
Lecture 4: Search for Optimization Problems

• What is an optimization problem?

• Local search algorithms:

– Hill climbing
– Simulated annealing

COMP-424, Lecture 4 - January 16, 2013 1

Optimization problems

• There is some combinatorial structure to the problem

• Constraints may have to be satisfied

• But there is also a cost function, which we want to optimize!

!

• Or at least, we want a “good” solution

• Searching all possible solutions is infeasible

COMP-424, Lecture 4 - January 16, 2013 2

Canonical example: Traveling Salesman Problem (TSP)

!"#$ %&'()*+,)-./,-0,1-&2()3.2*-)*&)*1.4,/)*+1&'5+),4,16)78*6)&27,)82)*+,)7+,.0,-*)

9

3.6)0&--8:/,;

<=>?@ABC)8-)7&11,7*):,7.'-,)6&')D&2E*)7.1,).:&'*)*+,)-*.1*825)78*6)<+,27,)<=>?@A)

82-*,.D)&F)=A@().2D)6&')D&2E*)7.1,).:&'*)*+,)D81,7*8&2)<+,27,)*+,)BC@

• Given: a set of vertices and the distances between each pair of vertices

• Goal: construct the shortest path that touches every vertex exactly once

• A path that touches every vertex exactly once is called a tour.

• In the example above, X1 is a tour, but not the optimal tour.

COMP-424, Lecture 4 - January 16, 2013 3

Real-life examples of optimization problems

• Scheduling

– Given: a set of tasks to be completed, with durations and with mutual
constraints (e.g. task ordering; joint resources)

– Goal: generate the shortest schedule (assignment of start times to
tasks) possible

• VLSI circuit layout

– Given: a board, components and connections
– Goal: place each component on the board such as to maximize energy

efficiency, minimize production cost...

• In AI: learning, e.g.

– Given: customers described by their characteristics (age, occupation,
gender, location, etc) and their previous book purchases

– Goal: find a function from customer characteristics to books which
maximizes the probability of purchase

COMP-424, Lecture 4 - January 16, 2013 4

Characteristics of optimization problems

• Problem is described by a set of states (configurations) and an evaluation

function

E.g. in TSP, a tour is a state, and the length of the tour is the evaluation
function (to minimize)

• The state space is too big to enumerate all states (or the evaluation may
be expensive to compute for all states)

E.g. in TSP, the state space is (n − 1)!/2, where n is the number of
vertices to connect

• We are only interested in the best solution, not the path to the solution

(unlike in A∗)

• Often it is easy to find some solution to the problem

• Often it is provably very hard (NP-complete) to find the best solution

COMP-424, Lecture 4 - January 16, 2013 5

Types of search methods

1. Constructive methods: Start from scratch, build up a solution

E.g. In TSP, start at the start city and add cities until a complete tour
is formed

2. Iterative improvement/repair methods: Start with a solution (which may
be “broken” or suboptimal) and improve it

E.g. In TSP, start with a complete tour, and keep swapping cities to
improve the cost

In both cases, the search is local: we have just one solution in mind, and
we look for alternatives in the ”vicinity” of that solution

3. Global search: Start from multiple states that are far apart, and go all
around the state space

COMP-424, Lecture 4 - January 16, 2013 6

Local search generic algorithm

1. Start from an initial configuration X0

2. Repeat until satisfied:

(a) Generate the set of neighbors of Xi and evaluate them
(b) Select one of the neighbors, Xi+1

(c) The selected neighbor becomes the current configuration

Choosing well the highlighted elements is crucial for a good algorithm!

COMP-424, Lecture 4 - January 16, 2013 7

Example

!"#$"%#"%$&'%$&("#)*+, "-.)*

/0

1223%#"%,24$%+&5"%)&.*-62$%78/9 #)'%,24$%$.*-"%)&.*-62$%7:/%#)'%*2%;-.(-&<&$%;#,%.=%

6&""&$>

?24%*&"%="4(3%.)%#%+2(#+%2@".A4A9%"-24*->%%B-22&,

How should we move around between solutions?

COMP-424, Lecture 4 - January 16, 2013 8

Hill climbing (greedy local search, gradient
ascent/descent)

1. Start at initial configuration X and let E be the value of X (high is
good)

2. Repeat

(a) Let Xi, i = 1 . . . n be the set of neighboring configurations and Ei be
the corresponding values

(b) Let Emax = maxiEi be the value of the best successor configuration
and imax = argmaxiEi be the index of the best configuration.

(c) If Emax ≤ E, return X (we are at a local optimum)
(d) Else let X ← Ximax and E ← Emax

COMP-424, Lecture 4 - January 16, 2013 9

Good things about hill climbing

• Trivial to program!

• Requires no memory of where we’ve been (because it does no
backtracking)

• It is important to have a “good” set of neighbors (not too many, not
too few)

COMP-424, Lecture 4 - January 16, 2013 10

Example: TSP, swapping two nodes

!"#$%&'()*+,-./0&,(123/(&4+(.(&2.(&"'&1+--/(&$%&5-//),6(&52)./&-7&(8*(/&4-&/925

:;

O(n2) comes from the fact that we have n edges in a tour, and choose two

of them to swap, so there are

�
n

2

�
possible next tours

COMP-424, Lecture 4 - January 16, 2013 11

Example: TSP, swapping three nodes

!"#$%%&'"(")&"*+,(-"

./

There are

�
n

3

�
combinations of edges to choose, and for each set of

edges, more than one possible neighbor

COMP-424, Lecture 4 - January 16, 2013 12

Neighborhood trade-off

• A smaller neighborhood means fewer neighbors to evaluate (so cheaper
computation, but possibly worse solutions)

• A bigger neighborhood means more computation, but maybe fewer local
optima, so better final result

• Defining the set of neighbors is a design choice (like choosing the heuristic
for A∗) and has a crucial impact on performance

• For realistic problems, there may not be a unique way of defining the
neighbors

COMP-424, Lecture 4 - January 16, 2013 13

Problems with hill climbing

• Can get stuck in a local maximum

!"

• Can get stuck on a plateau

!"#"$%#&'(%)#*&+,%+-)

./

• Relies very heavily on having a good neighborhood function and a
good evaluation function, in order to get an easy-to-navigate “solution
landscape”

COMP-424, Lecture 4 - January 16, 2013 14

Improvements to hill climbing

• Quick fix: when stuck in a plateau or local optimum, use random restarts

• Better fix: Instead of picking the best move pick any move that produces

an improvement

This is called randomized hill climbing

• But sometimes we may really need to pick apparently bad moves!

!"#$%&#'(")#*+&,(& &"#*-#."/#0%%1#&"#'2(+&#$"#1"304+"#*+&,(& 2+#,#5"6,5#"7&2)/)

89

E.g. Assuming salary is the evaluation function, you can pick a dead-end
job but which pays well right away, vs. picking a job that pays less now,
but you learn skills that may lead to a better job later

COMP-424, Lecture 4 - January 16, 2013 15

Simulated annealing

• Allows some apparently “bad moves”, in the hope of escaping local
maxima

• Decrease the size and frequency of “bad moves” over time

• Algorithm sketch

1. Start at initial configuration X of value E (high is good)
2. Repeat:
(a) Let Xi be a random neighbor of X and Ei be its value
(b) If E < Ei then let X ← Xi and E ← Ei

(c) Else, with some probability p, still accept the move: X ← Xi and
E ← Ei

• Best solution ever found is always remembered

COMP-424, Lecture 4 - January 16, 2013 16

What value should we use for p?

!"

• Suppose you are at a state of value E and are considering a move to a
state of lower value E�

• If E − E� is large, you are likely close to a promising maximum, so you
should be less likely to want to go downhill

• If E−E� is small, the closest maximum may be shallow, so going downhill
is not as bad

• We may want different neighbors with similar value to be equally likely
to be picked

• As we get more experience with the problem, we may want to settle on
the solution (landscape has been explored enough)

COMP-424, Lecture 4 - January 16, 2013 17

Selecting moves in simulated annealing

• If the new value Ei is better than the old value E, move to Xi

• If the new value is worse (Ei < E) then move to the neighboring solution
with probability:

exp

�
−E − Ei

T

�

This is called the Boltzmann distribution

• T > 0 is a parameter called temperature, which typically starts high,
then decreases over time towards 0

• If T is high, exponent is close to 0 and probability of accepting any move
is close to 1

• If T is very close to 0, the probability of moving to a worse solution is
almost 0.

• We can decrease T by multiplying with a constant α < 1 on every move
(or some other, fancier “schedule”)

COMP-424, Lecture 4 - January 16, 2013 18

Where does the Boltzmann distribution come from?

• For a solid, at temperature T , the probability of moving between two
states of energy difference ∆E is:

e
−∆E/kT

• If temperature decreases slowly, it will reach an equilibrium, at which the
probability of being in a state of energy E is proportional to:

e
−E/kT

• So states of low energy (relative to T) are more likely

• In our case, states with better value will be more likely

COMP-424, Lecture 4 - January 16, 2013 19

Properties of simulated annealing

!"

• When T is high, the algorithm is in an exploratory phase (even bad
moves have a high chance of being picked)

• When T is low, the algorithm is in an exploitation phase (the “bad”
moves have very low probability

• If T is decreased slowly enough, simulated annealing is guaranteed to
reach the best solution in the limit (but there is no guarantee how fast...)

COMP-424, Lecture 4 - January 16, 2013 20

Example

!"

!"

COMP-424, Lecture 4 - January 16, 2013 21

TSP example

!!

COMP-424, Lecture 4 - January 16, 2013 22

TSP example: Configurations

!"#$" %&""&'($)*+",(-./("&0(1-2"3

45

The initial configuration is bottom right, final one is top left

COMP-424, Lecture 4 - January 16, 2013 23

TSP example: Energy

!"#$%&'()'*+#',(")-%.$/*-("0'/0'*+# /1%($-*+2'$."0

34

COMP-424, Lecture 4 - January 16, 2013 24

Simulated annealing in practice

• Very useful algorithm, used to solve very hard optimization problems:

– E.g. What gene network configuration best explains observed
expression data

– E.g. Scheduling large transportation fleets

• The temperature annealing schedule is crucial (so it needs to be tweaked)

– Cool too fast and you do not reach optimality
– Slow cooling leads to very slow improvements

• On large problems, simulated annealing can take days or weeks

• Simulated annealing is an example of a randomized search or Monte

Carlo search

• Basic idea: run around through the environment and explore it, instead
of systematically sweeping

• Very powerful for large domains!

COMP-424, Lecture 4 - January 16, 2013 25

Summary

• Optimization problems are widespread and important

• We are only interested in the final result, rather than the path to it

• It is unfeasible to enumerate all possible solutions

• Instead we can do a local search and move in the most promising
direction:

– Hill climbing (a.k.a. gradient ascent/descent) always moves in the
(locally) best direction

– Simulated annealing allows moves downhill

• Next time: global search, looking for solutions from multiple points in
parallel

– Genetic algorithms use an evolutionary-inspired procedure
– Ant-colony optimization and other methods are also possible.

• Important lesson: the power of randomness!

This is a key ingredient for escaping local optima

COMP-424, Lecture 4 - January 16, 2013 26

