Lecture 7: Game Playing (Part 2)

Monte Carlo Tree Search (MCTS)

Upper confidence bounds (optimism in the face of uncertainty again!)
Scrabble

Computer Go illustration

Maybe: Poker and belief states

With thanks to David Silver
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Recall: Game search

e We looked at perfect information, 2-player games

e o~ search can be used to cut off branching factor (but maybe not
enough)

e Optimal play is guaranteed against an optimal opponent if search
proceeds to the end of the game

e But the opponent may not be optimal!

e If heuristics are used, this assumption turns into the opponent playing
optimally according to the same heuristic function as the player

e This is a very big assumption! What to do if the opponent plays very
differently?
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Monte Carlo tree search

90/10  3/10 4/10
For each move, sample possible continuation using a randomized playing
policy for both players
Typically, the game is played until the end
The value of the node is the average of the evaluations obtained at the
end of the lines of play
Pick the move with the best average value
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Recall: Minimax

max

min

max

min

This would be “optimal” if we could do it
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Main idea

We can start with a completely randomized search

In the beginning, we do minimax, but then go to Monte Carlo searches
Accumulate statistics at the nodes

As we get more information about the game, the “minimax” portion
should grow and the Monte Carlo portion should get shorter
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Example
max root
min
max E E E @ E search tree
mo i@
Do b e rollous
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0 0 1 1 1 1 D1 1 0 D1 reward
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Where to spend the search effort?

e If you limit the number of lines of play that will be generated per turn,
these do not have to be allocated equally to every move.

e Intuitively, you should look more closely at the promising moves, since
the others would not be picked

e Exact formulas can be established theoretically for this allocation
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MCTS Algorithm Qutline

We are going to grow a tree for the game, with each node having a
value anotation

e Descent phase: Always pick the highest scoring move for both players
(based on what you know)

Score can be just the value of the child node, or can have extra
information

e Rollout phase: when a leaf is reached, use Monte Carlo simulation to the
end of the game (or to an affordable depth)

This uses a fixed, stochastic policy for both players
e Update phase: statistics for all nodes visited during descent are updated

e Growth phase: the first state in the rollout is added to the tree and its
statistics are initalized
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Example

Simulation 1

ﬁ t Tree Policy

Default Policy

* New node in the tree
O Node stored in the tree
& State visited but not stored
[0 Terminal outcome

—— Current simulation

—— Previous simulation
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Example
Simulation 2
A
Tree Policy
A
A
* New node in the tree
O Node stored in the tree
Default Polic
y & State visited but not stored
[ Terminal outcome
—— Current simulation
\/
—— Previous simulation
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Example

Simulation 3 Simulation 4

® Tree Policy Tree Policy

Default Policy Default Policy
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Example

Simulation 5
* New node in the tree

Tree Policy

O Node stored in the tree

&> State visited but not stored
Default Policy [J Terminal outcome

—— Current simulation

—— Previous simulation
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UCT (Upper Confidence Trees)

log n(s
Current state —» (@) Q%(s,a) = Q(s,a) +c g (s)
n(s,a)
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Exploitation
& logn(s)
Current state — @) Q% (s,a) = Q(s,a) +c
n(s,a)
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Exploration

logn(s)
n(s,a)

Current state —» @) Q% (s,a) = Q(s,a) + ¢
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Scrabble

Stochastic (letters drawn randomly)

Imperfect information (can't see opponent’s hand)

Computers can have an advantage due to dictionary (move generation is
easy

Quite complex!

— =~ 700 branching factor
— ~ 25 depth for a game
— Rough complexity 1070
Strategy is difficult: what letters to keep?
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Maven

Best player in the world (beat Adam Logan 9-5)

Evaluates moves by score + value of rack
Uses a binary-linear evaluation function of the rack left after the move

Features: presence of 1, 2 and 3-letter combinations (allows detecting
frequent pairs, like QU, and triples of hard-to-place letters)

Weights trained by playing many games by itself, observing the final
value of the game.
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Monte Carlo Tree Search in Maven

1. For each legal move:

(a) Roll-out, i.e. imagine n steps of self-play (dealing tiles at random to
both players)

(b) Evaluate resulting position by score + value of rack (according to the
evaluation function)

(c) The score of the move it the average evaluation over the rollouts

(d) Note that this can be done incrementally after each rollout:

1 1 & 1 k 1

Viti=—S Ri=——N Rt—Rypp1 = ——V, R
= T 2 k+1; U T e e

2. Play the move with the highest score
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The Game of Go

~10'7% unique positions
~200 moves long

~200 branching factor

~103%%0 complexity
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The Story of Go

The ancient oriental game of
Go is 2000 years old

Considered to be the hardest
classic board game

Considered to be a grand
challenge task for Al
(e.g. John McCarthy)

Traditional approaches to game-
tree search have failed in Go
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¢« Usually played on 19x19, also 13x13 or 9x9 board
« Simple rules, complex strategy

« Black and white place down stones alternately
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« If stones are completely surrounded they are captured
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Winner

The game is finished when both players pass

The intersections surrounded by each player are
known as territory

The player with more territory wins the game

LAk
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Position Evaluation

Game outcome z
Black wins z=1
White wins z=0
Value of position s
Va(s)y = Evlz|s] <= Monte-Carlo simulation

V*(s) = minimaxy V(s) <= Tree search
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Monte-Carlo Simulation

V(s)=2/4=05 * | Current position s

g

oo | [Tee | [Tee | |Tee
W TS — —
p.o0 | [esi oo | [°%
e
oee | |Teg ‘oo | %
] [ R P Simulation
[ H4+ -
'I-_L B B
= —

e el |
($° £ 198 0" 4 Pettt %

L) s (s
Lt o Outcomes
COMP-424, Lecture 6 - January 23, 2013 25

Rapid Action-Value Estimate (RAVE)

e Assume the value of the move is the same no matter when the move is
played

e This will introduce a “bias” (simplification) in thinking but will reduce
some variability

MC value of C3 =0/1
RAVE value of C3 = 3/5
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MC-RAVE in MoGo
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MoGo (2007)

MoGo = heuristic MCTS + MC-RAVE + handcrafted
default policy

99% winning rate against best traditional programs
Highest rating on 9x9 and 19x19 Computer Go Server
Gold medal at Computer Go Olympiad

First victory against 9-dan professional player (9x9)
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Progress in 19x19 Computer Go
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4 dan Zen
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1 dan [ Zen ManyFace8ya 3
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Monte Carlo tree search vs. a-( search

e Not as pessimistic as a-3

e Converges to the minimax solution in the limit

e Anytime algorithm: performance increases with number of lines of play
e Unaffected by branching factor.

— We control the number of lines of play, so a move can always be made
on time
— If the branching factor is huge, search can go much deeper, which is
a big gain
e |t is easy to parallelize the search

e We may miss on optimal play (because we will not even see all moves at
deeper nodes)

e The policy used to generate the candidate plays is very important!

E.g. can use an opponent model, or just make sure there is enough
randomization.
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