
Lecture 1: Introduction

Doina Precup
With many thanks to Prakash Panagaden and Mathieu Blanchette

January 6, 2014

1 What is an algorithm?

First of all, welcome to this course! Our goal will be to introduce you to some of the basic concepts
in computer science.

The most important such concept is that of analgorithm . An algorithm givesprecise in-
structions to carry out a task based on well-understood primitive steps. Additionally, we want to
guarantee that if we try to carry this out, the result will be produced in afinite number of steps
(i.e., the task will end). Algorithms have been around for much longer than computers. Actually,
until 1946, “computer” just meant a person that can compute.

To understand what an algorithm is, think of the recipe for cooking pancakes. You will have
a list of ingredients, orinputs: sugar, flour, milk, oil, baking soda, chocolate chips (eachin some
quantity). There is a desiredoutput: yummy pancakes! And there is a precise sequence of steps
that should be followed to achieve it:

1. Pour flour, sugar, chocolate chips and milk in a bowl

2. Mix until the batter is smooth

3. Heat up the grill

4. Put baking soda in the bowl

5. Mix again the batter is smooth

6. Pour oil on the grill and let it heat for 10 sec

7. If the grill is hot enough, pour the batter on the grill

8. Cook until brown, then flip and cook until brown

In general, a cooking recipe can be thought of as an algorithm, which hasinputs, outputs and
a sequence of instructionsdescribing how the output can be obtained from the input. Folding
origami is a similar example, where the input is a sheet of paper and the output is a swan, or some
other desired shape. Can you think of some other examples?

1

Mathematical algorithms have been around since the antiquity. Mayans had algorithms for
predicting solar eclipses centuries in advance. Egyptiansused algorithms to build pyramids. Indi-
ans had algorithms for factorizing polynomials. Greeks hadalgorithms for all kinds of geometric
constructions, like bisecting angles.

Of course, in our daily lives there are also examples for which there is no well-defined “al-
gorithm”. E.g., coaching someone in sports, learning how tobehave in order to make friends,
or making certain scientific discoveries are not describable by precise sequences of steps. For
some tasks, there are algorithms but they do not always work very well. Predicting the weather
or the stock market are such examples; people strive to improve the existing algorithms for these
problems.

Let us consider now the problem of adding up two fractions:

a

b
+

c

d
=

ad+ bc

bd

(For simplicity, assume that we are not interested at the moment in simplifying the resulting frac-
tion; we will explore simplification later). The inputs are the two initial fractions, the output is also
a fraction. The procedure described by the equation above isgeneral-purpose, which means that
it will work for any two well-defined fractions. In general, we will be interested in general-purpose
algorithms, i.e. algorithms that produce thecorrect answer for any inputs that are of a valid type.
During the course, we will see examples of how we canprove that an algorithm is correct.

Aside from correctness, another aspect that we will study indetail is theefficiency of algo-
rithms. For instance, adding two fractions requires 3 multiplications and 1 addition, to produce the
numerator and denominator of the resulting fraction. We will talk about ways of “counting” these
operations and expressing the efficiency/complexity of algorithms during the course.

A large part of computer science is also devoted to coming up with good languages and rep-
resentations for designing and expressing algorithms. Thelanguages that are understandable by
a computer are calledprogramming languages. At the intersection of computer science and
computer engineering, people study the structures or machines for executing algorithms. We will
briefly discuss this aspect as well.

Now let’s come back to the problem of adding two fractions, and try to express it in a way
that is understandable by a computer. For this purpose, a fraction is a pair of integers(a, b). We
usually write it a

b
but the visual appearance does not matter. Integers are aprimitive data type ,

i.e. they appear in all programming languages, and arithmetic with integers is available as well.
Fractions will be a data type that is built on top of integers.In order to make an algorithm for
adding fractionsgeneric(i.e. able to work for any two fractions), we will usevariables to hold the
numerators and denominators of the two inputs, as well as those of the output. Our little algorithm
looks as follows:

Input: (a, b), (c, d) wherea, b, c, d are integers
Output: (n,m), a pair of integers holding the result of the addition.
Algorithm:

1. n = a ∗ d+ b ∗ c

2. m = b ∗ d

2

Each multiplication and addition is aprimitive operation . Each row above represents astep in
the algorithm. In this case, our algorithm uses 4 primitive operations to compute the answer. This
number isindependent of the input of the algorithm(it is the same regardless which fractions we
have to add). So, we will say that thetime complexity of the algorithm is constant(or “big-oh
1”). We will define this more precisely later. In general, thetime complexity may vary depending
on the data we receive.

In general, in most programming languages there are primitive (basic) data types, typically
integers, booleans (can be true or false), floats (used to represent real numbers in a computer -
obviously up to a finite precision!) and characters. These come with primitive operations that
are defined on them (e.g. addition and multiplications for integers, logical “and”, “or” and “not”
for booleans). The first thing you learn in a programming language is the basic data types and
operations. We will talk about these in Java (the programming language we use in this course) in
Lecture 3. Complex data types, such as strings, records, lists etc, can be built from these. Any
operations on the complex data types will have to be described. More than half of the course is
devoted to complex data types.

2 Example: Finding the maximum of an array

Consider the problem of finding the largest element in an array of numbers. The English prose
description looks as follows:

To find the maximum element of an array, initialize m to the value of the first element.
Then, for each subsequent element, if that element is largerthan m, replace m with the
value of that element. Return the value of m.

This is human readable, but too vague and too verbose to be useful for a computer.

The binary language specification might look like:

0101010110110011010101001101010010101010101001010101110110010

This is very precise but not readable.

The specification in Java is as follows:

int findMax(int a[]){ //a is the array of integers
int m=a[0]; //m will hold the maximum
for (int i=1; i<a.length; i++)

if (m<a[i]) m=a[i];
return m;
}

This is precise and human readable,especially if you use comments, but you need to know Java
to write it. Some of the things I wrote are very Java-specific (like a.length, which is the number
of elements in the array). If you wrote it in Lisp, the specification would look very different, even

3

though it would solve the same problem. (By the way, if this looks completely foreign to you, you
should be taking COMP-202 instead of COMP-250!)

The pseudocode looks as follows:
Algorithm: findMax(a, n)
Input: an arraya of n numbers
Output: The largest element in the array
m← a[0]
for i← 1 to n− 1 do {

if m < a[i] then m← a[i]
}
return m

Usually, in pseudocode we will use constructs similar to programming languages:

• Assignments:m← a[0]

• Conditionals:if m < a[i] then ...

• Loops:for i← 1 to n− 1 do ...

• Calls to other subroutines

But we will also use freely mathematical notation, which youcannot do usually in a programming
language. We will sometimes assume that someone gives us a black box to solve a particular
problem (so we can call it as a subroutine). And sometimes we will specify steps less precisely, if
it is clear what they need to accomplish.

How much time does this algorithm take to execute? As discussed last time, we will measure
number of primitive operations instead of time. In this case, the number of primitive operations is
proportional to the number of elements in the arrayn: no matter what array we get, we still have
to look at every element in order to correctly determine the maximum. So we will say that the
complexity is “on the order ofn”; we will denote this in a couple of lectures byO(n), read “big-oh
of n.

3 How do we express algorithms?

There are different ways in which we could express an algorithm. One is to use a human-level
language, like English. This is easily understandable by humans, but is often ambiguous and hard
to understand by a machine. For instance, think of the ways inwhich you could specify a recipe
for a professional cook, or for an 10-year old (like my daughter) or for a robot. The specification
would have to be a lot more precise in the last two cases. If we are going to specify an algorithm for
a computer, then it has to be specified in a language that the computer understands. Unfortunately,
a computer only understands one language: strings of bits (0s and 1s). This is called binary
language, and is the lowest level in writing programs. But itis really difficult for humans to write
and read binary programs, which means that they will make lots of mistakes. So instead we write
programs in some kind of “high-level”programming languagethat is then translated by another

4

program, called thecompiler or interpreter , into binary language. Over the years, people have
come up with many high-level programming languages, e.g. Java, C, C++, Lisp, Fortran, Perl,
Python, ML etc. In this course we will focus mainly on Java. But this requires knowledge of the
programming language. Annoyingly enough, these change allthe time! Also, writing the program
involves specifying a lot of details, e.g. about how the datais kept. In a first pass at thinking about
a problem, this may be cumbersome.

Somewhere in between, we want a way to describe algorithms that does not depend on a partic-
ular programming language, but that is unambiguous and easily implementable, and easy to read
for people. This is calledpseudocode. We’ll have variables, assignments, conditionals, loops,etc.
Sometimes, we will allow ourselves a little more flexibilitywhen it is clear how a part of an algo-
rithm should be implemented. In this course, we will often write our algorithms in pseudocode.
Pseudocode is often the first pass at a solution for a problem.But it has to be followed by an
implementation in an actual programming language; however, this step of translating pseudocode
into a programming language is often easy. The little algorithm we discussed above is an example
of pseudocode, and we will discuss more examples next lecture.

4 What makes a good algorithm?

There are several important features that we will look for ina good algorithm:

1. Correctness. Of course, we would like the algorithm to always return the right solution. This
will be the case for most algorithms that we talk about in thisclass. However, sometimes
it is very hard to find exactly the right solution (for example, if you are trying to find the
maximum of a continuous function specified somehow, in a closed interval). In such cases,
we might settle for an algorithm that just gives the right solution most of the time (i.e., with
high probability), or one which gives “approximately” the right solution. In many algorithms
we will try to prove that they are actually correct.

2. Efficiency. We would like the algorithm both to befast and to require a small amount of
memory for extra variables. We will discuss in detail ways of measuring the speed of an
algorithm

3. Simplicity . This is usually a “softer” requirement than the other two. But basically we want
our algorithms and programs to be easy to understand and analyze, easy to implement, easy
to debug and easy to maintain (modify, add functionality etc). This is especially important in
the software industry, where you work in teams to build largepieces of software, which are
used over multiple decades. Unfortunately, it is hard to measure how complicated software
is (do you count lines of code? classes? variables?). There is a whole field of research in
software engineering related to this issue. We will be less concerned with analyzing this in
the course, though you are always encouraged to write your code as “cleanly” as possible.

5

