
Lecture 7: Game Playing (Part 2)

• Monte Carlo Tree Search (MCTS)

• Upper confidence bounds (optimism in the face of uncertainty again!)

• Scrabble

• Computer Go illustration

• Maybe: Poker and belief states

With thanks to David Silver
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Recall: Game search

• We looked at perfect information, 2-player games

• α-β search can be used to cut off branching factor (but maybe not

enough)

• Optimal play is guaranteed against an optimal opponent if search

proceeds to the end of the game

• But the opponent may not be optimal!

• If heuristics are used, this assumption turns into the opponent playing

optimally according to the same heuristic function as the player

• This is a very big assumption! What to do if the opponent plays very

differently?
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Monte Carlo tree search

Introduction
Crazy Stone’s Algorithm

Playing Style
Conclusion

Principles of Monte-Carlo Evaluation
Tree Search
Patterns

Move-Selection Method

4/103/109/10

Algorithm

N playouts for every move

pick the best winning rate

Cost

accurate like 1/
√
N

0.01 precision requires
∼ 10, 000 playouts

Rémi Coulom Monte-Carlo Tree Search in Crazy Stone

• For each move, sample possible continuation using a randomized playing

policy for both players

• Typically, the game is played until the end

• The value of the node is the average of the evaluations obtained at the

end of the lines of play

• Pick the move with the best average value
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Recall: Minimax
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Figure 3: A minimax game tree for a small two-
player game. Black selects actions to maximise his
value; White selects actions to minimise her value.

rewards, i.e., the reward associated with each non-terminal
state is zero. The goal of Black is to get the highest fi-
nal reward, while the goal of White is to minimize Black’s
reward.

A game tree organizes the possible future action sequences
into a tree structure. The root of the tree represents the ini-
tial state (and the empty action sequence), while each other
node represents some non-empty, finite action sequence of
the two players. Each finite action sequence leads deter-
ministically to a state, which we associate with the node
corresponding to that action sequence (Fig. 3).

Note that the same state can be associated with many
nodes of the tree, because the same state can often be reached
by many distinct action sequences, known as transpositions.
In this case, the game can be represented more compactly
by a directed acyclic graph over the set of states.

The optimal value of a game tree node is the best possi-
ble value the player at that node can guarantee for himself,
assuming that the opponent plays the best possible counter-
strategy. The mapping from the nodes (or states) to these
values is called the optimal value function. Similarly, the
optimal action value of a move at a node is defined to be
the optimal value of the child node for that move.

If the optimal values of all children are known, then it is
trivial to select the optimal move at the parent: the Black
(respectively, White) player simply chooses the move with
the highest (respectively, lowest) action-value. Assuming
that the tree is finite, the optimal value of each node can
be computed by working backwards from the leaves, using
a recursive procedure known as minimax search.

While minimax search leads to optimal actions, it is ut-
terly intractable for most interesting games; the computa-
tion is proportional to the size of the game tree, which grows
exponentially with its depth. A more practical alternative
is to consider a subtree of the game tree with limited depth.
In this case, computation begins at the leaves of the sub-
tree. The (unknown) true optimal values at the leaf nodes
are replaced with values returned by a heuristic evaluation
function. If the evaluation function is sufficiently“high qual-
ity”, the action computed is expected to be near-optimal.
The computation can be sped up by various techniques, the
most well-known being

α− β pruning, which is often used together with iterative
deepening.

The evaluation function is typically provided by human
experts, or it can be tuned using either supervised learn-

ing based on a database of games, or using reinforcement
learning and self-play [22]. Programs based on variants of
minimax search with α− β pruning have outperformed hu-
man world champions in chess, checkers, and othello [22].

3.2 Monte-Carlo Simulation
In some games of interest, e.g., in the game of Go, it has

proven hard to encode or learn an evaluation function of
sufficient quality to achieve good performance in a minimax
search. Instead of constructing an evaluation function, an
alternative idea is to first construct a policy, and then to
use that policy to estimate the values of states. A policy
is a mapping from states to actions, in other words a pol-
icy determines a way to play the game. Given a policy pair
(one policy for each player, which if symmetric can be rep-
resented by a single policy), a value estimate for a state s
can be obtained by simulation: start in state s and follow
the respective policies in an alternating manner from s until
the end of the game, and use the reward in the terminal
state as the value of state s. In some games, it is easier to
estimate the value indirectly by simulation, i.e., it may be
easier to come up with a simple policy that leads to good
value estimates via simulation, than to estimate those values
directly.
A major problem with the approach described so far is

that it can be very sensitive to the choice of policy. For ex-
ample, a good policy may choose an optimal action in 90%
of states, but a suboptimal action in the remaining 10% of
states. Because the policy is fixed, the value estimates will
suffer from systematic errors, as simulation will always pro-
duce a single, fixed sequence of actions from a given state.
These errors may often have disastrous consequences, lead-
ing to poor evaluations and an exploitable strategy.
Monte-Carlo methods address this problem by adding ex-

plicit randomization to the policy and using the expected
reward of that policy as the value estimate. The potential
benefit of randomization is twofold: it can reduce the in-
fluence of systematic errors and it also allows one to make
a distinction between states where it is “easy to win” (i.e.,
from where most reasonable policy pairs lead to a high re-
ward terminal state) and states where it is “hard to win”.
This distinction pays off because real-world opponents are
also imperfect, and therefore it is worthwhile to bias the
game towards states with many available winning strate-
gies. Note that the concepts of “easy” and “hard” do not
make sense against a perfect opponent.
When the policy is randomized, computing the exact ex-

pected value of a state under the policy can be as hard as
(or even harder than) computing its optimal value. Luckily,
Monte-Carlo methods can give a good approximation to the
expected value of a state. The idea is simply to run a num-
ber of simulations by sampling the actions according to the
randomized policy. The rewards from these simulations are
then averaged to give the Monte-Carlo value estimate of the
initial state.
In detail, the value of action a in position s0 (the root of

the game tree) is estimated as follows. Run N simulations
from state s0 until the end of the game, using a fixed ran-
domized policy for both players. Let N(a) be the number
of these simulations in which a is the first action taken in
state s0. Let W (a) be the total reward collected by Black
in these games. Then, the value of action a is estimated by
W (a)
N(a) .

This would be “optimal” if we could do it
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Main idea

• We can start with a completely randomized search

• In the beginning, we do minimax, but then go to Monte Carlo searches

• Accumulate statistics at the nodes

• As we get more information about the game, the “minimax” portion

should grow and the Monte Carlo portion should get shorter
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Figure 4: Estimating values of a minimax game tree
by Monte-Carlo tree search.

The use of Monte-Carlo methods in games dates back to
Widrow et al. (1973) [24], who applied Monte-Carlo sim-
ulation to blackjack. The use of Monte-Carlo methods in
imperfect information and stochastic games is quite natural.
However, the idea of artificially injecting noise into perfect
information, deterministic games is less natural; this idea
was first considered by Abramson (1990) [2]. Applications
of Monte-Carlo methods to the game of Go are discussed by
Bouzy and Helmstetter [6].

3.3 Monte-Carlo Tree Search
Monte-Carlo tree search (MCTS) combines Monte-Carlo

simulation with game tree search. It proceeds by selectively
growing a game tree. As in minimax search, each node in
the tree corresponds to a single state of the game. However,
unlike minimax search, the values of nodes (including both
leaf nodes and interior nodes) are now estimated by Monte-
Carlo simulation.

In the previous discussion of Monte-Carlo simulation, we
assumed that a single, fixed policy was used during simula-
tion. One of the key ideas of MCTS is to gradually adapt
and improve this simulation policy. As more simulations are
run, the game tree grows larger and the Monte-Carlo values
at the nodes become more accurate, providing a great deal
of useful information that can be used to bias the policy to-
wards selecting actions which lead to child nodes with high
values. On average, this bias improves the policy, resulting
in simulations that are closer to optimal. The stronger the
bias, the more selective the game tree will be, resulting in
a strongly asymmetric tree that expands the highest value
nodes most deeply. Nevertheless, the game tree will only
typically contain a small subtree of the overall game. At
some point, the simulation will reach a state that is not rep-
resented in the tree. At this point, the algorithm reverts to a
single, fixed policy, which is followed by both players until a
terminal state is reached, just like Monte-Carlo simulation.
This part of the simulation is known as a roll-out.

More specifically, MCTS can be described by four phases.
Until a stopping criterion is met (usually a limit on available
computation time), MCTS repeats four phases: descent,
roll-out, update, and growth. During the descent phase, ini-
tiated at the current state s0, MCTS iteratively selects the
highest scoring child node (action) of the current state. The

score may simply be the value of the child node, or may
incorporate an exploration bonus (see next section). At the
end of the descent phase, i.e., upon reaching a leaf node of
the current tree, the roll-out phase begins, where just like
in Monte-Carlo simulation, a fixed, stochastic policy is used
to select legal moves for both players until the game termi-
nates. At the end of the roll-out, the final position is scored
to determine the reward of Black. In the update phase, the
statistics (number of visits and number of wins) attached to
each node visited during descent are updated according to
the result of the game. In the growth phase, the first state
visited in the roll-out is added to the tree, and its statistics
are initialised.

3.4 Upper Confidence Bounds on Trees (UCT)
An extremely desirable property of any game-tree search

algorithm is consistency, i.e., given enough time, the search
algorithm will find the optimal values for all nodes of the
tree, and can therefore select the optimal action at the root
state. The UCT algorithm is a consistent version of Monte-
Carlo tree search.
If all leaf value estimates were truly the optimal values,

one could achieve consistency at the parent nodes by apply-
ing greedy action selection, which simply chooses the action
with the highest value in each node. If all descendants of a
given node have optimal value estimates, then greedy action
selection produces optimal play from that node onwards,
and therefore simulation will produce an optimal value esti-
mate for that node. By induction, the value estimate for all
nodes will eventually become optimal, and ultimately this
procedure will select an optimal action at the root.
However, the value estimates are not usually optimal for

two reasons: (i) the policy is stochastic, so there is some
inherent randomness in the values, and (ii) the policy is im-
perfect. Thus, going with the action that has the highest
value estimate can lead to suboptimal play, e.g., if the value
of the optimal action was initially underestimated. There-
fore, occasionally at least, one must choose actions that look
suboptimal according to the current value estimates.
The problem of when and how to select optimal or subop-

timal actions has been extensively studied in the simplest of
all stochastic action selection problems. These problems are
known as multi-armed bandit problems.1 Each game ends af-
ter the very first action, with the player receiving a stochas-
tic reward that depends only on the selected action. The
challenge is to maximise the player’s total expected reward,
i.e., quickly find the action with the highest expected re-
ward, without losing too much reward along the way. One
simple, yet effective, strategy is to always select the action
whose value estimate is the largest, with an optimistic ad-
justment that takes account of the uncertainty of the value
estimate. This way, each action either results in an optimal
action or in a reduction of the uncertainty associated with
the value estimate of the chosen action. Thus, suboptimal
actions cannot be chosen indefinitely.
The principle of always choosing the action with the high-

est optimistic value estimate is known as the “principle of
optimism in the face of uncertainty” and was first proposed
and studied by Lai and Robbins [19]. A simple implemen-

1The name is due to Robbins [21], who pictured a gambler
who has the option to play any of a number of slot machines
(one-armed bandits) with unknown reward distributions and
who wishes to maximize his total expected gain.
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Where to spend the search effort?

Introduction
Crazy Stone’s Algorithm

Playing Style
Conclusion

Principles of Monte-Carlo Evaluation
Tree Search
Patterns

Efficient Playout Allocation

4/92/614/15

Idea

more playouts to best moves

UCB: Upper Confidence Bound

UCBi =
Wi

Ni
+ c

�
log t

Ni

Wi : wins (move i)

Ni : playouts (move i)

c: exploration parameter

t: playouts (all moves)

Rémi Coulom Monte-Carlo Tree Search in Crazy Stone• If you limit the number of lines of play that will be generated per turn,

these do not have to be allocated equally to every move.

• Intuitively, you should look more closely at the promising moves, since

the others would not be picked

• Exact formulas can be established theoretically for this allocation
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MCTS Algorithm Outline

We are going to grow a tree for the game, with each node having a

value anotation

• Descent phase: Always pick the highest scoring move for both players

(based on what you know)

Score can be just the value of the child node, or can have extra

information

• Rollout phase: when a leaf is reached, use Monte Carlo simulation to the

end of the game (or to an affordable depth)

This uses a fixed, stochastic policy for both players

• Update phase: statistics for all nodes visited during descent are updated

• Growth phase: the first state in the rollout is added to the tree and its

statistics are initalized
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Example

New node in the tree

Node stored in the tree

State visited but not stored

Terminal outcome

Current simulation

Previous simulation

Simulation 1 Simulation 2

Simulation 3 Simulation 4

Simulation 5

Figure 1: Five simulations of a simple Monte-Carlo tree search. Each simulation has an outcome of 1 for a
black win or 0 for a white win (square). At each simulation a new node (star) is added into the search tree.
The value of each node in the search tree (circles and star) is then updated to count the number of black wins,
and the total number of visits (wins/visits).
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Q⊕(s, a) = Q(s, a) + c

�
log n(s)
n(s, a)

UCT (Upper Confidence Trees)
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Exploitation

Q⊕(s, a) = Q(s, a) + c

�
log n(s)
n(s, a)
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Exploration

Q⊕(s, a) = Q(s, a) + c

�
log n(s)
n(s, a)
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Scrabble

• Stochastic (letters drawn randomly)

• Imperfect information (can’t see opponent’s hand)

• Computers can have an advantage due to dictionary (move generation is

easy

• Quite complex!

– ≈ 700 branching factor

– ≈ 25 depth for a game

– Rough complexity 1070

• Strategy is difficult: what letters to keep?
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Maven

• Best player in the world (beat Adam Logan 9-5)

• Evaluates moves by score + value of rack

• Uses a binary-linear evaluation function of the rack left after the move

• Features: presence of 1, 2 and 3-letter combinations (allows detecting

frequent pairs, like QU, and triples of hard-to-place letters)

• Weights trained by playing many games by itself, observing the final

value of the game.
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Monte Carlo Tree Search in Maven

1. For each legal move:

(a) Roll-out, i.e. imagine n steps of self-play (dealing tiles at random to

both players)

(b) Evaluate resulting position by score + value of rack (according to the

evaluation function)

(c) The score of the move it the average evaluation over the rollouts

(d) Note that this can be done incrementally after each rollout:

Vk+1 =
1

k + 1

k+1�

i=1

Ri =
1

k + 1

k�

i=1

Ri+
1

k + 1
Rk+1 =

k

k + 1
Vk+

1

k + 1
Rk+1

2. Play the move with the highest score
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The Game of Go

~10170 unique positions

~200 moves long

~200 branching factor

~10360 complexity
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The Story of Go

The ancient oriental game of 
Go is 2000 years old

Considered to be the hardest 
classic board game

Considered to be a grand 
challenge task for AI          
(e.g. John McCarthy)

Traditional approaches to game-
tree search have failed in Go
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The Rules of Go

Usually played on 19x19, also 13x13 or 9x9 board

Simple rules, complex strategy

Black and white place down stones alternately
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Capturing

If stones are completely surrounded they are captured
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Winner

The game is finished when both players pass

The intersections surrounded by each player are 
known as territory

The player with more territory wins the game
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Position Evaluation

Game outcome z

 Black wins z=1 

White wins z=0

Value of position s

Vπ(s) = Eπ[z|s]

V*(s) = minimaxπ Vπ(s)

<=  Monte-Carlo simulation

<=  Tree search
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Monte-Carlo Simulation

Current position s

Simulation

 1      1      0      0        Outcomes

V(s) = 2/4 = 0.5
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Rapid Action-Value Estimate (RAVE)

• Assume the value of the move is the same no matter when the move is

played

• This will introduce a “bias” (simplification) in thinking but will reduce

some variability
Rapid Action Value Estimate (RAVE)

MC value of C3     = 0/1
RAVE value of C3 = 3/5
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MoGo (2007)

• MoGo = heuristic MCTS + MC-RAVE + handcrafted 
default policy

• 99% winning rate against best traditional programs

• Highest rating on 9x9 and 19x19 Computer Go Server

• Gold medal at Computer Go Olympiad 

• First victory against 9-dan professional player (9x9)
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Progress in 19x19 Computer Go
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Monte Carlo tree search vs. α-β search

• Not as pessimistic as α-β

• Converges to the minimax solution in the limit

• Anytime algorithm: performance increases with number of lines of play

• Unaffected by branching factor:

– We control the number of lines of play, so a move can always be made

on time

– If the branching factor is huge, search can go much deeper, which is

a big gain

• It is easy to parallelize the search

• We may miss on optimal play (because we will not even see all moves at

deeper nodes)

• The policy used to generate the candidate plays is very important!

E.g. can use an opponent model, or just make sure there is enough

randomization.
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