COMP 250: Introduction to Computer Science
Assignment 2

Posted Tuesday, February 4, 2014
Due Friday, February 14, 2014

Please submit the homework through myCourses before midnight on the day it is due.

1. [20 points] Proofs by induction

 (a) Prove by induction on \(n \) the formula for the geometric series: for any natural numbers \(b > 1, \ n > 1, \)
 \[
 \sum_{i=0}^{n} b^i = \frac{b^{n+1} - 1}{b - 1}
 \]

 (b) Prove by induction that for all positive integers \(n: \)
 \[
 \sum_{k=1}^{n} \frac{1}{k(k+1)} = \frac{n}{n+1}
 \]

 (c) Prove by induction that \(n^2 < 2^n, \forall n \geq 4 \)

 (d) Prove by induction that \(8^n - 2^n \) is divisible by 6.

2. [20 points] Big-Oh

 (a) Prove that \(O(10000n + 10^6) = O(n). \)

 (b) Prove that \(3^n \) is not \(O(n^3). \)

 (c) Is \(O(n \log_2 n) \) in \(O(n^2)? \) Prove your answer

 (d) Give an example of two function \(f \) and \(g \) such that \(f \notin O(g) \) and \(g \notin O(f). \)

3. [15 points] More Big-oh

 For the following pieces of code, give the tightest \(O() \) estimate that you can, and justify your answer.

 (a) int \(\text{sum} = 0; \)
 for (int \(i = 0; i < n; i = i + 2); \)
 for (int \(j = 0; j < 10; j + +) \)
 \(\text{sum} = \text{sum} + i + j; \)

 (b) int \(\text{sum} = 0; \)
 for (int \(i = n; i > n/2; i - -); \)
 for (int \(j = 0; j < n; j + +) \)
 \(\text{sum} = \text{sum} + i + j; \)
(c) int sum = 0;
 for (int i = n; i > n - 2; i --);
 for (int j = 0; j < n; j += 5)
 sum = sum + i + j;

4. [25 points] Recursion

Write, in Java, a recursive method countBinaryStrings that has one integer parameter \(n \) and returns the number of binary strings of length \(n \) that do not have two consecutive 0’s. For example, for \(n = 4 \), the number of binary strings of length 4 that do not contain two consecutive 0’s is 8: 1111, 1110, 1101, 1011, 1010, 0111, 0110, 0101. For this problem, your method needs to return only the number of such strings, not the strings themselves. You may assume that the integer specified in the parameter is positive. Looking at the example above will give you a hint about how such strings start.

The method should be static and embedded in a class called Recursion. This class should also have a main method. In this case, we will call the main method with an argument, the number of bits \(n \). This argument will be in args[0]. You should convert it to an int using the Integer.parseInt method. Look this method up in the Java documentation to see what it does.

5. [20 points] More recursion

Suppose we want to compute an exponential function \(b^n \) (where \(b \) is some base and \(n \) is an integer. There is a simple \(O(n) \) algorithm for this (multiply \(b \) by itself \(n \) times). However, in this question you would have to devise a faster algorithm.

(a) [10 points] Devise an algorithm for solving this problem that works in \(O(\log_2(n)) \).
(b) [10 points] Prove by induction that your algorithm works correctly.