Lecture 7: More on Learning Theory. Introduction to
Active Learning

e VC dimension

e Definition of PAC learning

e Motivation and examples for active learning
e Active learning scenarios

e Query heuristics

With thanks to Burr Settles, Sanjoy Dasgupta, John Langford for active learning part
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The Vapnik-Chervonenkis (VC) Dimension

e The Vapnik-Chervonenkis dimension, VC(H), of hypothesis space H
defined over input space X is the size of the largest finite subset of A

shattered by H. If arbitrarily large finite sets of X can be shattered by
H, then VC'(H) = oo.

e In other words, the VC dimension is the maximum number of points for
which H has no approximation error (is capable of making no mistakes,
regardless of the actual target)

e VC dimension measures how many distinctions the hypotheses from H
are able to make

e This is, in some sense, the number of “effective degrees of freedom”
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Establishing the VC dimension

e Play the following game with the enemy:

— You are allowed to choose k points. This actually gives you a lot of

freedom!

— The enemy then labels these points any way it wants

— You now have to produce a hypothesis, out of your hypothesis class,
which correctly matches these labels.

If you are able to succeed at this game, the VC dimension is at least k.

e To show that it is no greater than k, you have to show that for any set
of £+ 1 points, the enemy can find a labeling that you cannot correctly
reproduce with any of your hypotheses.
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Example revisited: VC dimension of two-sided intervals

e Suppose we have a hypothesis set that labels all points inside an interval
la, b] as class 1. What is its VC dimension?

e Can we shatter 2 points on a line with a two-sided interval?
Yes!
e Can we shatter 3 points on a line with one interval?

No! The enemy can label the most distant points 1 and the middle one
0

e What is the VC dimension of intervals?
VC dimension is 2

e Note that if we allow the class inside the interval to be 1 or 0, we could
do 3 points too, but in this case, we have an extra “degree of freedom”
(the class inside the interval, in addition to its boundaries)
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VC dimension of linear decision surfaces

e Consider a linear threshold unit in the plane.

e First, show there exists a set of 3 points that can be shattered by a line
—> VC dimension of lines in the plane is at least 3.

e We do this by picking 3 non-colinear points, labelling them all possible
ways, and picking lines that correctly separate them

e To show it is at most 3, show that NO set of 4 points can be shattered.

e For this we have to consider all qualitative layouts of the points (all in a
line, 3 on a line and one off it, 3 points forming a convex hull with the
4th inside, and 4 points forming a convex hull)

e For an n-dimensional space, one can generalize this reasoning to show
that the VC dimension of linear estimators is n + 1.
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Error bounds using VC dimension

e Recall our error bound in the finite case:

e(hemp) < <£Iél£6 ) + 2\/— log 5

e Vapnik showed a similar result, but using VC dimension instead of the
size of the hypothesis space:

e For a hypothesis class H with VC dimension VC(H), given m examples,
with probability at least 1 — ¢, we have:

: VC(H) m 1 1
< —
e(hemp) < (gg/g e(h)) + O \/ - log VOH) + — log 5
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Remarks on VC dimension

e The previous bound is tight up to log factors. In other words, for
hypotheses classes with large VC dimension, we can show that there exists
some data distribution which require a number of examples matching the
upper bound.

e For many reasonable hypothesis classes (e.g. linear approximators) the
VC dimension is linear in the number of “parameters” of the hypothesis.

e This shows that to learn “well”, we need a number of examples that is
linear in the VC dimension (so linear in the number of parameters, in
this case).

e However, in other cases (e.g. neural nets) the VC dimension may depend
on other factors (eg. the magnitude allowed for the parameters)

e An important property: if H1 C Ho then VC(H1) < VC(Ha).
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Structural risk minimization

: VC(H) m 1 1
< -~ 7 =
e(emp) < (%ﬂl e(h)) 0 \/ m BTom) T m 8

e As before we can use this bound to pick the hypothesis class that
minimizes the upper bound (so, to do model selection)

e In other words,

we can use the VC dimension for structural risk
minimization
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Probably Approximately Correct (PAC) Learning

Let F be a concept (target function) class defined over a set of instances X
in which each instance has n attributes. An algorithm L, using hypothesis
class H is a PAC learning algorithm for F if:

e for any concept f € F
e for any probability distribution P over X
e for any parameters 0 < e < 1/2and 0 < < 1/2

the learner L will, with probability at least (1 —J), output a hypothesis with
true error at most e.

A class of concepts F is PAC-learnable if there exists a PAC learning
algorithm for F.
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Computational vs Sample Complexity

e A class of concepts is polynomial-sample PAC-learnable if it is PAC
learnable using a number of examples at most polynomial in % % and n.

e A class of concepts is polynomial-time PAC-learnable if it is PAC learnable
in time at most polynomial in % % and n.

e Sample complexity is often easier to bound than time complexity!

e Sometimes there is a trade-off between the two (if there are more
samples, less work is required to process each one and vice versa)
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Summary

e The complexity results for binary classification show trade-offs between
the desired degree of precision €, the number of samples m and the
complexity of the hypothesis space ‘H

e The complexity of H can be measured by the VC dimension

e For a fixed hypothesis space, minimizing the training set error is well
justified (empirical risk minimization)

e We have not talked about the relationship between margin and VC
dimension (better bounds than the results discussed)
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Passive supervised learning

e The environment provides labelled data in the form of pairs (x,y)

e We can process the examples either as a batch or one at a time, with
the goal of producing a predictor of y as a function of x

e We assume that there is an underlying distribution P generating the
examples

e Each example is drawn i.i.d. from P
e What if instead we are allowed to ask for particular examples?

e Intuitively, if we are allowed to ask questions, and if we are smart about
what we want to know, fewer examples may be necessary
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Semi-Supervised and Active Learning
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e Suppose you had access to a lot of unlabeled data
E.g. all the documents on the web
E.g. all the pictures on Instagram

e You can also get some labelled data, but not much

e How can we take advantage of the unlabeled data to improve supervised
learning performance?
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Active Learning

learn a model machine learning
/’ model .\

labeled

training set -
>
unlabeled pool
U
select queries

oracle (e.g., human annotator)

e The learner can query an “expert” for a label on any example
e The expert could be a person or a fancy automated program
e Queries are usually expensive or slow

e \What examples should we ask for next?
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Example: Drug Discovery (Warmuth et al., 2003)

e \We have access to many libraries of chemicals from different companies
(millions of substances)

e Each chemical is described in a standard vector form (bonds, bond
angles, groups...)

e Goal: establish if the chemical binds or not with a target
e Getting a label means physically performing a chemical reaction!
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Applications

e Document classification

e Document tagging (e.g. determining parts-of-speech, semantic objects
like places, names, ..)

e Image classification

e Image tagging (e.g. tag all people in a picture)

e Chemistry

e Biomedical applications (labels are obtained by asking a doctor)

e Robotics: what is the true position and velocity of the robot?
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The active learning (potential) advantage

3 T ..I T A| T 3 T T 3 T T T T T
2+ an®om %L A 4L, 2+ - 2+ -
ut .'i.. V- YN A

R Ny s B 1o |
. LN | 'y -

O™ -.-'l . " N té‘*— 0O - - 0 .
L - n ‘*A AAA [

-1+ .l.=| l-.“ AA“‘A&‘{? 4 1F - -1+ —

m i == g AAA‘A
L e U 1 =2t .
A

3 1 1 1 1 1 3 1 1 3 1 1 1 1 1

4 2 0 2 4 4 4 4 -2 0 2 4

e Typically better accuracy, at the same number of instances, than can be
obtained by random selection

e Queries that are selected may indicate problematic examples
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Typical active learning curve
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Informed sampling strategy is uniformly better, at all data set sizes
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Relationship to supervised learning

e Active learning is a “wrapper’ around a supervised learning algorithm

e Once a supervised data set has been obtained, we can used the usual
algorithms (logistic regression, naive Bayes, decision or regression trees,
SVMs, neural nets, Adaboost...) to get a hypothesis

e |n principle, any query generation and sampling strategy can work with
any supervised learner (though for theoretical guarantees we may need
particular learners)

e In practice, certain combinations are better, e.g. due to the cost of
re-fitting the classifier.
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Generating queries

membership query synthesis

model generates
a query de novo

stream-based selective sampling

instance
space or input
distribution

sample an model decides to
-——->0O—
instance query or discard
R

pool-based sampling query is labeled

by the oracle
_____ sample a large model selects
pool of instances Z/[ the best query

e Generate new examples (synthesizing all inputs)
e As each data point comes in, make a decision whether to query or not

e Consider a larger set of examples and pick the “best” one to query
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Generating new examples (cf. Angluin)

e Learner thinks of an input that would be confusing according to the
current hypothesis and asks about it

e Nice theoretical guarantees: PAC-style bounds on the number of examples
that need to be asked, in the noise-free case, before the target hypothesis
can be correctly identified

e But the examples can be very tough for people to label!

7

A
)

e The inputs are not drawn form the true data distribution
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Stream-based sampling

e Each instance has to be considered in isolation, and a binary decision is
made whether to query or not

e Natural for problems in which data comes on-line and it would be hard
to store

e Strategies:

1. Trade off cost of query and “informativeness”
2. Query if the instance is within the current region of uncertainty

Is a label needed? H: = current candidate Region of uncertainty
hypotheses

Problem: maintaining the region of uncertainty in the general case is
hard, so it needs approximations
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Pool-based sampling

e A pool of instances (possibly big!) is considered
e The “best” instance is picked (according to some criterion)

e Decisions are more informed than in stream-based sampling, but the
memory and computation cost can be much higher
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Query strategies

e Intuitively, the learner should ask about instances about which it is
uncertain
e Several heuristics to implement this idea:

— Uncertainty sampling
— Query-by-committee
— Expected impact of the instance on the decision boundary

e Relationship to other instances may also be important
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Uncertainty sampling strategies

e Classification:

1. Ask about the instance for which the most likely class is very uncertain
E.g., in a probabilistic classifier, the best input x is given by:

x" = argmax(1 — max P(y;|x))

Yi

2. Ask about the instance where the class label has the highest entropy

x* = argmax [ — 3" P(yifx) log P(yi[x)

Yi

3. Ask about the instance for which the top two classes have close
probability
e Regression: ask about the instance with highest variance.
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Query-by-committee

e You have a set of hypotheses that get to vote on the example
e Examples on which there is a lot of disagreement make good queries

E.g., for which the entropy of the distribution generated is high, or the

KL-divergence between the distributions predicted by each hypothesis is
high

e Hypotheses may be trained on different subsets of attributes
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Expected error reduction/Maximum information gain

e Consider the impact that the instance would have on the rest of the set
U

e Goal: reduce the entropy in the U labels after the instance is used for
training
e Setup:
— Consider an input x € U and pretend you will label it in all possible
ways
— Each label y; has some probability
— Consider adding (x, ;) to the set of labelled data

— Re-train the predictors on the new labelled data, and measure impact
on the other unsupervised examples

e |deally, this will lead to a more consistent labeling of the remaining
unlabeled examples

e Can be very expensive
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Density-based sampling

e Queries that are far away from the major concentration of the data are

less useful

e Weigh the “informativeness” of the query (obtained according to one of
the previous criteria) by its average similarity to the rest of the unlabeled
set U

e Requires a distance measure between inputs.
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