
Lecture 11: Sorting. Proofs of correctness and lower
bounds. Selection sort.

Doina Precup
With many thanks to Prakash Panagaden and Mathieu Blanchette

January 29, 2014

1 Sorting

Suppose that you are given an array of elements and you want toput the elements in increasing or
decreasing order. This can be useful for many different reasons, but here I will note just two. First,
as we saw, we can search much faster in a sorted array than in anunsorted array (by doing binary
search, instead of sequential search). Second, when we present data to customers, it can be very
useful to show it in order (e.g. the names of students in a class, the bank transactions ordered by
the date etc). Sorting is one of the most studied problems in computer science, and many different
algorithms have been developed. Today we will discuss our first sorting algorithm: selection sort.

2 Selection sort

The idea of selection sort is very simple: we can repeatedly select the maximum element in an
array, move it in the last position, then select the maximum in the remaining portion, move it into
the second to last position etc., until no elements are left.For examples, supposed we have the
following array:

1 4 2 3

We find the max element (4) and its index, and we swap it in the last position. This leads to
the array:

1 3 2 4

Now we will look at the first 3 elements in the array only, find the max, and swap it in the last
position in this array portion:

1 2 3 4

1



Further iterations of the algorithm will look at the first 2 elements, then the first element, but
no further modifications are necessary.

In order to write this algorithm, we will need a “helper” function (or method, in Java), which
finds the index of the maximum element within the firstn elements of an array and returns it. We
now turn our attention to this algorithm.

3 Finding the maximum in an array revisited

Consider the simple algorithm of finding the index to the maximum element in an array of numbers:

Algorithm findMaxIndex(a,n)
Input: An arraya of n elements, which can be compared to each other
Output: The index of the largest element in the array
int max← a[0]
int indmax← 0
for i← 1 to n− 1

if (a[i] > max) then
max← a[i]
indmax← i

endif
return indmax

How many steps does this take? Let us count the comparisons that take place inside the loop.
The loop gets executed exactlyn − 1 times, regardless of how the array looks. So the best, worst
and average number of comparisons isn− 1. Indeed, thisn− 1 is a lower bound on the number
of operations needed. In other words, without doing at leastthis many comparisons, you cannot
generate a proof that the claimed maximum is indeed the maximum. Indeed, suppose that we
could come up with an algorithm that does onlyn − 2 comparisons. In this case, there must be
some element in the array that never gets compared with the max. If you imagine anadversary
arranging the input data, he or she can hide the true max in theelement that never gets compared
with the candidate max. So the solution you return will be wrong.

In general,lower bounds on the running time of an algorithm tell you how many operations
are needed, in the worst case,by any algorithm solving this problem. If you prove a lower bound
for a problem, then you know that no algorithm, no matter how smart or fancy, can beat this, in the
worst case. The typical way to prove lower bounds is to useadversarial arguments, like the one
we saw above. This assumes that an adversary has knowledge ofwhat you are doing, and tries to
do what’s worst for you. Providing these kinds of proofs is often quite tricky.

How do we prove that this algorithm is correct? We need to notethat, after every execution of
the loop, max will contain the largest element in the part of the array seen so far, and indmax will
contain the corresponding index. We can write this as follows:

afteri iterations∀j ≤ i, a[indmax] ≥ a[j]

We will say that this condition is aloop invariant. Since it holds after every execution of the
loop, it will also hold at the end of the algorithm, so at the end a[indmax] ≥ a[i], ∀i < n. In

2



general, proving the correctness of iterative algorithms (algorithms involving loops) requires us to
use loop invariants. These will be different depending on the algorithm. So there is no “blueprint”
for how these proof should go. We will see next time that it is actually quite a bit easier to prove
the correctness of recursive algorithms, using a techniquecalled proof by induction.

4 Selection Sort pseudocode and running time

The pseudocode of the algorithm is as follows:

Algorithm selectionSort(a, n)
Input: An arraya of n elements
Output: The array will be sorted in place (i.e. after the algorithm finishes, the elements ofa will
be in non-decreasing order)
int i← n− 1
while i > 0 do

int indmax←findMaxIndex(a,i)
swap(a, i, indmax)
i← i− 1

return

Here, findMaxIndex is the algorithm fro the previous section. The swap algorithm simple swaps
the values of the elements whose indices are sent as arguments:

Algorithm swap(a,i,j)
Input: Array a and indicesi andj
Output: The content of elementsa[i] anda[j] will be swapped
tmp← a[i]
a[i]← a[j]
a[j]← tmp
return

Now let us prove that the selection sort algorithm works correctly. This means that at the end
of the execution, we need to havea[j] ≤ a[i], ∀j < i. To prove that the algorithm works correctly,
we need to find aloop invariant which helps us show the condition above. Let the loop invariant
be the following:

after iteration with indexi, a[i] ≥ a[j], ∀j < i

To show this, recall that findMaxIndex works correctly, as weshowed before. So it will find
the largest element among indices1 to i. Then the swap will put this value at positioni. Since we
are working backwards, after the first iteration, we havea[n] ≥ a[j], ∀j < n. After the second
iteration,a[n − 1] ≥ a[j], ∀j < n − 1 etc. Moreover, after the iteration with indexi, elementa[i]
is not visited anymore. This proves the loop invariant. Notethat by putting together the statements
that are true after eachi, the loop invariant implies the ordering condition that we want to show.

To find the complexity of selection sort, consider the numberof comparisons that will have to

3



be executed. We know that the algorithm for finding the max ofn elements takesn−1 comparisons.
So here we will have(n−1) comparisons in the first call to findMaxIndex, thenn−2 in the second
call etc. The comparison in the while loop is executedn times. So the total number of comparisons
will be:

n+ (n− 1) + (n− 2) + . . .+ 1 =
n∑

i=1

i =
(n+ 1)n

2

To see this equality, you can simply group the first and last term, second and second-to-last etc.
Each such sum isn + 1, and there should ben/2 such terms. So (based on the calculation above)
the algorithm isO(n2). We will use induction to prove this formally next lecture.

4


