Lecture 4: Types of errors. Bayesian regression models.
Logistic regression

e A Bayesian interpretation of regularization

e Bayesian vs maximum likelihood fitting more generally
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The anatomy of the error of an estimator

e Suppose we have examples (x,y) where y = f(x) + ¢ and € is Gaussian
noise with zero mean and standard deviation o

e We fit a linear hypothesis h(x) = w’'x, such as to minimize sum-squared
error over the training data:

m

Z(yi — h(Xq;))2

1=1

e Because of the hypothesis class that we chose (hypotheses linear in
the parameters) for some target functions f we will have a systematic
prediction error

e Even if f were truly from the hypothesis class we picked, depending on
the data set we have, the parameters w that we find may be different;
this variability due to the specific data set on hand is a different source
of error

COMP-652 and ECSE-608, Lecture 4 - January 21, 2016 2



Bias-variance analysis

e Given a new data point x, what is the expected prediction error?
e Assume that the data points are drawn independently and identically
distributed (i.i.d.) from a unique underlying probability distribution

P((x,y)) = P(x)P(y|x)
e The goal of the analysis is to compute, for an arbitrary given point x,
Ep [(y — h(x))*[x]
where y is the value of x in a data set, and the expectation is over all
training sets of a given size, drawn according to P

e For a given hypothesis class, we can also compute the true error, which
is the expected error over the input distribution:

ZEP y — h(x))*[x] P(x)

(if x continuous, sum becomes integral with appropriate conditions).
e \We will decompose this expectation into three components
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Recall: Statistics 101
e Let X be a random variable with possible values x;,72 = 1...n and with

probability distribution P(X)

e The expected value or mean of X is:
EX]=) xP(z)
i=1

e |f X is continuous, roughly speaking, the sum is replaced by an integral,
and the distribution by a density function

e [he variance of X is:

Var[X] = E[(X - E(X))’]
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The variance lemma
Var[X] = E[(X — E[X])?

n

= Z(J/’z‘ — BIX])*P(x;)

n

= > (af — 2w BX] + (E[X])*) ()

= ZxQP r;) — 2B X prxz [X])QZP(QU@)

— FE[X?] - 2E[X|E[X] + (E[X])2 -1
= E[X°] - (B[X])’

We will use the form:

COMP-652 and ECSE-608, Lecture 4 - January 21, 2016



Bias-variance decomposition

e Simple algebra:
Bp [(y—h(x)2x] = Ep[(h(x))? - 2yh(x) + y*x]
— Bp [(h(x)?x] + Bp [y2Ix] — 2Ep[y[x|Ep [h(x)|x]

e Let h(x) = Ep[h(x)|x] denote the mean prediction of the hypothesis at
x, when h is trained with data drawn from P

e For the first term, using the variance lemma, we have:
Ep|(h(x))?|x] = Ep[(h(x) — h(x))*|x] + (h(x))’

e Note that Eply|x| = Ep[f(x) + ¢|x] = f(x) (because of linearity of
expectation and the assumption on € ~ N (0,0))

e For the second term, using the variance lemma, we have:

Ely*|x] = E[(y — f(x))*|x] + (f(x))*
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Bias-variance decomposition (2)

e Putting everything together, we have:

Ep[(y — h(x))%x] = Ep[(h(x)— h(x))*|x] + (h(x))? — 2f(x)h(x)
+ Epl(y — f(x)*x] + (f(x))?
= Ep[(h(x) — h(x))?x] + (f(x) — h(x))?
+ Elly— f(x))?x]

e The first term, Ep[(h(x) — h(x))?|x], is the variance of the hypothesis
h at x, when trained with finite data sets sampled randomly from P

e The second term, (f(x) — h(x))?, is the squared bias (or systematic
error) which is associated with the class of hypotheses we are considering

e The last term, E[(y — f(x))?|x] is the noise, which is due to the problem
at hand, and cannot be avoided
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Error decomposition
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e The bias-variance sum approximates well the test error over a set of 1000
points

e x-axis measures the hypothesis complexity (decreasing left-to-right)

e Simple hypotheses usually have high bias (bias will be high at many
points, so it will likely be high for many possible input distributions)

e Complex hypotheses have high variance: the hypothesis is very dependent
on the data set on which it was trained.
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Bias-variance trade-off

e Typically, bias comes from not having good hypotheses in the considered
class

e Variance results from the hypothesis class containing “too many”
hypotheses

e MLE estimation is typically unbiased, but has high variance
e Bayesian estimation is biased, but typically has lower variance

e Hence, we are faced with a trade-off. choose a more expressive class
of hypotheses, which will generate higher variance, or a less expressive
class, which will generate higher bias

e Making the trade-off has to depend on the amount of data available to
fit the parameters (data usually mitigates the variance problem)
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More on overfitting

e Overfitting depends on the amount of data, relative to the complexity of
the hypothesis

e With more data, we can explore more complex hypotheses spaces, and
still find a good solution
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Bayesian view of regularization

e Start with a prior distribution over hypotheses
e As data comes in, compute a posterior distribution

e We often work with conjugate priors, which means that when combining
the prior with the likelihood of the data, one obtains the posterior in the
same form as the prior

e Regularization can be obtained from particular types of prior (usually,
priors that put more probability on simple hypotheses)

e E.g. L5 regularization can be obtained using a circular Gaussian prior for
the weights, and the posterior will also be Gaussian

e E.g. [, regularization uses double-exponential prior (see (Tibshirani,

1996))
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Bayesian view of regularization

likelihood prior/posterior data space
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e Prior is round Gaussian

e Posterior will be skewed by the data
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What does the Bayesian view give us?
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e Circles are data points
e Green is the true function
e Red lines on right are drawn from the posterior distribution
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What does the Bayesian view give us?

e Functions drawn from the posterior can be very different

e Uncertainty decreases where there are data points
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What does the Bayesian view give us?

e Uncertainty estimates, i.e. how sure we are of the value of the function

e These can be used to guide active learning: ask about inputs for which
the uncertainty in the value of the function is very high

e In the limit, Bayesian and maximum likelihood learning converge to the
same answer

e In the short term, one needs a good prior to get good estimates of the
parameters

e Sometimes the prior is overwhelmed by the data likelihood too early.

e Using the Bayesian approach does NOT eliminate the need to do cross-
validation in general

e More on this later...
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Logistic regression

e Suppose we represent the hypothesis itself as a logistic function of a
linear combination of inputs:

1
Alx) = 1 + exp(w!x)

This is also known as a sigmoid neuron
e Suppose we interpret h(x) as P(y = 1]x)
e Then the log-odds ratio,

" (Fy=am) =

which is linear (nice!)
e The optimum weights will maximize the conditional likelihood of the
outputs, given the inputs.
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The cross-entropy error function

e Suppose we interpret the output of the hypothesis, h(x;), as the
probability that y;, =1
e Then the log-likelihood of a hypothesis h is:

log L(h) = ZlOg P(yi|xi, h) = Z { }gé(ﬁ(?)}z(xz)) :i zz z (1)
= ) yilogh(x;) + (1 — y;) log(1 — h(x;))

e The cross-entropy error function is the opposite quantity:

Jp(w) = — (Z yilog h(x;) 4 (1 — i) log(1 — h(Xz')))
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Cross-entropy error surface for logistic function

5000
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Jp(w) = — Zyz logo(wix;) + (1 —y;)log(1l — o(w!x;))

Nice error surface, unique minimum, but cannot solve in closed form
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Gradient descent

e The gradient of J at a point w can be thought of as a vector indicating
which way is “uphill™.
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e |f this is an error function, we want to move “downhill’ on it, i.e., in the
direction opposite to the gradient
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Example gradient descent traces

’/0‘; S/
5% o“‘;:';;;;;i, 'II

“-

e For more general hypothesis classes, there may be may local optima

e In this case, the final solution may depend on the initial parameters
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Gradient descent algorithm

e The basic algorithm assumes that V.J is easily computed
1 2 3

e \We want to produce a sequence of vectors w-, w*, w°, ... with the goal

that:
- J(wl) > J(w?) > J(w?) > ...
— lim; oo W* = w and w is locally optimal.
e The algorithm: Given w', do fori =0,1,2, ...

w'tt =w' — aq;VJ(W") ,

where «; > 0 is the step size or learning rate for iteration 1.
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Maximization procedure: Gradient ascent

e First we compute the gradient of log L(w) wrt w:

Vlog L(w Zyz %) (1 = (%))
(1= ) hlw(xi)mxi)(l ~ Iy 33))xi(1)
:sz('y Yihw(Xi) — hw(X;) + yihw(x;)) = Z(yz — hw(X;))x;

e The update rule (because we maximize) is:

A

w < w+aVlog L(w W—l—az xi=w+aX (y—9)

where o € (0, 1) is a step-size or learning rate parameter
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e This is called logistic regression

e If one uses features of the input, we have:

w w4 aX!(y -
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Another algorithm for optimization

e Recall Newton's method for finding the zero of a function g : R — R
e At point w’, approximate the function by a straight line (its tangent)

e Solve the linear equation for where the tangent equals 0, and move the
parameter to this point:
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Application to machine learning

e Suppose for simplicity that the error function J has only one parameter

e \We want to optimize J, so we can apply Newton’'s method to find the
zeros of J' = %J

e \We obtain the iteration:
i1 J’(wz)

w =W —  —/—<

J”(’wi)

e Note that there is no step size parameter!

e This is a second-order method, because it requires computing the second
derivative

e But, if our error function is quadratic, this will find the global optimum
in one step!
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Second-order methods: Multivariate setting

e |f we have an error function J that depends on many variables, we can
compute the Hessian matrix, which contains the second-order derivatives

of J:
0%J

Hi' _
J 6w18w3

e The inverse of the Hessian gives the “optimal” learning rates

e The weights are updated as:

ww— H 'W,J

e This is also called Newton-Raphson method for logistic regression, or

Fisher scoring

COMP-652 and ECSE-608, Lecture 4 - January 21, 2016

26



Which method is better?

e Newton's method usually requires significantly fewer iterations than
gradient descent

e Computing the Hessian requires a batch of data, so there is no natural
on-line algorithm

e Inverting the Hessian explicitly is expensive, but almost never necessary

e Computing the product of a Hessian with a vector can be done in linear
time (Schraudolph, 1994)
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Newton-Raphson for logistic regression

e Leads to a nice algorithm called iterative recursive least squares

e [he Hessian has the form:
H=3®"R®

where R is the diagonal matrix of h(x;)(1 — h(x;)) (you can check that
this is the form of the second derivative.

e [he weight update becomes:

w <+ (P'R®)'®'R(®dw — R (dwW — y))
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Regularization for logistic regression

e One can do regularization for logistic regression just like in the case of
linear regression

e Recall regularization makes a statement about the weights, so does not
affect the error function

e Eg: L- regularization will have the optimization criterions:
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