
Lecture 4: Types of errors. Bayesian regression models.
Logistic regression

• A Bayesian interpretation of regularization

• Bayesian vs maximum likelihood fitting more generally
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The anatomy of the error of an estimator

• Suppose we have examples 〈x, y〉 where y = f(x) + ε and ε is Gaussian
noise with zero mean and standard deviation σ
• We fit a linear hypothesis h(x) = wTx, such as to minimize sum-squared

error over the training data:

m∑
i=1

(yi − h(xi))
2

• Because of the hypothesis class that we chose (hypotheses linear in
the parameters) for some target functions f we will have a systematic
prediction error
• Even if f were truly from the hypothesis class we picked, depending on

the data set we have, the parameters w that we find may be different;
this variability due to the specific data set on hand is a different source
of error
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Bias-variance analysis

• Given a new data point x, what is the expected prediction error?
• Assume that the data points are drawn independently and identically

distributed (i.i.d.) from a unique underlying probability distribution
P (〈x, y〉) = P (x)P (y|x)
• The goal of the analysis is to compute, for an arbitrary given point x,

EP

[
(y − h(x))2|x

]
where y is the value of x in a data set, and the expectation is over all
training sets of a given size, drawn according to P
• For a given hypothesis class, we can also compute the true error, which

is the expected error over the input distribution:∑
x

EP

[
(y − h(x))2|x

]
P (x)

(if x continuous, sum becomes integral with appropriate conditions).
• We will decompose this expectation into three components

COMP-652 and ECSE-608, Lecture 4 - January 21, 2016 3



Recall: Statistics 101

• Let X be a random variable with possible values xi, i = 1 . . . n and with
probability distribution P (X)

• The expected value or mean of X is:

E[X] =

n∑
i=1

xiP (xi)

• If X is continuous, roughly speaking, the sum is replaced by an integral,
and the distribution by a density function

• The variance of X is:

V ar[X] = E[(X − E(X))2]

= E[X2]− (E[X])2
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The variance lemma

V ar[X] = E[(X − E[X])2]

=

n∑
i=1

(xi − E[X])2P (xi)

=

n∑
i=1

(x2i − 2xiE[X] + (E[X])2)P (xi)

=

n∑
i=1

x2iP (xi)− 2E[X]

n∑
i=1

xiP (xi) + (E[X])2
n∑

i=1

P (xi)

= E[X2]− 2E[X]E[X] + (E[X])2 · 1
= E[X2]− (E[X])2

We will use the form:

E[X2] = (E[X])2 + V ar[X]
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Bias-variance decomposition

• Simple algebra:

EP

[
(y − h(x))2|x

]
= EP

[
(h(x))2 − 2yh(x) + y2|x

]
= EP

[
(h(x))2|x

]
+ EP

[
y2|x

]
− 2EP [y|x]EP [h(x)|x]

• Let h̄(x) = EP [h(x)|x] denote the mean prediction of the hypothesis at
x, when h is trained with data drawn from P

• For the first term, using the variance lemma, we have:

EP [(h(x))2|x] = EP [(h(x)− h̄(x))2|x] + (h̄(x))2

• Note that EP [y|x] = EP [f(x) + ε|x] = f(x) (because of linearity of
expectation and the assumption on ε ∼ N (0, σ))

• For the second term, using the variance lemma, we have:

E[y2|x] = E[(y − f(x))2|x] + (f(x))2
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Bias-variance decomposition (2)

• Putting everything together, we have:

EP

[
(y − h(x))2|x

]
= EP [(h(x)− h̄(x))2|x] + (h̄(x))2 − 2f(x)h̄(x)

+ EP [(y − f(x))2|x] + (f(x))2

= EP [(h(x)− h̄(x))2|x] + (f(x)− h̄(x))2

+ E[(y − f(x))2|x]

• The first term, EP [(h(x) − h̄(x))2|x], is the variance of the hypothesis
h at x, when trained with finite data sets sampled randomly from P

• The second term, (f(x) − h̄(x))2, is the squared bias (or systematic
error) which is associated with the class of hypotheses we are considering

• The last term, E[(y−f(x))2|x] is the noise, which is due to the problem
at hand, and cannot be avoided
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Error decomposition

ln λ
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• The bias-variance sum approximates well the test error over a set of 1000
points

• x-axis measures the hypothesis complexity (decreasing left-to-right)

• Simple hypotheses usually have high bias (bias will be high at many
points, so it will likely be high for many possible input distributions)

• Complex hypotheses have high variance: the hypothesis is very dependent
on the data set on which it was trained.
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Bias-variance trade-off

• Typically, bias comes from not having good hypotheses in the considered
class

• Variance results from the hypothesis class containing “too many”
hypotheses

• MLE estimation is typically unbiased, but has high variance

• Bayesian estimation is biased, but typically has lower variance

• Hence, we are faced with a trade-off: choose a more expressive class
of hypotheses, which will generate higher variance, or a less expressive
class, which will generate higher bias

• Making the trade-off has to depend on the amount of data available to
fit the parameters (data usually mitigates the variance problem)
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More on overfitting

• Overfitting depends on the amount of data, relative to the complexity of
the hypothesis

• With more data, we can explore more complex hypotheses spaces, and
still find a good solution
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Bayesian view of regularization

• Start with a prior distribution over hypotheses

• As data comes in, compute a posterior distribution

• We often work with conjugate priors, which means that when combining
the prior with the likelihood of the data, one obtains the posterior in the
same form as the prior

• Regularization can be obtained from particular types of prior (usually,
priors that put more probability on simple hypotheses)

• E.g. L2 regularization can be obtained using a circular Gaussian prior for
the weights, and the posterior will also be Gaussian

• E.g. L1 regularization uses double-exponential prior (see (Tibshirani,
1996))
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Bayesian view of regularization

• Prior is round Gaussian

• Posterior will be skewed by the data
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What does the Bayesian view give us?
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• Circles are data points
• Green is the true function
• Red lines on right are drawn from the posterior distribution
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What does the Bayesian view give us?
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• Functions drawn from the posterior can be very different

• Uncertainty decreases where there are data points
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What does the Bayesian view give us?

• Uncertainty estimates, i.e. how sure we are of the value of the function

• These can be used to guide active learning: ask about inputs for which
the uncertainty in the value of the function is very high

• In the limit, Bayesian and maximum likelihood learning converge to the
same answer

• In the short term, one needs a good prior to get good estimates of the
parameters

• Sometimes the prior is overwhelmed by the data likelihood too early.

• Using the Bayesian approach does NOT eliminate the need to do cross-
validation in general

• More on this later...
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Logistic regression

• Suppose we represent the hypothesis itself as a logistic function of a
linear combination of inputs:

h(x) =
1

1 + exp(wTx)

This is also known as a sigmoid neuron
• Suppose we interpret h(x) as P (y = 1|x)
• Then the log-odds ratio,

ln

(
P (y = 1|x)

P (y = 0|x)

)
= wTx

which is linear (nice!)
• The optimum weights will maximize the conditional likelihood of the

outputs, given the inputs.
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The cross-entropy error function

• Suppose we interpret the output of the hypothesis, h(xi), as the
probability that yi = 1

• Then the log-likelihood of a hypothesis h is:

logL(h) =

m∑
i=1

logP (yi|xi, h) =

m∑
i=1

{
log h(xi) if yi = 1
log(1− h(xi)) if yi = 0

=

m∑
i=1

yi log h(xi) + (1− yi) log(1− h(xi))

• The cross-entropy error function is the opposite quantity:

JD(w) = −

(
m∑
i=1

yi log h(xi) + (1− yi) log(1− h(xi))

)
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Cross-entropy error surface for logistic function

JD(w) = −

(
m∑
i=1

yi log σ(wTxi) + (1− yi) log(1− σ(wTxi))

)

Nice error surface, unique minimum, but cannot solve in closed form
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Gradient descent

• The gradient of J at a point w can be thought of as a vector indicating
which way is “uphill”.
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• If this is an error function, we want to move “downhill” on it, i.e., in the
direction opposite to the gradient
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Example gradient descent traces

• For more general hypothesis classes, there may be may local optima

• In this case, the final solution may depend on the initial parameters
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Gradient descent algorithm

• The basic algorithm assumes that ∇J is easily computed

• We want to produce a sequence of vectors w1,w2,w3, . . . with the goal
that:

– J(w1) > J(w2) > J(w3) > . . .
– limi→∞wi = w and w is locally optimal.

• The algorithm: Given w0, do for i = 0, 1, 2, . . .

wi+1 = wi − αi∇J(wi) ,

where αi > 0 is the step size or learning rate for iteration i.
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Maximization procedure: Gradient ascent

• First we compute the gradient of logL(w) wrt w:

∇ logL(w)=
∑
i

yi
1

hw(xi)
hw(xi)(1− hw(xi))xi

+(1− yi)
1

1− hw(xi)
hw(xi)(1− hw(xi))xi(−1)

=
∑
i

xi(yi − yihw(xi)− hw(xi) + yihw(xi)) =
∑
i

(yi − hw(xi))xi

• The update rule (because we maximize) is:

w← w +α∇ logL(w) = w +α

m∑
i=1

(yi−hw(xi))xi = w +αXT (y− ŷ)

where α ∈ (0, 1) is a step-size or learning rate parameter
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• This is called logistic regression

• If one uses features of the input, we have:

w← w + αXT (y − ŷ)
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Another algorithm for optimization

• Recall Newton’s method for finding the zero of a function g : R→ R
• At point wi, approximate the function by a straight line (its tangent)

• Solve the linear equation for where the tangent equals 0, and move the
parameter to this point:

wi+1 = wi − g(wi)

g′(wi)
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Application to machine learning

• Suppose for simplicity that the error function J has only one parameter

• We want to optimize J , so we can apply Newton’s method to find the
zeros of J ′ = d

dwJ

• We obtain the iteration:

wi+1 = wi − J ′(wi)

J ′′(wi)

• Note that there is no step size parameter!

• This is a second-order method, because it requires computing the second
derivative

• But, if our error function is quadratic, this will find the global optimum
in one step!
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Second-order methods: Multivariate setting

• If we have an error function J that depends on many variables, we can
compute the Hessian matrix, which contains the second-order derivatives
of J :

Hij =
∂2J

∂wi∂wj

• The inverse of the Hessian gives the “optimal” learning rates

• The weights are updated as:

w← w −H−1∇wJ

• This is also called Newton-Raphson method for logistic regression, or
Fisher scoring
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Which method is better?

• Newton’s method usually requires significantly fewer iterations than
gradient descent

• Computing the Hessian requires a batch of data, so there is no natural
on-line algorithm

• Inverting the Hessian explicitly is expensive, but almost never necessary

• Computing the product of a Hessian with a vector can be done in linear
time (Schraudolph, 1994)
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Newton-Raphson for logistic regression

• Leads to a nice algorithm called iterative recursive least squares

• The Hessian has the form:

H = ΦTRΦ

where R is the diagonal matrix of h(xi)(1− h(xi)) (you can check that
this is the form of the second derivative.

• The weight update becomes:

w← (ΦTRΦ)−1ΦTR(Φw −R−1(Φw − y))
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Regularization for logistic regression

• One can do regularization for logistic regression just like in the case of
linear regression

• Recall regularization makes a statement about the weights, so does not
affect the error function

• Eg: L2 regularization will have the optimization criterions:

J(w = JD(w) +
λ

2
wTw
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