
Lecture 12: Introduction to reasoning under uncertainty

• Preferences

• Utility functions

• Maximizing expected utility

• Value of information

• Bandit problems and the exploration-exploitation trade-off
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Actions and Consequences

• Probability allows us to model an uncertain, stochastic world

• But intelligent agents should be not only observers, but also actors

I.e. they should choose actions in a rational way

• Most often, actions produce consequences which cause the world to
change
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Three Theories

• Probability theory:

– Describes what the agent should believe based on the evidence

• Utility theory:

– Describes what the agent wants

• Decision theory:

– Describes what a rational agent should do (based on probability theory
and utility theory)
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Example: Buying a Football Ticket

• Possible consequences:

– You start watching the game, but then it starts to rain and you catch
pneumonia

– You watch the game and get back home
– You watch the game but when you get back home you find that the

cat ate the parrot
– You watch the game; when you want to get back home, the car won’t

start. But your favorite rock start passes by and gives you a ride.

• How should we choose between buying and not buying a ticket???
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Preferences

• A rational method would be to evaluate the benefit (desirability, value)
of each consequence and weigh it by the probabilities of consequences.

• We will call the consequences of an action payoffs or rewards

• In order to compare different actions we need to know, for each one:

– The set of consequences C = {c1, . . . cn}
– The probability distribution over the consequences, P (ci), such that�

iP (ci) = 1.

• A pair L = (C,P ) is called a lottery (Luce and Raiffa, 1957)

• So choosing between actions amounts to choosing between lotteries
corresponding to these actions
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Lotteries

• A lottery can be represented as a list of pairs, e.g.

L = [A, p;B, (1− p)]

or as a tree-like diagram:

4
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Lotteries

• A lottery can be represented as a list of pairs

E.g. L = [ A, p; B, (1-p) ].

or as a tree-like diagram:

• Agents have preferences over payoffs:

A > B : A preferred to B

A ~ B : indifference between A and B

A ≳ B : B not preferred to A

• For an agent to act rationally, its preferences have to obey certain constraints.
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Example: Transitivity

• Suppose an agent with following preferences:

B>C, A>B, C>A and it owns C.

– If B>C then the agent would pay (say) 

1 cent to get B.

– If A>B then the agent (who now has B) 

would pay (say) 1 cent to get A.

– If C>A then the agent (who now has A) 

would pay (say) 1 cent to get C.

• The agent looses money forever.

(This is definitely not a rational agent!)

• Agents have preferences over payoffs:
– A � B - A preferred to B
– A ∼ B - indifference between A and B
– A �∼ B - B not preferred to A

• For an agent to act rationally, its preferences have to obey certain
constraints
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Example: Transitivity

Suppose an agent has the following preferences: B � C, A � B, C � A,
and it owns C.

• If B � C, then the agent would
pay (say) 1 cent to get B

• If A � B, then the agent, who now
has B would pay (say) 1 cent to
get A

• If C � A, then the agent (who now
has A) would pay (say) 1 cent to
get C

4
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Lotteries

• A lottery can be represented as a list of pairs

E.g. L = [ A, p; B, (1-p) ].

or as a tree-like diagram:

• Agents have preferences over payoffs:

A > B : A preferred to B

A ~ B : indifference between A and B

A ≳ B : B not preferred to A

• For an agent to act rationally, its preferences have to obey certain constraints.
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Example: Transitivity

• Suppose an agent with following preferences:

B>C, A>B, C>A and it owns C.

– If B>C then the agent would pay (say) 

1 cent to get B.

– If A>B then the agent (who now has B) 

would pay (say) 1 cent to get A.

– If C>A then the agent (who now has A) 

would pay (say) 1 cent to get C.

• The agent looses money forever.

(This is definitely not a rational agent!)

The agent looses money forever!
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The Axioms of Utility Theory

These are constraints over the preferences that a rational agent can have:

1. Orderability: A linear and transitive preference relation must exist
between the prizes of any lottery

• Linearity: (A � B) ∨ (B � A) ∨ (A ∼ B)
• Transitivity: (A � B) ∧ (B � C) ⇒ (A � C)

2. Continuity: If A � B � C, then there exists a lottery L with prizes A
and C that is equivalent to receiving B for sure:

∃p, L = [p,A; 1− p, C] ∼ B

The probability p at which equivalence occurs can be used to compare
the merit of B w.r.t A and C
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The Axioms of Utility Theory (2)

3. Substitutability: Adding the same prize with the same probability to two
equivalent lotteries does not change the preference between them:

∀L1, L2, L3, 0 < p ≤ 1, L1 ∼ L2 ⇔ [p, L1; (1−p), L3] ∼ [p, L2; (1−p), L3]

4. Monotonicity: If two lotteries have the same prizes, the one producing
the best prize most often is preferred

A � B ⇒ [p,A; (1− p), B] �∼ [p�, A; (1− p�), B] iff p ≥ p�

5. Reduction of compound lotteries (“No fun in gambling”): For any
lotteries L1 and L2 = [p, C1; (1− p), C2],

[p, L1; (1− p), L2] ∼ [p, L1; (1− p)q, C1; (1− p)(1− q)C2]
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Utility Functions

Theorem (Ramsey, 1931; von Neumann and Morgenstern, 1944): Given
preferences that satisfy these axioms, there exists at least one real-valued
function U , called utility function, such that:

A �∼ B if and only if U(A) ≥ U(B)

and
U([p1, C1; . . . ; pn, Cn]) =

�

i

piU(Ci)
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Reminder: Expected value

• Suppose you have a discrete-valued random variable X, with n possible
values {x1, . . . xn}, occurring with probabilities p1, . . . , pn respectively.
Then the expected value (mean) of X is:

E[X] =
n�

i=1

pixi

• Example: suppose you play a game in which your opponent tosses a fair
coin. If it comes up heads, you get $1, if it comes up tails, you get $0.
What is your expected profit?

Answer: (+1)12 + (−1)12 = 0
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Utilities

• Utilities map outcomes (or states) to real numbers

• Note that given a preference behavior, the utility function is not unique

• Eg., Behavior (action choice) is invariant with respect to additive linear
transformations:

U �(x) = k1U(x) + k2 where k1 > 0

• With deterministic prizes only (no lottery choices), only ordinal utility

can be determined, i.e., total order on prizes
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Money

• Suppose you had to choose between two lotteries:

– L1:
∗ win $1 million for sure

– L2:
∗ win $5 million w.p. 0.1
∗ win $1 million w.p. 0.89
∗ win $0 w.p. 0.01

• Which one would you choose?

• Which one should you choose?

COMP-424, Lecture 12 - February 25, 2013 13

Money (2)

• Suppose you had to choose between two lotteries:

– L1:
∗ win $1 million for sure

– L2:
∗ win $5 million w.p. 0.1
∗ win $1 million w.p. 0.89
∗ lose $1 million w.p. 0.01

• Which one would you choose?

• Which one should you choose?
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Money (3)

• Suppose you had to choose between two lotteries:

– L1:
∗ $5 million w.p. 0.1
∗ $0 w.p. 0.9

– L2:
∗ $1 million w.p. 0.3
∗ $0 w.p. 0.7

• Which one would you choose?

• Which one should you choose?
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Utility Models

• Capture preferences towards rewards and resource consumption

• Capture risk attitudes

E.g. if one is risk-neutral, getting $5 million has exactly half the utility
of getting $ 10 million

• People are generally risk-averse when it comes to money

8
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Utility Models

• Capture preferences for rewards and resource consumption.

• Capture risk attitude

E.g. If risk-neutral, getting $5M has half the utility of getting $10M.
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The utility of money

U

$

•  Decision-theory is normative: describes how rational agents should act.

•  People systematically violate the axioms of utility theory:
•  Choose:  80% chance of $4000  or 100% chance of $3000
•  Choose:  20% chance of $4000  or  25% chance of $3000
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The Utility of Money

• Decision theory is normative: describes how rational agents should act

• People systematically violate the axioms of utility and decision theory,
especially regarding money

– Choose: 80% chance of $4000 or 100% chance of $3000
– Choose: 20% chance of $4000 or 25% chance of $3000

8
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Utility Models

• Capture preferences for rewards and resource consumption.

• Capture risk attitude
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The utility of money

U

$

•  Decision-theory is normative: describes how rational agents should act.

•  People systematically violate the axioms of utility theory:
•  Choose:  80% chance of $4000  or 100% chance of $3000
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Preference Elicitation

• An increasing number of applications require recommending something
to a user or making a decision for them:

– E.g. movie or book recommendation systems
– E.g. deciding which cancer treatment to give to a patient (has to take

into account chance of survival, cost, side effects)
– E.g. deciding which ads to show on a dynamic web page

• For this, we need to know the utility that the user associates to different
items

• But people are very bad at specifying utility values!

• Preference elicitation refers to finding out their preferences and
translating them into utilities

• Very hard problem, lots of current research
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Acting under Uncertainty

• MEU principle: Choose the action that maximizes expected utility. Most
widely accepted as a standard for rational behavior

• Note that an agent can be entirely rational (i.e. consistent with MEU)
without ever representing or manipulating utilities and probabilities

E.g., a lookup table for perfect tic-tac-toe
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Acting under Uncertainty (2)

• Sometimes it can be advantageous to not always choose actions according
to MEU, e.g. if the environment may change, or it is not fully known to
the agent

• Random choice models: choose the action with the highest expected
utility most of the time, but keep non-zero probabilities for other actions
as well

– Avoids being too predictable
– If utilities are not perfect, allows for exploration

• Minimizing regret: consider the loss between current behavior and some
“gold standard” and try to minimize it
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Example: Single Stage Decision Making

• One random variable, X: does the kid have an ear infection or not?

• One decision, d: give antibiotic (yes) or not (no)

• The utility function associates a real value to possible states of the world
and possible decisions

X = no X = yes
d = no 0 −50
d = yes −100 10

• Unfortunately X is not directly observable!

• But we know P (X = yes) = 0.1, P (X = no) = 0.9.
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Example: Maximizing Expected Utility

• In our case, U is:

X = no X = yes
d = no 0 −50
d = yes −100 10

and P (X = yes) = 0.1, P (X = no) = 0.9. Compute:

EU(d = no) = 0.9× 0 + 0.1× (−50) = −5

EU(d = yes) = 0.9× (−100) + 0.1× 10 = −8

so according to MEU the best action is d = no.
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Some definitions

• Utility function: U(x)

– Numerical expression of the desirability of a situation

• Expected utility: EU(a|x) =
�

P (Effect(a)|x)U(Effect(a))

– Utility of each action outcome is weighted by the probability of that
outcome

• Maximum expected utility: maxaEU(a|x)
– Best average payoff that can be achieved in situation x

• Optimal action: argmaxaEU(a|x)
– Action chosen according to MEU principle

• Policy: a way of picking actions
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Decision Graphs
• We can represent the decision problem as a graphical model:

12
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Decision graphs

• Look at previous decision model in the form of graphical model:

• Random variables are represented as oval nodes.

– Parameters associated with such nodes are probabilities.

• Actions are represented as rectangles.

• Utilities are represented as diamonds.

– Parameters associated with such nodes utility values for all possible values

of the parents.
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Information gathering

• In an environment with hidden information, an agent can choose

to perform information-gathering actions.

E.g. taking the child to the doctor.

E.g. scouting the price of a product at different companies.

• Sometimes such actions take time, or have associated costs

(e.g. medical tests.) When are they worth pursuing?

• The value of information specifies the utility of every piece of

evidence that can be acquired.

• Random variables are represented as oval nodes

– Parameters associated with such nodes are probabilities

• Decisions are represented as rectangles
• Utilities are represented as diamonds

– Parameters associated with such nodes are utility values for all possible
values of the parents

• Restrictions on nodes:

– Utility nodes have no out-going arcs
– Decision nodes have no incoming arcs

• Computing the optimal action can be viewed as inference
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Example

12
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Decision graphs

• Look at previous decision model in the form of graphical model:

• Random variables are represented as oval nodes.

– Parameters associated with such nodes are probabilities.

• Actions are represented as rectangles.

• Utilities are represented as diamonds.

– Parameters associated with such nodes utility values for all possible values

of the parents.
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Information gathering

• In an environment with hidden information, an agent can choose

to perform information-gathering actions.

E.g. taking the child to the doctor.

E.g. scouting the price of a product at different companies.

• Sometimes such actions take time, or have associated costs

(e.g. medical tests.) When are they worth pursuing?

• The value of information specifies the utility of every piece of

evidence that can be acquired.

• Suppose we had evidence that X = yes.

• We can set d to each possible value (yes/no)

• For each value, ask the utility node to give the utility of that situation,
then pick d according to MEU

• If there is no evidence at X, we will have to sum out over all possible
values of X, like in Bayes net inference

• This will give the expected utility at node U , for each choice of action d
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Information Gathering

• In an environment with hidden information, an agent can choose to
perform information-gathering actions

– E.g., taking the kid to the doctor
– E.g., scouting the price of a product at different companies

• Such actions take time, or have associated costs (e.g., medical tests).
When are they worth pursuing?

• The value of information specifies the utility of every piece of evidence
that can be acquired.
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Example: Buying oil drilling rights

• Two blocks A and B, exactly one has oil, worth k

• Prior probabilities 0.5 each, mutually exclusive

• Current price of each block is k/2

• Consultant offers accurate survey of A

• What is a fair price for the survey?
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Example: Solution

• Compute expected value of information as:
expected value of best action given the information - expected value of
best action without the information

• Survey may say “oil in A” or “no oil in A”, with probability 0.5 each, so
the value of the information is:
[0.5× value of “buy A” given “oil in A”+ 0.5× value of “buy B” given
“no oil in A”]− 0 = (0.5× k/2) + (0.5× k/2)− 0 = k/2
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Value of Perfect Information (VPI)

• Suppose you have current evidence E, current best action a∗, with
possible outcomes ci. Then the expected utility of a∗ is:

EU(a∗|E) = max
a

U(a) = max
a

�

i

U(ci)P (ci|E, a)

• Suppose that you could gather further evidence about a variable X.
Should you do it?
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Value of Perfect Information

• Suppose we knew X = x. Then we would choose a∗x s.t.

EU(a∗x|E,X = x) = max
a

�

i

U(ci)P (ci|E, a,X = x)

• X is a random variable whose value is unknown, so we must compute
expected gain over all possible values:

V PIE(X) =

�
�

x

P (X = x|E)EU(a∗x|E,X = x)

�
− EU(a∗|E)

This is the value of knowing X exactly
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Properties of VPI

• Nonnegative: ∀X,E V PIE(X) ≥ 0

Note that VPI is an expectation! Depending on the actual value we find
for X, there can actually be a loss post-hoc

• Nonadditive: E.g. consider obtaining X twice

V PIE(X,Y ) �= V PIE(X) + V PIE(Y )

• Order-independent

V PIE(X,Y ) = V PIE(X) + V PIE,X(Y ) = V PIE(Y ) + V PIE,Y (X)
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A More Complex Example

15
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Properties of VPI

• Non-negative:

! X, E   VPIE(X) " 0

Note that VPI is an expectation. Depending on the actual value we find

for X, there can actually be a loss post-hoc.

• Non-additive: E.g. consider obtaining X twice.

VPIE(X, X) # VPIE(X) + VPIE(X)

• Order-independent:

VPIE(X, Y) = VPIE(X) + VPIE,X(Y) = VPIE(Y) + VPIE,Y(X)
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A more complex example

• X1:  Symptoms

• X3:  Is there an infection

• d1:  Decision to go to the doctor

• X2:  Result of consultation

• D2:  Treatment or no treatment

• X1: Symptoms

• X3: is there infection

• d1: decision to go to the doctor

• X2: result of consultation

• d2: treatment or no treatment
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Example continued

15
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Properties of VPI

• Non-negative:

! X, E   VPIE(X) " 0

Note that VPI is an expectation. Depending on the actual value we find

for X, there can actually be a loss post-hoc.

• Non-additive: E.g. consider obtaining X twice.

VPIE(X, X) # VPIE(X) + VPIE(X)

• Order-independent:

VPIE(X, Y) = VPIE(X) + VPIE,X(Y) = VPIE(Y) + VPIE,Y(X)
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A more complex example

• X1:  Symptoms

• X3:  Is there an infection

• d1:  Decision to go to the doctor

• X2:  Result of consultation

• D2:  Treatment or no treatment

• Total utility is U1+U2

• X2 is only observed if we decide that d1= 1

• X3 is never observed

Now we have to optimize d1 and d2 together!
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Summary

• To make decisions under uncertainty, we need to know the likelihood
(probability) of different possible outcomes, and have preferences among
outcomes:

Decision Theory = Probability Theory + Utility Theory

• An agent with consistent preferences has a utility function, which
associates a real number to each possible state

• Rational agents try to maximize their expected utility.

• Utility theory allows us to tell whether gathering more information is
valuable.

• Decision graphs can be used to represent the decision problem

• An algorithm similar to variable elimination is useful to compute optimal
decision, but this is very expensive in general
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