
Lecture 3: More on regularization. Bayesian vs
maximum likelihood learning

• L2 and L1 regularization for linear estimators

• A Bayesian interpretation of regularization

• Bayesian vs maximum likelihood fitting more generally
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Recall: Regularization

• Remember the intuition: complicated hypotheses lead to overfitting

• Idea: change the error function to penalize hypothesis complexity:

J(w) = JD(w) + λJpen(w)

This is called regularization in machine learning and shrinkage in statistics

• λ is called regularization coefficient and controls how much we value
fitting the data well, vs. a simple hypothesis
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Recall: What L2 regularization for linear models does

arg min
w

1

2
(Φw − y)T (Φw − y) +

λ

2
wTw = (ΦTΦ + λI)−1ΦTy

• If λ = 0, the solution is the same as in regular least-squares linear
regression

• If λ→∞, the solution w→ 0

• Positive λ will cause the magnitude of the weights to be smaller than in
the usual linear solution

• This is also called ridge regression, and it is a special case of Tikhonov
regularization (more on that later)

• A different view of regularization: we want to optimize the error while
keeping the L2 norm of the weights, wTw, bounded.
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Detour: Constrained optimization

Suppose we want to find

min
w
f(w)

such that g(w) = 0

∇f(x)

∇g(x)

xA

g(x) = 0
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Detour: Lagrange multipliers

∇f(x)

∇g(x)

xA

g(x) = 0

• ∇g has to be orthogonal to the constraint surface (red curve)

• At the optimum, ∇f and ∇g have to be parallel (in same or opposite
direction)

• Hence, there must exist some λ ∈ R such that ∇f + λ∇g = 0

• Lagrangian function: L(x, λ) = f(x) + λg(x)
λ is called Lagrange multiplier

• We obtain the solution to our optimization problem by setting both
∇xL = 0 and ∂L

∂λ = 0
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Detour: Inequality constraints

• Suppose we want to find

min
w
f(w)

such that g(w) ≥ 0

∇f(x)

∇g(x)

xA

xB

g(x) = 0
g(x) > 0

• In the interior (g(x > 0)) - simply find ∇f(x) = 0

• On the boundary (g(x = 0)) - same situation as before, but the sign
matters this time
For minimization, we want ∇f pointing in the same direction as ∇g

COMP-652 and ECSE-608, Lecture 3 - January 19, 2016 6



Detour: KKT conditions

• Based on the previous observations, let the Lagrangian be L(x, λ) =
f(x)− λg(x)

• We minimize L wrt x subject to the following constraints:

λ ≥ 0

g(x) ≥ 0

λg(x) = 0

• These are called Karush-Kuhn-Tucker (KKT) conditions
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L2 Regularization for linear models revisited

• Optimization problem: minimize error while keeping norm of the weights
bounded

min
w
JD(w) = min

w
(Φw − y)T (Φw − y)

such that wTw ≤ η

• The Lagrangian is:

L(w, λ) = JD(w)−λ(η−wTw) = (Φw−y)T (Φw−y) +λwTw−λη

• For a fixed λ, and η = λ−1, the best w is the same as obtained by
weight decay
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Visualizing regularization (2 parameters)

w1

w2

w?

w∗ = (ΦTΦ + λI)−1Φy
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Pros and cons of L2 regularization

• If λ is at a “good” value, regularization helps to avoid overfitting

• Choosing λ may be hard: cross-validation is often used

• If there are irrelevant features in the input (i.e. features that do not
affect the output), L2 will give them small, but non-zero weights.

• Ideally, irrelevant input should have weights exactly equal to 0.
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L1 Regularization for linear models

• Instead of requiring the L2 norm of the weight vector to be bounded,
make the requirement on the L1 norm:

min
w
JD(w) = min

w
(Φw − y)T (Φw − y)

such that
n∑
i=1

|wi| ≤ η

• This yields an algorithm called Lasso (Tibshirani, 1996)
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Solving L1 regularization

• The optimization problem is a quadratic program

• There is one constraint for each possible sign of the weights (2n

constraints for n weights)

• For example, with two weights:

min
w1,w2

m∑
j=1

(yj − w1x1 − w2x2)
2

such that w1 + w2 ≤ η

w1 − w2 ≤ η

−w1 + w2 ≤ η

−w1 − w2 ≤ η

• Solving this program directly can be done for problems with a small
number of inputs
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Visualizing L1 regularization

w1

w2

w?

• If λ is big enough, the circle is very likely to intersect the diamond at
one of the corners

• This makes L1 regularization much more likely to make some weights
exactly 0
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Pros and cons of L1 regularization

• If there are irrelevant input features, Lasso is likely to make their weights
0, while L2 is likely to just make all weights small

• Lasso is biased towards providing sparse solutions in general

• Lasso optimization is computationally more expensive than L2

• More efficient solution methods have to be used for large numbers of
inputs (e.g. least-angle regression, 2003).

• L1 methods of various types are very popular
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Example of L1 vs L2 effect

Example: lasso vs. ridge

From HTF: prostate data
Red lines: choice of � by 10-fold CV.
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• Note the sparsity in the coefficients induces by L1

• Lasso is an efficient way of performing the L1 optimization
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More generally: statistical parameter fitting

• Given instances x1, . . .xm that are i.i.d. (this may or may not include
the class label):

• Find a set of parameters θ such that the data can be summarized by a
probability P (x|θ)
• θ depends on the family of probability distributions we consider (e.g.

multinomial, Gaussian etc.)

• For regression and supervised methods, e have special target variables
and we are interested in P (y|x,w)
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Maximum likelihood fitting

• Let D be the data set (all the instances)
• The likelihood of parameter set θ given dataset D is defined as:

L(θ|D) = P (D|θ)

• We derived this in lecture 1 from Bayes theorem, assuming a uniform
prior over instances
• If the instances are i.i.d., we have:

L(θ|D) = P (D|θ) =

m∏
j=1

P (xj|θ)

• E.g. in coin tossing, the likelihood of a parameter θ given the sequence
D = H,T,H, T, T is:

L(θ|D) = θ(1− θ)θ(1− θ)(1− θ) = θNH(1− θ)NT
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• Standard trick: maximize logL(θ|D) instead!

logL(θ|D) =

m∑
i=1

logP (xj|θ)

• To maximize, we take the derivatives of this function with respect to θ
and set them to 0
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Sufficient statistics

• To compute the likelihood in the coin tossing example, we only need to
know NH and NT (number of heads and tails)

• We say that NH and NT are sufficient statistics for the binomial
distribution

• In general, a sufficient statistic of the data is a function of the data that
summarizes enough information to compute the likelihood

• Formally, s(D) is a sufficient statistic if, for any two data sets D and D′,

s(D) = s(D′)⇒ L(θ|D) = L(θ|D′)
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MLE applied to the binomial data

• The likelihood is:
L(θ|D) = θNH(1− θ)NT

• The log likelihood is:

logL(θ|D) = NH log θ +NT log(1− θ)

• Take the derivative of the log likelihood and set it to 0:

∂

∂θ
logL(θ|D) =

NH
θ

+
NT

1− θ
(−1) = 0

• Solving this gives

θ =
NH

NH +NT
• This is intuitively appealing!
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MLE for multinomial distribution

• Suppose that instead of tossing a coin, we roll a K-faced die

• The set of parameters in this case is P (k) = θk, k = 1, . . .K

• We have the additional constraint that
∑K
k=1 θk = 1

• What is the log likelihood in this case?

logL(θ|D) =
∑
k

Nk log θk

where Nk is the number of times value k appears in the data

• We want to maximize the likelihood, but now this is a constrained
optimization problem
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Lagrange multipliers at work

• We can re-write our problem as maximizing:

∑
k

Nk log θk + λ

(
1−

∑
k

θk

)

• By taking the derivatives wrt θk and setting them to 0 we get Nk = λθk

• By summing over k and imposing the condition that
∑
k θk = 1 we get

λ =
∑
kNk

• Hence, the best parameters are given by the ”empirical frequencies”:

θ̂k =
Nk∑
kNk
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Consistency of MLE

• For any estimator, we would like the parameters to converge to the “best
possible” values as the number of examples grows

We need to define “best possible” for probability distributions

• Let p and q be two probability distributions over X. The Kullback-Leibler
divergence between p and q is defined as:

KL(p, q) =
∑
x

P (x) log
P (x)

q(x)
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A very brief detour into information theory

• Suppose I want to send some data over a noisy channel

• I have 4 possible values that I could send (e.g. A,C,G,T) and I want to
encode them into bits such as to have short messages.

• Suppose that all values are equally likely. What is the best encoding?
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A very brief detour into information theory (2)

• Now suppose I know A occurs with probability 0.5, C and G with
probability 0.25 and T with probability 0.125. What is the best encoding?

• What is the expected length of the message I have to send?
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Optimal encoding

• Suppose that I am receiving messages from an alphabet of m letters,
and letter j has probability pj

• The optimal encoding (by Shannon’s theorem) will give − log2 pj bits to
letter j

• So the expected message length if I used the optimal encoding will be
equal to the entropy of p:

−
∑
j

pj log2 pj
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Interpretation of KL divergence

• Suppose now that letters would be coming from p but I don’t know this.
Instead, I believe letters are coming from q, and I use q to make the
optimal encoding.

• The expected length of my messages will be −
∑
j pj log2 qj

• The amount of bits I waste with this encoding is:

−
∑
j

pj log2 qj +
∑
j

pj log2 pj =
∑
j

pj log2

pj
qj

= KL(p, q)
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Properties of MLE

• MLE is a consistent estimator, in the sense that (under a set of
standard assumptions), w.p.1, we have:

lim
|D|→∞

θ = θ∗,

where θ∗ is the “best” set of parameters:

θ∗ = arg min
θ
KL(p∗(X), P (X|θ))

(p∗ is the true distribution)

• With a small amount of data, the variance may be high (what happens
if we observe just one coin toss?)
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Prediction as inference

P (xn+1|x1, . . . xn) =

∫
P (xn+1|θ, x1, . . . xn)P (θ|x1, . . . xn)dθ

=

∫
P (xn+1|θ)P (θ|x1, . . . xn)dθ,

where

P (θ|x1, . . . xn) =
P (x1, . . . xn|θ)P (θ)

P (x1 . . . xn)

Note that P (x1 . . . xn) is just a normalizing factor and P (x1, . . . xn|θ) =
L(θ|D).
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Example: Binomial data

• Suppose we observe 1 toss, x1 = H. What would the MLE be?

• In the Bayesian approach,

P (θ|x1, . . . xn) ∝ P (x1, . . . xn|θ)P (θ)

• Assume we have a uniform prior for θ ∈ [0, 1], so P (θ) = 1 (remember
that θ is a continuous variable!)

• Then we have:

P (x2 = H|x1 = H) ∝
∫ 1

0

P (x1 = H|θ)P (θ)P (x2 = H|θ)dθ

=

∫ 1

0

θ · 1 · θ =
1

3
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Example (continued)

• Likewise, we have:

P (x2 = T |x1 = H) ∝
∫ 1

0

P (x1 = H|θ)P (θ)P (x2 = T |θ)dθ

=

∫ 1

0

θ · 1 · (1− θ) =
1

6

• By normalizing we get:

P (x2 = H|x1 = H) =
1
3

1
3 + 1

6

=
2

3

P (x2 = T |x1 = H) =
1

3

• It is as if we had our original data, plus two more tosses! (one heads,
one tails)
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Prior knowledge

• The prior incorporates prior knowledge or beliefs about the parameters

• As data is gathered, these beliefs do not play a significant role anymore

• More specifically, if the prior is well-behaved (does not assign 0 probability
to feasible parameter values), MLE and Bayesian approach both give
consistent estimators, so they converge in the limit to the same answer

• But the MLE and Bayesian predictions typically differ after fixed amounts
of data. But in the short run, the prior can impact the speed of learning!
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Multinomial distribution

• Suppose that instead of a coin toss, we have a discrete random variable
with k > 2 possible values. We want to learn parameters θ1, . . . θk.

• The number of times each outcome is observed, N1, . . . Nk represent
sufficient statistics, and the likelihood function is:

L(θ|D) =

k∏
i=1

θNii

• The MLE is, as expected,

θi =
Ni

N1 + · · ·+Nk
,∀i = 1, . . . k
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Dirichlet priors

• A Dirichlet prior with parameters β1, . . . βk is defined as:

P (θ) = α
∏

θβi−1i

• Then the posterior will have the same form, with parameter βi +Ni:

P (θ|D) = P (θ)P (D|θ) = α
∏

θβi−1+Nii

• We can compute the prediction of a new event in closed form:

P (xn+1 = k|D) =
βk +Nk∑
(βi +Ni)
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Conjugate families

• The property that the posterior distribution follows the same parametric
form as the prior is called conjugacy

E.g. the Dirichlet prior is a conjugate family for the multinomial likelihood

• Conjugate families are useful because:

– They can be represented in closed form
– Often we can do on-line, incremental updates to the parameters as

data is gathered
– Often there is a closed-form solution for the prediction problem
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Prior knowledge and Dirichlet priors

• The parameters βi can be thought of a “imaginary counts” from prior
experience

• The equivalent sample size is β1 + · · ·+ βk

• The magnitude of the equivalent sample size indicates how confident we
are in your priors

• The larger the equivalent sample size, the more real data items it will
take to wash out the effect of the prior knowledge
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The anatomy of the error of an estimator

• Suppose we have examples 〈x, y〉 where y = f(x) + ε and ε is Gaussian
noise with zero mean and standard deviation σ
• We fit a linear hypothesis h(x) = wTx, such as to minimize sum-squared

error over the training data:

m∑
i=1

(yi − h(xi))
2

• Because of the hypothesis class that we chose (hypotheses linear in
the parameters) for some target functions f we will have a systematic
prediction error
• Even if f were truly from the hypothesis class we picked, depending on

the data set we have, the parameters w that we find may be different;
this variability due to the specific data set on hand is a different source
of error
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Bias-variance analysis

• Given a new data point x, what is the expected prediction error?
• Assume that the data points are drawn independently and identically

distributed (i.i.d.) from a unique underlying probability distribution
P (〈x, y〉) = P (x)P (y|x)
• The goal of the analysis is to compute, for an arbitrary given point x,

EP
[
(y − h(x))2|x

]
where y is the value of x in a data set, and the expectation is over all
training sets of a given size, drawn according to P
• For a given hypothesis class, we can also compute the true error, which

is the expected error over the input distribution:∑
x

EP
[
(y − h(x))2|x

]
P (x)

(if x continuous, sum becomes integral with appropriate conditions).
• We will decompose this expectation into three components
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Recall: Statistics 101

• Let X be a random variable with possible values xi, i = 1 . . . n and with
probability distribution P (X)

• The expected value or mean of X is:

E[X] =

n∑
i=1

xiP (xi)

• If X is continuous, roughly speaking, the sum is replaced by an integral,
and the distribution by a density function

• The variance of X is:

V ar[X] = E[(X − E(X))2]

= E[X2]− (E[X])2
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The variance lemma

V ar[X] = E[(X − E[X])2]

=

n∑
i=1

(xi − E[X])2P (xi)

=

n∑
i=1

(x2i − 2xiE[X] + (E[X])2)P (xi)

=

n∑
i=1

x2iP (xi)− 2E[X]

n∑
i=1

xiP (xi) + (E[X])2
n∑
i=1

P (xi)

= E[X2]− 2E[X]E[X] + (E[X])2 · 1
= E[X2]− (E[X])2

We will use the form:

E[X2] = (E[X])2 + V ar[X]
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Bias-variance decomposition

• Simple algebra:

EP
[
(y − h(x))2|x

]
= EP

[
(h(x))2 − 2yh(x) + y2|x

]
= EP

[
(h(x))2|x

]
+ EP

[
y2|x

]
− 2EP [y|x]EP [h(x)|x]

• Let h̄(x) = EP [h(x)|x] denote the mean prediction of the hypothesis at
x, when h is trained with data drawn from P

• For the first term, using the variance lemma, we have:

EP [(h(x))2|x] = EP [(h(x)− h̄(x))2|x] + (h̄(x))2

• Note that EP [y|x] = EP [f(x) + ε|x] = f(x) (because of linearity of
expectation and the assumption on ε ∼ N (0, σ))

• For the second term, using the variance lemma, we have:

E[y2|x] = E[(y − f(x))2|x] + (f(x))2
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Bias-variance decomposition (2)

• Putting everything together, we have:

EP
[
(y − h(x))2|x

]
= EP [(h(x)− h̄(x))2|x] + (h̄(x))2 − 2f(x)h̄(x)

+ EP [(y − f(x))2|x] + (f(x))2

= EP [(h(x)− h̄(x))2|x] + (f(x)− h̄(x))2

+ E[(y − f(x))2|x]

• The first term, EP [(h(x) − h̄(x))2|x], is the variance of the hypothesis
h at x, when trained with finite data sets sampled randomly from P

• The second term, (f(x) − h̄(x))2, is the squared bias (or systematic
error) which is associated with the class of hypotheses we are considering

• The last term, E[(y−f(x))2|x] is the noise, which is due to the problem
at hand, and cannot be avoided
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Error decomposition
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• The bias-variance sum approximates well the test error over a set of 1000
points

• x-axis measures the hypothesis complexity (decreasing left-to-right)

• Simple hypotheses usually have high bias (bias will be high at many
points, so it will likely be high for many possible input distributions)

• Complex hypotheses have high variance: the hypothesis is very dependent
on the data set on which it was trained.
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Bias-variance trade-off

• Typically, bias comes from not having good hypotheses in the considered
class

• Variance results from the hypothesis class containing “too many”
hypotheses

• MLE estimation is typically unbiased, but has high variance

• Bayesian estimation is biased, but typically has lower variance

• Hence, we are faced with a trade-off: choose a more expressive class
of hypotheses, which will generate higher variance, or a less expressive
class, which will generate higher bias

• Making the trade-off has to depend on the amount of data available to
fit the parameters (data usually mitigates the variance problem)
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More on overfitting

• Overfitting depends on the amount of data, relative to the complexity of
the hypothesis

• With more data, we can explore more complex hypotheses spaces, and
still find a good solution
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Bayesian view of regularization

• Start with a prior distribution over hypotheses

• As data comes in, compute a posterior distribution

• We often work with conjugate priors, which means that when combining
the prior with the likelihood of the data, one obtains the posterior in the
same form as the prior

• Regularization can be obtained from particular types of prior (usually,
priors that put more probability on simple hypotheses)

• E.g. L2 regularization can be obtained using a circular Gaussian prior for
the weights, and the posterior will also be Gaussian

• E.g. L1 regularization uses double-exponential prior (see (Tibshirani,
1996))
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Bayesian view of regularization

• Prior is round Gaussian

• Posterior will be skewed by the data

COMP-652 and ECSE-608, Lecture 3 - January 19, 2016 47



What does the Bayesian view give us?
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• Circles are data points
• Green is the true function
• Red lines on right are drawn from the posterior distribution
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What does the Bayesian view give us?
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• Functions drawn from the posterior can be very different

• Uncertainty decreases where there are data points
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What does the Bayesian view give us?

• Uncertainty estimates, i.e. how sure we are of the value of the function

• These can be used to guide active learning: ask about inputs for which
the uncertainty in the value of the function is very high

• In the limit, Bayesian and maximum likelihood learning converge to the
same answer

• In the short term, one needs a good prior to get good estimates of the
parameters

• Sometimes the prior is overwhelmed by the data likelihood too early.

• Using the Bayesian approach does NOT eliminate the need to do cross-
validation in general

• More on this later...
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