Lecture 3: More on regularization. Bayesian vs
maximum likelihood learning

e L2 and L1 regularization for linear estimators
e A Bayesian interpretation of regularization

e Bayesian vs maximum likelihood fitting more generally
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Recall: Regularization

e Remember the intuition: complicated hypotheses lead to overfitting

e |dea: change the error function to penalize hypothesis complexity:
J(w) = Tp(W) + Apen(w)

This is called regularization in machine learning and shrinkage in statistics

e )\ is called regularization coefficient and controls how much we value
fitting the data well, vs. a simple hypothesis
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Recall: What L, regularization for linear models does

1 A
arg min §(CI)W —y)H(®w —y) + §WTW = (®'® + )\ ey

o If A = 0, the solution is the same as in regular least-squares linear
regression

o If A\ = oo, the solution w — 0

e Positive A will cause the magnitude of the weights to be smaller than in
the usual linear solution

e This is also called ridge regression, and it is a special case of Tikhonov
regularization (more on that later)

e A different view of regularization: we want to optimize the error while
keeping the Ly norm of the weights, w!w, bounded.
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Detour: Constrained optimization

Suppose we want to find

m“ifn f(w)

such that g(w) = 0

V()

XA
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Detour: Lagrange multipliers

Vf(x)

XA

g(x) =0

e Vg has to be orthogonal to the constraint surface (red curve)

e At the optimum, Vf and Vg have to be parallel (in same or opposite
direction)

e Hence, there must exist some A € R such that Vf + AVg =0
e Lagrangian function: L(x,\) = f(x) + Ag(x)
A is called Lagrange multiplier

e \We obtain the solution to our optimization problem by setting both
ViL =0and £ =0
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Detour: Inequality constraints
e Suppose we want to find

min f(w)

such that g(w) > 0

e In the interior (g(x > 0)) - simply find Vf(x) =0

e On the boundary (g(x = 0)) - same situation as before, but the sign
matters this time
For minimization, we want V f pointing in the same direction as Vg
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Detour: KKT conditions

e Based on the previous observations, let the Lagrangian be L(x,\) =
f(x) = Ag(x)

e We minimize L wrt x subject to the following constraints:

A >0
g(x) = 0
Ag(x) = 0

e These are called Karush-Kuhn-Tucker (KKT) conditions
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L> Regularization for linear models revisited

e Optimization problem: minimize error while keeping norm of the weights
bounded

min Jp(w) = min(®w —y)' (dw —y)

such that w/w < p

e The Lagrangian is:
L(w,\) = Jp(w) = A(n—w'w) = (2w —y)" (Bw —y) + AW’ w — Ap

e For a fixed A\, and n = A~ ! the best w is the same as obtained by
weight decay
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Visualizing regularization (2 parameters)

(€

I
NI

w* = (®1® + \I) Py
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Pros and cons of L, regularization

o If \is at a “good” value, regularization helps to avoid overfitting

e Choosing A may be hard: cross-validation is often used

e If there are irrelevant features in the input (i.e. features that do not

affect the output), Lo will give them small, but non-zero weights.

e |deally, irrelevant input should have weights exactly equal to 0.
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L1 Regularization for linear models

e Instead of requiring the Lo norm of the weight vector to be bounded,
make the requirement on the L1 norm:

min Jp(w) = min(®Pw — Y)T(‘I’W -y)

n
such that Z|wz| < 7
i=1

e This yields an algorithm called Lasso (Tibshirani, 1996)
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Solving L regularization

e The optimization problem is a quadratic program

e There is one constraint for each possible sign of the weights (2"
constraints for n weights)

e For example, with two weights: m
: 2
min . — W1T] — Wk
nin > (yj — wizs — wois)
j=1
such that w1 +wy < 17
wp—wy <M
—wytwy <N
—w; —wz <N

e Solving this program directly can be done for problems with a small
number of inputs
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Visualizing L, regularization

N

e If A\ is big enough, the circle is very likely to intersect the diamond at
one of the corners

e This makes L; regularization much more likely to make some weights
exactly 0
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Pros and cons of L regularization

e |f there are irrelevant input features, Lasso is likely to make their weights
0, while L is likely to just make all weights small

e |asso is biased towards providing sparse solutions in general
e Lasso optimization is computationally more expensive than Lo

e More efficient solution methods have to be used for large numbers of
inputs (e.g. least-angle regression, 2003).

e [.; methods of various types are very popular
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Example of L1 vs L2 effect

0.4

Coefficients

0.0

Coefficient
0.2
|
s} 2 T 3 o
=%

-0.2

e Note the sparsity in the coefficients induces by L

e Lasso is an efficient way of performing the L optimization
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More generally: statistical parameter fitting

e Given instances Xji,...X,, that are i.i.d. (this may or may not include
the class label):

e Find a set of parameters 6 such that the data can be summarized by a
probability P(x|0)

e 0 depends on the family of probability distributions we consider (e.g.
multinomial, Gaussian etc.)

e For regression and supervised methods, e have special target variables
and we are interested in P(y|x, w)
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Maximum likelihood fitting

e Let D be the data set (all the instances)
e The likelihood of parameter set 6 given dataset D is defined as:

L(0|D) = P(D|0)

e We derived this in lecture 1 from Bayes theorem, assuming a uniform
prior over instances
e |f the instances are i.i.d., we have:

L(6|D) = P(D|§) =

P(x,0)

||:3

e E.g. in coin tossing, the likelihood of a parameter 6 given the sequence
D=HT, HT,T is:

LOID) =0(1—-0)0(1—6)(1—0) =011 -
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e Standard trick: maximize log L(#|D) instead!

e To maximize, we take the derivatives of this function with respect to 6
and set them to 0
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Sufficient statistics

e To compute the likelihood in the coin tossing example, we only need to
know Ny and N7 (number of heads and tails)

e We say that Ny and Np are sufficient statistics for the binomial
distribution

e |n general, a sufficient statistic of the data is a function of the data that
summarizes enough information to compute the likelihood

e Formally, s(D) is a sufficient statistic if, for any two data sets D and D’,

s(D) = s(D") = L(0|D) = L(6|D")
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MLE applied to the binomial data

e The likelihood is:
L(9|D) = 6Nu(1 — g)Nr

e The log likelihood is:
log L(6|D) = Nglog + Nrlog(l—0)

e Take the derivative of the log likelihood and set it to O:

s, Ny Nt
Selog L(OD) = =1 + =L (1) =0
e Solving this gives
g— N
~ Npg+ Nr

e This is intuitively appealing!
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MLE for multinomial distribution

e Suppose that instead of tossing a coin, we roll a K-faced die
e The set of parameters in this case is P(k) =0, k=1,... K
e We have the additional constraint that Zszl 0, =1

e What is the log likelihood in this case?

log L(6|D) = ) ~ Ny log b,
k

where N is the number of times value k appears in the data

e We want to maximize the likelihood, but now this is a constrained
optimization problem
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Lagrange multipliers at work

e \We can re-write our problem as maximizing:

ZNklog9k+)\ (1 —Z@k>
k k

e By taking the derivatives wrt 0 and setting them to 0 we get N, = A0

e By summing over k and imposing the condition that ), 0, = 1 we get
A=, Ny
e Hence, the best parameters are given by the "empirical frequencies’:

g, — N
) Zka

COMP-652 and ECSE-608, Lecture 3 - January 19, 2016 22



Consistency of MLE

e For any estimator, we would like the parameters to converge to the "best
possible” values as the number of examples grows

We need to define “best possible” for probability distributions

e Let p and g be two probability distributions over X. The Kullback-Leibler
divergence between p and ¢ is defined as:

P(x)
q()

KL(p.q) =Y Plx)log
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A very brief detour into information theory

e Suppose | want to send some data over a noisy channel

e | have 4 possible values that | could send (e.g. A,C,G,T) and | want to
encode them into bits such as to have short messages.

e Suppose that all values are equally likely. What is the best encoding?
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A very brief detour into information theory (2)
e Now suppose | know A occurs with probability 0.5, C' and G with

probability 0.25 and 1" with probability 0.125. What is the best encoding?
e What is the expected length of the message | have to send?
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Optimal encoding

e Suppose that | am receiving messages from an alphabet of m letters,
and letter j has probability p;

e The optimal encoding (by Shannon's theorem) will give —log, p; bits to
letter j

e So the expected message length if | used the optimal encoding will be
equal to the entropy of p:

— Z pjlogy pj
J
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Interpretation of KL divergence

e Suppose now that letters would be coming from p but | don’t know this.
Instead, | believe letters are coming from ¢, and | use ¢ to make the
optimal encoding.

e The expected length of my messages will be — Zj pjlog, q;

e The amount of bits | waste with this encoding is:

p.
— pilogyq; + Y pjlogap; =) ﬁpjlongZKL(p,Q)
J J J
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Properties of MLE

e MLE is a consistent estimator, in the sense that (under a set of
standard assumptions), w.p.1, we have:

lim 6 = 6%,

| D|— 00
where 0% is the “best” set of parameters:

0" = arg m@in KL(p*(X), P(X|0))

(p* is the true distribution)

e With a small amount of data, the variance may be high (what happens
if we observe just one coin toss?)
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Prediction as inference

P(aniilon, .. 2y) = /P(xn+1|9, v1r. 2 POlze, . . )dO

_ / P(2911|0) (821, - .. )d6,

where
P(xy1,...2,|0)P(0)

P(xy...2p)

Note that P(x1...x,) is just a normalizing factor and P(x1,...x,|0) =
L(0|D).

PO|x1,...x,) =

COMP-652 and ECSE-608, Lecture 3 - January 19, 2016 29



Example: Binomial data

e Suppose we observe 1 toss, r1 = H. What would the MLE be?

e In the Bayesian approach,

P0|x1,...xn) < P(x1,...x,|0)P(0)

e Assume we have a uniform prior for 6 € [0,1], so P(f) = 1 (remember
that 6 is a continuous variable!)

e [hen we have:

P(ro=H|r1 =H) /01 P(zx1=H|0)P(0)P(x2 = H|0)do
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Example (continued)

o Likewise, we have:

P(xs = T|z1 = H) o /01 P(x1 = H|0)P(0)P(z2 = T|6)d0

1 1
0 §)

e By normalizing we get:

Wl

P(CCQZH‘CIHZH) = =

W — Wi
_|_
[ I

P(QJQZT’QZl:H) =

e |t is as if we had our original data, plus two more
one tails)
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Prior knowledge

e The prior incorporates prior knowledge or beliefs about the parameters
e As data is gathered, these beliefs do not play a significant role anymore

e More specifically, if the prior is well-behaved (does not assign 0 probability
to feasible parameter values), MLE and Bayesian approach both give
consistent estimators, so they converge in the limit to the same answer

e But the MLE and Bayesian predictions typically differ after fixed amounts
of data. But in the short run, the prior can impact the speed of learning!
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Multinomial distribution
e Suppose that instead of a coin toss, we have a discrete random variable

with k& > 2 possible values. We want to learn parameters 64, ...0,.

e The number of times each outcome is observed, INVy,... N, represent
sufficient statistics, and the likelihood function is:

L(0|D) = He

e The MLE is, as expected,
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Dirichlet priors

e A Dirichlet prior with parameters (1, ... 3 is defined as:

P@O)=a]]6)"

e Then the posterior will have the same form, with parameter 5; + IV;:
P(0|D) = P(O)P(D|0) = a [ [ 07

e \We can compute the prediction of a new event in closed form:

B + N

Plant =HD) =60 w)
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Conjugate families

e The property that the posterior distribution follows the same parametric
form as the prior is called conjugacy

E.g. the Dirichlet prior is a conjugate family for the multinomial likelihood

e Conjugate families are useful because:

— They can be represented in closed form

— Often we can do on-line, incremental updates to the parameters as
data is gathered

— Often there is a closed-form solution for the prediction problem
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Prior knowledge and Dirichlet priors

e The parameters 3; can be thought of a “imaginary counts” from prior
experience

e The equivalent sample size is 81 + - - - + 0y

e The magnitude of the equivalent sample size indicates how confident we
are in your priors

e The larger the equivalent sample size, the more real data items it will
take to wash out the effect of the prior knowledge
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The anatomy of the error of an estimator

e Suppose we have examples (x,y) where y = f(x) + ¢ and € is Gaussian
noise with zero mean and standard deviation o

e We fit a linear hypothesis h(x) = w’'x, such as to minimize sum-squared
error over the training data:

m

Z(yi — h(Xq;))2

1=1

e Because of the hypothesis class that we chose (hypotheses linear in
the parameters) for some target functions f we will have a systematic
prediction error

e Even if f were truly from the hypothesis class we picked, depending on
the data set we have, the parameters w that we find may be different;
this variability due to the specific data set on hand is a different source
of error
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Bias-variance analysis

e Given a new data point x, what is the expected prediction error?
e Assume that the data points are drawn independently and identically
distributed (i.i.d.) from a unique underlying probability distribution

P((x,y)) = P(x)P(y|x)
e The goal of the analysis is to compute, for an arbitrary given point x,
Ep [(y — h(x))*[x]
where y is the value of x in a data set, and the expectation is over all
training sets of a given size, drawn according to P

e For a given hypothesis class, we can also compute the true error, which
is the expected error over the input distribution:

ZEP y — h(x))*[x] P(x)

(if x continuous, sum becomes integral with appropriate conditions).
e \We will decompose this expectation into three components
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Recall: Statistics 101

e Let X be a random variable with possible values x;,72 = 1...n and with

probability distribution P(X)

e The expected value or mean of X is:

E[X] = Z z;P(z;)

e |f X is continuous, roughly speaking, the sum is replaced by an integral,
and the distribution by a density function

e [he variance of X is:

Var|X]
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The variance lemma
Var[X] = E[(X — E[X])?

n

= Z(J/’z‘ — BIX])*P(x;)

n

= > (af — 2w BX] + (E[X])*) ()

= ZxQP x;) —2FE[X Zxsz
1=1

— FE[X?] - 2E[X|E[X] + (E[X])2 -1
= E[X°] - (B[X])’

We will use the form:
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Bias-variance decomposition

e Simple algebra:
Bp [(y—h(x)2x] = Ep[(h(x))? - 2yh(x) + y*x]
— Bp [(h(x)?x] + Bp [y2Ix] — 2Ep[y[x|Ep [h(x)|x]

e Let h(x) = Ep[h(x)|x] denote the mean prediction of the hypothesis at
x, when h is trained with data drawn from P

e For the first term, using the variance lemma, we have:
Ep|(h(x))?|x] = Ep[(h(x) — h(x))*|x] + (h(x))’

e Note that Eply|x| = Ep[f(x) + ¢|x] = f(x) (because of linearity of
expectation and the assumption on € ~ N (0,0))

e For the second term, using the variance lemma, we have:

Ely*|x] = E[(y — f(x))*|x] + (f(x))*
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Bias-variance decomposition (2)

e Putting everything together, we have:

Ep[(y — h(x))%x] = Ep[(h(x)— h(x))*|x] + (h(x))? — 2f(x)h(x)
+ Epl(y — f(x)*x] + (f(x))?
= Ep[(h(x) — h(x))?x] + (f(x) — h(x))?
+ Elly— f(x))?x]

e The first term, Ep[(h(x) — h(x))?|x], is the variance of the hypothesis
h at x, when trained with finite data sets sampled randomly from P

e The second term, (f(x) — h(x))?, is the squared bias (or systematic
error) which is associated with the class of hypotheses we are considering

e The last term, E[(y — f(x))?|x] is the noise, which is due to the problem
at hand, and cannot be avoided
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Error decomposition

0 .
-3 -2 -1

In

2

0.15

(biasy
0.12r variance

(bias)2 + variance
0.09r test error /
0.06}
0.03f /

0 1
A

e The bias-variance sum approximates well the test error over a set of 1000
points

e x-axis measures the hypothesis complexity (decreasing left-to-right)

e Simple hypotheses usually have high bias (bias will be high at many
points, so it will likely be high for many possible input distributions)

e Complex hypotheses have high variance: the hypothesis is very dependent
on the data set on which it was trained.
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Bias-variance trade-off

e Typically, bias comes from not having good hypotheses in the considered
class

e Variance results from the hypothesis class containing “too many”
hypotheses

e MLE estimation is typically unbiased, but has high variance
e Bayesian estimation is biased, but typically has lower variance

e Hence, we are faced with a trade-off. choose a more expressive class
of hypotheses, which will generate higher variance, or a less expressive
class, which will generate higher bias

e Making the trade-off has to depend on the amount of data available to
fit the parameters (data usually mitigates the variance problem)
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More on overfitting

e Overfitting depends on the amount of data, relative to the complexity of
the hypothesis

e With more data, we can explore more complex hypotheses spaces, and
still find a good solution
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Bayesian view of regularization

e Start with a prior distribution over hypotheses
e As data comes in, compute a posterior distribution

e We often work with conjugate priors, which means that when combining
the prior with the likelihood of the data, one obtains the posterior in the
same form as the prior

e Regularization can be obtained from particular types of prior (usually,
priors that put more probability on simple hypotheses)

e E.g. L5 regularization can be obtained using a circular Gaussian prior for
the weights, and the posterior will also be Gaussian

e E.g. [, regularization uses double-exponential prior (see (Tibshirani,

1996))
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Bayesian view of regularization

likelihood prior/posterior data space
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e Prior is round Gaussian

e Posterior will be skewed by the data
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What does the Bayesian view give us?

= ] {

/
1

xz xz

0 1
e Circles are data points
e Green is the true function
e Red lines on right are drawn from the posterior distribution
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What does the Bayesian view give us?

e Functions drawn from the posterior can be very different

e Uncertainty decreases where there are data points
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What does the Bayesian view give us?

e Uncertainty estimates, i.e. how sure we are of the value of the function

e These can be used to guide active learning: ask about inputs for which
the uncertainty in the value of the function is very high

e In the limit, Bayesian and maximum likelihood learning converge to the
same answer

e In the short term, one needs a good prior to get good estimates of the
parameters

e Sometimes the prior is overwhelmed by the data likelihood too early.

e Using the Bayesian approach does NOT eliminate the need to do cross-
validation in general

e More on this later...
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