) have been proposed to address these limitations.

However, King et al. (2004, 2009) describe an innovative and promising real-
world application of the membership query scenario. They employ a “robot scien-

9

• Generate new examples (synthesizing all inputs)

• As each data point comes in, make a decision whether to query or not

• Consider a larger set of examples and pick the “best” one to query
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Generating new examples (cf. Angluin)

• Learner thinks of an input that would be confusing according to the
current hypothesis and asks about it

• Nice theoretical guarantees: PAC-style bounds on the number of examples
that need to be asked, in the noise-free case, before the target hypothesis
can be correctly identified

• But the examples can be very tough for people to label!2.2. The Limitations of Membership Queries 19

Figure 2.3: Handwritten character recognition using membership queries [73]. The
lower left and right corners are images of the figures “7” and “5”. The rest of the images

represent combinations of these two figures. Note that some of these images are neither “7” nor
“5”. Some of them do not look like any figure.

so, the algorithm can find the exact transition point where the label changes.

Lang and Baum [73] tried to apply Baum’s algorithm [12] to the task of recognizing handwritten

digits. In this task, a bitmap that is a digital representation of a handwritten character needs to be

identified as one of the digits 0− 9. The authors expected that the novel learning algorithm would

generate extremely accurate hypotheses by identifying the exact boundaries between the different

digits. Unexpectedly, the experiment failed. The cause of this failure was that for many of the

queries the algorithm generated, the teacher could not provide any answer. Figure 2.3 presents a

demonstration of this problem. Two images of the figures “7” and “5” were used to generate a

handful of queries for images which are combinations of the original images. However, many of

these queries are neither “7” nor “5”. Some do not resemble any figure at all. This led Lang and

Baum to the conclusion that query learning can work poorly when a human oracle is used, as the

• The inputs are not drawn form the true data distribution
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Stream-based sampling

• Each instance has to be considered in isolation, and a binary decision is
made whether to query or not
• Natural for problems in which data comes on-line and it would be hard

to store
• Strategies:

1. Trade off cost of query and “informativeness”
2. Query if the instance is within the current region of uncertainty

A generic mellow learner [CAL ’91]

For separable data that is streaming in.

H1 = hypothesis class

Repeat for t = 1, 2, . . .

Receive unlabeled point xt

If there is any disagreement within Ht about xt ’s label:
query label yt and set Ht+1 = {h ∈ Ht : h(xt) = yt}

else
Ht+1 = Ht

Is a label needed? Ht = current candidate
hypotheses

Region of uncertainty

Problem: maintaining the region of uncertainty in the general case is
hard, so it needs approximations
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Pool-based sampling

• A pool of instances (possibly big!) is considered

• The “best” instance is picked (according to some criterion)

• Decisions are more informed than in stream-based sampling, but the
memory and computation cost can be much higher
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Query strategies

• Intuitively, the learner should ask about instances about which it is
uncertain

• Several heuristics to implement this idea:

– Uncertainty sampling
– Query-by-committee
– Expected impact of the instance on the decision boundary

• Relationship to other instances may also be important
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Uncertainty sampling strategies

• Classification:

1. Ask about the instance for which the most likely class is very uncertain
E.g., in a probabilistic classifier, the best input x is given by:

x∗ = argmax
x

(1−max
yi

P (yi|x))

2. Ask about the instance where the class label has the highest entropy

x∗ = argmax
x

−∑
yi

P (yi|x) logP (yi|x)


3. Ask about the instance for which the top two classes have close

probability

• Regression: ask about the instance with highest variance.
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Query-by-committee

• You have a set of hypotheses that get to vote on the example

• Examples on which there is a lot of disagreement make good queries

E.g., for which the entropy of the distribution generated is high, or the
KL-divergence between the distributions predicted by each hypothesis is
high

• Hypotheses may be trained on different subsets of attributes
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Expected error reduction/Maximum information gain

• Consider the impact that the instance would have on the rest of the set
U

• Goal: reduce the entropy in the U labels after the instance is used for
training

• Setup:

– Consider an input x ∈ U and pretend you will label it in all possible
ways

– Each label yi has some probability
– Consider adding (x, yi) to the set of labelled data
– Re-train the predictors on the new labelled data, and measure impact

on the other unsupervised examples

• Ideally, this will lead to a more consistent labeling of the remaining
unlabeled examples

• Can be very expensive
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Density-based sampling

A

B

Figure 7: An illustration of when uncertainty sampling can be a poor strategy for classifi-
cation. Shaded polygons represent labeled instances in L, and circles represent
unlabeled instances in U . Since A is on the decision boundary, it would be
queried as the most uncertain. However, querying B is likely to result in more
information about the data distribution as a whole.

controls the relative importance of the density term. A variant of this might first
cluster U and compute average similarity to instances in the same cluster.

This formulation was presented by Settles and Craven (2008), however it is
not the only strategy to consider density and representativeness in the literature.
McCallum and Nigam (1998) also developed a density-weighted QBC approach
for text classification with naı̈ve Bayes, which is a special case of information
density. Fujii et al. (1998) considered a query strategy for nearest-neighbor meth-
ods that selects queries that are (i) least similar to the labeled instances in L,
and (ii) most similar to the unlabeled instances in U . Nguyen and Smeulders
(2004) proposed a density-based approach that first clusters instances and tries to
avoid querying outliers by propagating label information to instances in the same
cluster. Similarly, Xu et al. (2007) use clustering to construct sets of queries for
batch-mode active learning (Section 6.1) with SVMs. Reported results in all these
approaches are superior to methods that do not consider density or representative-
ness measures. Furthermore, Settles and Craven (2008) show that if densities can
be pre-computed efficiently and cached for later use, the time required to select
the next query is essentially no different than the base informativeness measure
(e.g., uncertainty sampling). This is advantageous for conducting active learning
interactively with oracles in real-time.

4 Analysis of Active Learning
This section discusses some of the empirical and theoretical evidence for how and
when active learning approaches can be successful.
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• Queries that are far away from the major concentration of the data are
less useful

• Weigh the “informativeness” of the query (obtained according to one of
the previous criteria) by its average similarity to the rest of the unlabeled
set U

• Requires a distance measure between inputs.
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