
Lecture 10: Introduction to reasoning under uncertainty

• Introduction to reasoning under uncertainty

• Review of probability

– Axioms and inference
– Conditional probability
– Probability distributions
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Uncertainty

• Back to planning:

– Let action A(t) denote leaving for the airport t minutes before the
flight

– For a given value of t, will A(t) get me there on time?

• Problems:

– Partial observability (roads, other drivers’ plans, etc.)
– Noisy sensors (traffic reports)
– Uncertainty in action outcomes (flat tire, etc.)
– Immense complexity of modeling and predicting traffic
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How To Deal With Uncertainty

• Implicit methods:

– Ignore uncertainty as much as possible
– Build procedures that are robust to uncertainty
– This is the approach in the planning methods studied so far (e.g.

monitoring and replanning)

• Explicit methods

– Build a model of the world that describes the uncertainty (about the
system’s state, dynamics, sensors, model)

– Reason about the effect of actions given the model
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How To Represent Uncertainty

• What language should we use? What are the semantics of our
representations?

• What queries can we answer with our representations? How do we
answer them?

• How do we construct a representation? Do we need to ask an expert or
can we learn from data?
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Why Not Use First-Order Logic?

• A purely logical approach has two main problems:

– Risks falsehood
∗ A(25) will get me there on time.

– Leads to conclusions that are too weak:
∗ A(25) will get me there on time if there is no accident on the bridge
and it does not rain and my tires remain intact, etc. etc.

∗ A(1440) might reasonably be said to get me there on time (but I
would have to stay overnight at the airport!)
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Methods for Handling Uncertainty

• Default (non-monotonic) logic: make assumptions unless contradicted
by evidence.

– E.g. “Assume my car doesnt have a flat tire.

What assumptions are reasonable? What about contradictions?

• Rules with fudge factor:

– E.g. “Sprinkler →0.99 WetGrass”, “WetGrass →0.7 Rain”

But: Problems with combination (e.g. Sprinkler causes rain?)

• Probability:

– E.g. Given what I know, A(25) succeed with probability 0.2

• Fuzzy logic:

– E.g. WetGrass is true to degree 0.2

But: Handles degree of truth, NOT uncertainty.
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Probability

• A well-known and well-understood framework for dealing with uncertainty

• Has a clear semantics

• Provides principled answers for:

– Combining evidence
– Predictive and diagnostic reasoning
– Incorporation of new evidence

• Can be learned from data

• Intuitive to human experts (arguably?)

COMP-424, Lecture 10 - February 6, 2013 7

Beliefs (Bayesian Probabilities)

• We use probability to describe uncertainty due to:

– Laziness: failure to enumerate exceptions, qualifications etc.
– Ignorance: lack of relevant facts, initial conditions etc.
– True randomness? Quantum effects? ...

• Beliefs (Bayesian or subjective probabilities) relate propositions to one’s
current state of knowledge

– E.g. P(A(25)| no reported accident) = 0.1

These are not assertions about the world / absolute truth

• Beliefs change with new evidence:

– E.g. P(A(25)| no reported accident, 5am) = 0.2

• This is analogous to logical entailment: KB � α means that α is true
given the KB, but may not be true in general.
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Making Decisions Under Uncertainty

• Suppose I believe the following:
P(A(25) gets me there on time | ... ) = 0.04

P(A(90) gets me there on time | ... ) = 0.70

P(A(120) gets me there on time | ... ) = 0.95

P(A(1440) gets me there on time |... ) = 0.9999

• Which action should I choose?
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Making Decisions Under Uncertainty

• Suppose I believe the following:
P(A(25) gets me there on time | ... ) = 0.04

P(A(90) gets me there on time | ... ) = 0.70

P(A(120) gets me there on time | ... ) = 0.95

P(A(1440) gets me there on time | ... ) = 0.9999

• Which action should I choose?

– Depends on my preferences for missing flight vs. airport cuisine, etc.
– Utility theory is used to represent and infer preferences.
– Decision theory = utility theory + probability theory
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Random Variables

• A random variable X describes an outcome that cannot be determined
in advance

– E..g. The roll of a die
– E.g. Number of e-mails received in a day

• The sample space (domain) S of a random variable X is the set of all
possible values of the variable

– E.g. For a die, S = {1, 2, 3, 4, 5, 6}
– E.g. For number of emails received in a day, S is the natural numbers

• An event is a subset of S.

– E.g. e = {1} corresponds to a die roll of 1
– E.g. number of e-mails in a day more than 100
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Probability for Discrete Random Variables

• Usually, random variables are governed by some “law of nature”,
described as a probability function P defined on S.

• P (x) defines the chance that variable X takes value x ∈ S.

– E.g. for a die roll with a fair die, P (1) = P (2) = · · · = P (6) = 1/6

• Note that we still cannot determine the value of X, just the chance of
encountering a given value

• If X is a discrete variable, then a probability space P (x) has the following
properties:

0 ≤ P (x) ≤ 1, ∀x ∈ S and
�

x∈S

P (x) = 1
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Beliefs

• We use probability to describe the world and existing uncertainty

• Agents will have beliefs based on their current state of knowledge

– E.g. P(Some day AI agents will rule the world)=0.2 reflects a personal
belief, based on one’s state of knowledge about current AI, technology
trends etc.

• Different agents may hold different beliefs, as these are subjective

• Beliefs may change over time as agents get new evidence

• Prior (unconditional) beliefs denote belief prior to the arrival of any new
evidence.
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Axioms of Probability

• Beliefs satisfy the axioms of probability.

• For any propositions A, B:

1. 0 ≤ P (A) ≤ 1

2. P (True) = 1 (hence P (False) = 0)

3. P (A ∨B) = P (A) + P (B)− P (A ∧B)
4. Alternatively, if A and B are mutually exclusive (A ∧B = F ) then:

P (A ∨B) = P (A) + P (B)

• The axioms of probability limit the class of functions that can be
considered probability functions.
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Defining Probabilistic Models

• We define the world as a set of random variables Ω = {X1 . . . Xn}.
• A probabilistic model is an encoding of probabilistic information that
allows us to compute the probability of any event in the world

• The world is divided into a set of elementary, mutually exclusive events,
called states

– E.g. If the world is described by two Boolean variables A,B, a state
will be a complete assignment of truth values for A and B.

• A joint probability distribution function assigns non-negative weights to
each event, such that these weights sum to 1.
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Inference using Joint Distributions

E.g. Suppose Happy and Rested are the random variables:

Happy= true Happy= false

Rested = true 0.05 0.1
Rested = false 0.6 0.25

The unconditional probability of any proposition is computable as the sum
of entries from the full joint distribution

• E.g. P(Happy) = P(Happy, Rested) +P(Happy, ¬ Rested) = 0.65
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Conditional Probability

• The basic statements in the Bayesian framework talk about conditional
probabilities.

– P (A|B) is the belief in event A given that event B is known with
certainty

• The product rule gives an alternative formulation:

P (A ∧B) = P (A|B)P (B) = P (B|A)P (A)

– Note: we often write P (A,B) as a shorthand for P (A ∧B)
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Chain Rule

Chain rule is derived by successive application of product rule:

P (X1, . . . , Xn) =

= P (X1, . . . , Xn−1)P (Xn|X1, . . . , Xn−1)

= P (X1, . . . , Xn−2)P (Xn−1|X1, . . . , Xn−2)P (Xn|X1, . . . , Xn−1)

= . . .

=
n�

i=1

P (Xi|X1, . . . , Xi−1)
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Bayes Rule

• Bayes rule is another alternative formulation of the product rule:

P (A|B) =
P (B|A)P (A)

P (B)

• The complete probability formula states that:

P (A) = P (A|B)P (B) + P (A|¬B)P (¬B)

or more generally,
P (A) =

�

i

P (A|bi)P (bi),

where bi form a set of exhaustive and mutually exclusive events.
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Conditional vs unconditonal probability

• Bertrand’s coin box problem

• What are we supposed to compute?
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Using Bayes Rule for Inference

• Suppose we want to form a hypothesis about the world based on
observable variables.

• Bayes rule tells us how to calculate the belief in a hypothesis H given
evidence e: P (H|e) = (P (e|H)P (H))/P (e)

– P (H|e) is the posterior probability

– P (H) is the prior probability

– P (e|H) is the likelihood

– P (e) is a normalizing constant, which can be computed as:

P (e) = P (e|H)P (H) + P (e|¬H)P (¬H)

Sometimes we write P (H|e) ∝ P (e|H)P (H)
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Example: Medical Diagnosis

• You go to the doctor complaining about the symptom of having a fever
(evidence).

• The doctor knows that bird flu causes a fever 95% of the time.

• The doctor knows that if a person is selected randomly from the
population, there is a 10−7 chance of the person having bird flu.

• In general, 1 in 100 people in the population suffer from fever.

• What is the probability that you have bird flu (hypothesis)?

P (H|e) = P (e|H)P (H)

P (e)
=

0.95× 10−7

0.01
= 0.95× 10−5
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Computing Conditional Probabilities

• Typically, we are interested in the posterior joint distribution of some
query variables Y given specific values e for some evidence variables E

• Let the hidden variables be Z = X − Y − E

• If we have a joint probability distribution, we can compute the answer by
“summing out” the hidden variables:

P (Y |e) ∝ P (Y, e) =
�

z

P (Y, e, z) ← summing out

Problem: the joint distribution is too big to handle!
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Example

• Consider medical diagnosis, where there are 100 different symptoms and
test results that the doctor could consider.

• A patient comes in complaining of fever, cough and chest pains.

• The doctor wants to compute the probability of pneumonia.

– The probability table has >= 2100 entries!
– For computing the probability of a disease, we have to sum out over

97 hidden variables!
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Independence of Random Variables

• Two random variables X and Y are independent if knowledge about X
does not change the uncertainty about Y (and vice versa):

P (x|y) = P (x) ∀x ∈ SX, y ∈ SY

P (y|x) = P (y) ∀x ∈ SX, y ∈ SY

or equivalently, P (x, y) = P (x)P (y)

• If n Boolean variables are independent, the whole joint distribution can
be computed as:

P (x1, . . . xn) =
�

i

P (xi)

• Only n numbers are needed to specify the joint, instead of 2n

Problem: Absolute independence is a very strong requirement
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Example: Dice

• Let A be the event that one die comes to 1

• Let B be the event that a different die comes to 4

• Let C be the event of the sum of the two dice being 5

• Are A and B independent?

• Are A and C independent?

• Are A, B and C all independent?
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Conditional Independence

• Two variables X and Y are conditionally independent given Z if:

P (x|y, z) = P (x|z), ∀x, y, z

• This means that knowing the value of Y does not change the prediction
about X if the value of Z is known.
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Example

• Consider a patient with three random variables: B (patient has
bronchitis), F (patient has fever), C (patient has a cough)

• The full joint distribution has 23 − 1 = 7 independent entries

• If someone has bronchitis, we can assume that, the probability of a cough
does not depend on whether they have a fever:

P (C|B,F ) = P (C|B) (1)

I.e., C is conditionally independent of F given B

• The same independence holds if the patient does not have bronchitis:

P (C|¬B,F ) = P (C|¬B) (2)

therefore C and F are conditionally independent given B
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Example (continued)

• The full joint distribution can now be written as:

P (C,F,B) =

= P (C,F |B)P (B)

= P (C|B)P (F |B)P (B)

I.e., 2 + 2 + 1 = 5 independent numbers (equations 1 and 2 remove
two numbers)

Much more important savings happen if the system has lots of variables!
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Naive Bayesian Model

• A common assumption in early diagnosis is that the symptoms are
independent of each other given the disease

• Let s1, . . . sn be the symptoms exhibited by a patient (e.g. fever,
headache etc)

• Let D be the patient’s disease

• Using the naive Bayes assumption:

P (D, s1, . . . sn) = P (D)P (s1|D) · · ·P (sn|D)
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Recursive Bayesian Updating

The naive Bayes assumption allows incremental updating of beliefs as
more evidence is gathered

• Suppose that after knowing symptoms s1, . . . sn the probability of D is:
P (D|s1 . . . sn) = P (D)

�
n

i=1P (si|D)

• What happens if a new symptom sn+1 appears?

P (D|s1 . . . sn, sn+1) = P (D)
n+1�

i=1

P (si|D)

= P (D|s1 . . . sn)P (sn+1|D)

• An even nicer formula can be obtained by taking logs:

logP (D|s1 . . . sn, sn+1) = logP (D|s1 . . . sn) + logP (sn+1|D)
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A Graphical Representation of the Naive Bayesian Model

Sympt2

Diagnosis

Sympt1 ... Sympt n

• The nodes represent random variables

• The arcs represent “influences”

• The lack of arcs represents conditional independence

How about models represented as more general graphs?
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Example (Adapted from Pearl)

• I’m at work, and my neighbor calls to say the burglar alarm is ringing
in my house. Sometimes the alarm is set off by minor earthquakes.
Earthquakes are sometimes reported on the radio. Should I rush home?

• What random variables are there?

• Are there any independence relationships between these variables?
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Example: A Belief (Bayesian) Network

0.65
P(C|A)

C=0

A=0

A=1

0.05 0.95

0.7 0.3

C=1

P(B)

B=1 B=0

0.01 0.99

B=0,E=0

B=0,E=1

B=1,E=0

B=1,E=1

A=1 A=0
0.001 0.999
0.3

0.8

0.95

0.7

0.05

0.2

P(A|B,E)

E B

A

C

R

P(E)

E=1 E=0

0.9950.005

P(R|E)

R=1

E=0

E=1

R=0

0.99990.0001

0.35

• The nodes represent random variables

• The arcs represent “direct influences”

• At each node, we have a conditional probability distribution (CPD) for
the corresponding variable given its parents
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Using a Bayes Net for Reasoning (1)
Computing any entry in the joint probability table is easy:

P (B,¬E,A,C,¬R) = P (B)P (¬E)P (A|B,¬E)P (C|A)P (¬R|¬E)

= 0.01 · 0.995 · 0.8 · 0.7 · 0.9999 ≈ 0.0056

What is the probability that a neighbor calls?

P (C = 1) =
�

e,b,r,a

P (C = 1, e, b, r, a) = ...

What is the probability of a call in case of a burglary?

P (C = 1|B = 1) =
P (C = 1, B = 1)

P (B = 1)
=

�
e,r,a

P (C = 1, B = 1, e, r, a)
�

c,e,r,a
P (c, B = 1, e, r, a)

This is causal reasoning or prediction
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Using a Bayes Net for Reasoning (2)

• Suppose we got a call.

• What is the probability of a burglary?

P (B|C) =
P (C|B)P (B)

P (C)
= ...

• What is the probability of an earthquake?

P (E|C) =
P (C|E)P (E)

P (C)
= ...

This is evidential reasoning or explanation
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Using a Bayes Net for Reasoning (3)

• What happens to the probabilities if the radio announces an earthquake?

P (E|C,R) � P (E|C) and P (B|C,R) � P (B|C)

This is called explaining away
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Example: Pathfinder (Heckerman, 1991)

• Medical diagnostic system for lymph node diseases

• Large net!

– 60 diseases, 100 symptoms and test results, 14000 probabilities

• Network built by medical experts

– 8 hours to determine the variables
– 35 hours for network topology
– 40 hours for probability table values

• Experts found it easy to invent causal links and probabilities

• Pathfinder is now outperforming world experts in diagnosis

• Being extended now to other medical domains
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Using Graphs for Knowledge Representation

• Graphs have been proposed as models of human memory and reasoning
on many occasions (e.g. semantic nets, inference networks, conceptual
dependencies)

• There are many efficient algorithms that work with graphs, and efficient
data structures

• Recently there has been an explosion of graphical models for representing
probabilstic knowledge

• Lack of edges is assumed to represent conditional independence
assumptions

• Graph properties are used to do inference (i.e. compute conditional
probabilities) efficiently using such representations
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