
Sentiment Classification of Movie Reviews

Daniel Pomerantz

December 16, 2007

Abstract

The goal of sentiment classification is to de-

termine whether or not an author likes what he

is writing about . In this paper, we explore vari-

ous ways to improve upon current techniques in-

volving subjectivity filters and information gain

based feature selection. We conclude that the

subjectivity filter is useful in certain cases, but

needs to be explored further.

1 Introduction

With the massive amount of information and resources
available on the internet, the idea of automatically filter-
ing information has become very useful. A lot of work
has gone into filtering according to topic. Search engines
such as google do this rather effectively. A different, but
related problem is that of sentiment classification, which
is the problem of trying to classify a text document as
”in favor of” (i.e. PRO) or ”against” (i.e. CON). An
example of a use for this is to be able to search not just
for keywords or topics, but to be able to search within
these topics for only documents that are PRO or CON.

Nowadays, if one wishes to find only articles in favor
of a political candidate, for example, he would have to
search for the name of the candidate and then add some
keywords that the user thinks would be useful for prun-
ing the search (e.g. ”like” or ”good”). It would be useful
for the search engine to be able to do this automatically.

This paper will seek to compare various ways of clas-
sifying sentiment. The domain we will work in is movie
reviews. This is a good domain for study as generally in
a movie review we are given a ”correct” answer (i.e. a
score) since the movie review will have a number along-
side it. This allows us to test our methods without con-
sidering the number, and then compare whether the re-
sult is correct or not. We can then generalize these ap-
proaches that work on movies to more sophisticated do-
mains that are no labelled (e.g. political blogs, customer
feedback, etc.)

One of the major issues with classifying movies (and
text in general) is trying to determine whether a partic-
ular sentence is actually giving an opinion or a fact. For
example, the following sentence gives no information as
to whether the reviewer liked a movie or not: ”In The

Empire Strikes Back, James Earl Jones plays a very ter-
rible villain and throughout the movie, he continues to
do evil things.” (Of course, some Star Wars fans will
dispute the truth of that.) Despite the fact that the pre-
vious sentence contains words that would normally have
negative association (terrible, villain, evil), it says abso-
lutely nothing about whether or not the reviewer liked
the movie or not. This paper will seek to investigate
ways to preprocess the data using a subjective filter to
remove the objective sentences such as the one above.

Finally, one of the problems with many of the tech-
niques is they have a very large feature space and thus
have to retain a large amount of information. This causes
the calculations to be computationally more difficult as
well as forcing the classifier to remember more informa-
tion about the training data. For example, it is a waste
to consider words that occur only once or twice in the
training set, as they tell us little, if anything, about a
negative or positive association. However, words that oc-
cur a lot in both positive and negative documents (such
as ”the”) also shouldn’t be counted. This paper investi-
gates an approach to feature selection using information

gain, which selects words that occur a lot in one type of
document and not very often in the other type.

2 Previous Work

Various machine learning techniques have been used for
classifying text. Most of these involve some variation of
a ”bag of words” approach, which will be described in
the next section. However, there are some other inter-
esting approaches to the problem using techniques dif-
ferent than those described below. Many of these tech-
niques involve clustering or expectation maximization.
For example in [6], Turney classifies reviews by creat-
ing an association measure between all adjectives in the
training set. He seeds the good and bad clusters with a
couple initial words that he assumes has certain conno-
tations. Then each document is classified by whether it
has more words in the positive cluster or negative clus-
ter. These approaches tend to try to cluster adjectives
together based on considering when these pairs of adjec-
tives occur together. When they occur together and are
separated by the word and or so, for example, they have
a positive correlation, but when they are separated by a

1

word such as but or still, they have a negative correlation.
Another interesting approach involves learning from

unlabeled data. Nigam, [2] describes a process for gen-
erating more training data using expectation maximiza-
tion. The idea is that we can easily cluster unlabeled
documents according to their word distributions. Once
these clusters are made, we can use the few labels that
we have to determine which cluster is positive and which
is negative.

There also has been a lot of research done on the
linguistic side of things. The idea here is to be able
to label individual words based on certain features such
as their parts of speech. Then rather than considering
the data as a ”bag of unrelated words,” one could con-
sider the sentence structure. One simple idea is to only
consider adjectives. A more complicate approach could
involve analyzing the sentence structure to account for
relations between words. An obvious example of this is
when a negation word is placed in front of an adjective,
it’s meaning is flipped.

These ideas are all very interesting and have proven
useful in practice, but they are beyond the scope of this
paper. Our approach mainly focuses on a unigram ”bag
of words” approach to sentiment classification. It builds
on the work by Pang et. al in [4], [5]. Additionally, it
considers alternative ways to reduce the dimensionality
of the space, focusing on a method involving information
gain.

3 Background Information

This paper explores three ideas: sentiment classification,
subjectivity filtering, and feature selection.

3.1 Feature Representation and Selec-

tion

We need to consider how to represent all of our data.
For this paper, we only considered unigrams. Although
some previous work [4] has demonstrated that including
information about relative document position or even the
occurrence of certain punctuation marks is useful for de-
termining sentiment (e.g. Question marks might often
occur in sentences such as ”What was he thinking when
he made this movie?” but exclamation marks may be
in sentences such as ”I loved this movie!”), we did not
consider these as our features. Another issue to consider
is word stemming. However, this was not done for this
paper because word stemming assumes that the various
forms of the root word all have the same class distribu-
tion (e.g. look, looks, looking, looked, etc all occur with
the same proportion in positive and negative documents).
This assumption seems reasonable for text classification,
where the goal is to determine the topic. However, we
did not want to make this assumption at this point for
sentiment classification.

We experimented with two types of representations of
features or words. One is based on the frequency of the
word occurring, and the other is based on the presence
of the word in the document. For SVM, the representa-
tion is effectively the same, except that for presence, our
input vector is in the space {0, 1}N , but in frequency it
is in the space N

n.

For Naive Bayes, we treat our representations a bit
differently. In the case of presence, we represent our doc-
ument as a binary string, where each digit represents
whether that particular word occurred or not in the doc-
ument. (e.g. 10001 would mean the first and fifth word
occur in the document, but the second, third, and fourth
words don’t occur. In the case of frequency, we represent
our document as an n-ary string, where n is the number
of words we are considering. In this case, each digit is
a number between 1 and n representing what word oc-
curred in that position. (e.g. the string 848 would mean
the the first word in the document is the 8th word in
our vocabulary, the second word in the document is the
4th word in our vocabulary, and the third word in the
document is the 8th word in our vocabulary). This rep-
resentation allows us to calculate the probabilities more
easily than if we thought of the document as a binary
string of features where features were of the form ”word
w occurs n times” where we would then have to store n
variables for each word.

The next question to consider is how we select which
words we will count. We could, naively, consider every
single word as a feature and then our feature space would
have a dimension equal to the total number of unique
words in our training set. However, this has two poten-
tial problems: 1)It is potentially susceptible to noise and
missing data. If we include words that only occurred a
few times, it is more likely that our estimation as to the
proportion of times that word occurs in positive docu-
ments is inaccurate than if the word occurred more fre-
quently. 2)Computationally, it would be faster and take
up less storage to reduce the dimensionality of the data.
This would be done by removing words that occur fre-
quently, but in both type of documents (such as the word
”the”). Knowing that this type of word occurred in a
document does very little to help us classify a document
correctly. Thus we would like to not even consider the
word at all.

In order to mathematically determine what words are
important, there are several accepted approaches. These
approaches include simply thresholding a minimum num-
ber of occurrences per word, a χ2 significance test, and
approaches based on mutual information. These are in-
vestigated further by Yang and Petersen in [7]. We use
an approach based on information gain, which according
to their study performs at the same level as these other
tests.

Information gain relates to the change in our cer-
tainty over a document’s class after learning whether or

2

not an event (in our case a word) occurs. We wish to
select the words that have the most information gain.
In essence, we wish to determine what words are worth
”asking” whether or not they occurred. To do this, for
every word, we consider the uncertainty before asking the
question and after asking the question. The words with
the biggest difference are the words we wish to choose.
The uncertainty before asking the question is irrelevant
since when comparing the information gain, it is constant
for every different word. Note that our approach consid-
ers each word separately, rather than first selecting the
word with the most information gain and then selecting
the word with the most information gain given that we
already knew the answer to the first word. (See [3] for
more detail about a sequential selection approach.)

To determine the uncertainty after asking, we use the
following formula: Let P (w) be the probability of word
w occurring. Let P (c) represent the probability of the
class being class c and let P (w, c) be the probability of
word w occurring and the class being class c. Finally
let P (w̄) be the probability of word w not occurring and
P (w̄, c) be the probability of word w not occurring and
the class being class c.

IG(w) =
∑

classC

P (w, c) ∗ log(
P (w, c)

P (c)P (w)

+
∑

classC

P (w̄, c) ∗ log(
P (w̄, c)

P (c)P (w̄)

The first term of the above comes from the expected
change in entropy in the case that the word occurs and
the second term comes from the expected change in en-
tropy in the case that the word does not occur. We
experimented with different threshold levels to consider
which words to include in our feature space.

3.2 Sentiment Classification

We considered two classes of machine learning algo-
rithms: Naive Bayes and Support Vector Machines. For
each, we considered both keeping track of the frequency
of unigrams and simply the occurrence of these unigrams.

3.2.1 Naive Bayes

In the Naive Bayes representation, we use Bayes rule:

P (Class = |Data) =
P (Data|Class)P (Class)

P (Data)

We determine which class has the maximum probability
and assign the document to that class. Note that the
term in the denominator is simply a constant factor that
is present in all classes, so in determining the maximum
class, we do not need to consider it. For the probability of
a particular class, we simply use the maximum likelihood

estimate, which is the proportion of training documents
in that particular class with respect to the total number
of documents.

For the probability of the data given the class, we
make the Naive Bayes assumption that all features of
the document are independent once we know the class.
Of course, in reality this is not the case as a word always
depends in some way on the previous words. However,
previous research [4] has shown that results are good de-
spite violating this condition. Thus we can simply con-
sider the probability of each feature occurring indepen-
dently. This is also done with the maximum likelihood
estimate, which is the proportion of times that that fea-
ture occurred in our training data with respect to the
number of times that class occurred.

In the case of frequency, we think of each word as
a random word chosen from our vocabulary (recall the
string representation described in the feature representa-
tion section above). To determine the probability of this
word w occurring given the class, we use the maximum
likelihood estimate:

P (w occurs|class = C) =
|wc|

|C|

where |wc| is the number of times w occurs in class c in
training and |C| is the total number of words in class C.
Note that by ”total number of words,” we count dupli-
cate words multiple times. It is important to note that
we don’t need to explicitly include probabilities of words
not occurring because this is implicitly included in the
denominator of the above terms. Finally, note that we
use Laplace smoothing to deal with missing data. In this
case it consists of adding 1 to the numerator and adding
the total number of unique words to the denominator.
This is essentially assuming that we are given a docu-
ment that contains exactly one of every single word in
the vocabulary.

So our formula for classification is:

argmax
c

(

P (c)
∏

wi∈document

(

(wi + 1)

|c| + |V |c

)ni

)

where |V |c is the number of unique words in class c and
ni is the number of times that word wi occurs in the
document.

In the case of presence, recall that we represent each
document as a binary string, where each digit represents
whether or not that word occurs. In this case, we must
explicitly consider words that do not occur. If we fail to
do this, and one class has documents of longer lengths,
then certain unintended biases can occur. For exam-
ple, suppose that positive documents are normally a lot
longer than negative documents. Then in general, a word
is more likely to occur in a positive document than a
negative document simply because given one word, we
would guess that the document is positive because that

3

word occurs in more positive documents than negative
documents. However, this only happened because the
positive documents have more total words.

The problem with the above is that we are failing to
consider what words did not occur. For the first repre-
sentation we did not have to because we determined the
probability of each word occurring in a particular ”slot.”
So we only need to consider the probability of a word
occurring in a certain slot, where we assume that the
probability of occurring in a slot is independent of which
slot we look at. If one class has longer documents, then
the total number of words will be higher, and so this
will cancel. In the second case, however, we are keeping
track of which words occurred and which word didn’t oc-
cur. We thus have to include the probability of a word
not occurring in the entire document. This distinction is
further elaborated on in [1].

For each probability, we once again use the maximum
likelihood representation with Laplace smoothing. This
means that we assume the probability of a word occur-
ring in a class is equal to the number of documents in
that particular class which have that word divided by
the total number of documents in the class. Thus our
formula for classification is now:

argmax
c

P (c)
∏

wi∈doc

(

|w|i + 1

|C| + 2

)

∏

wi /∈doc

(

|w̄i| + 1

|C| + 2

)

where |w|i and |w̄|i represent the number of times wi

does and doesn’t occur in the class respectively. In this
case |C| refers to the number of documents in the class.

One final thing to consider is that we could repre-
sent frequency using a similar type string as we use in
presence. However, to do this, we would have to be able
to calculate the probability of a word occurring exactly
n times, for any natural number n. This would require
storing, for every word w and every natural number n,
the number of documents where word w occurs exactly
n times. This would be difficult both computationally
and practically (in the sense that it is much more dif-
ficult to implement). The frequency representation de-
scribed above is much better as all we need to remember
is the number of times each word occurs in a document
and treat all occurrences independently. It assumes that
there is no relation between a word occurring once and
occurring again.

3.2.2 Support Vector Machines

The goal of SVM-classification in the training phase to
determine an optimal decision boundary. By optimal,
we mean the decision boundary should be as far from
our labeled data as possible. SVM tries to maximize the

minimal distance from the decision boundary to the la-
beled data. Once this decision boundary is decided, we
can check for a given query document on which side of
the decision boundary it lies.

In order to train the SVM classifier, we must repre-
sent each document as a vector. This is done in a very
natural way by letting each coordinate of our vector rep-
resent one word. In the case of presence SVM, we have
the coordinate be 1 if the word occurs and 0 otherwise.
In the case of frequency, we have each coordinate stor-
ing the number of times that particular word occurs in
a document. Note that the difference between the two
representations is much smaller than in the case of Naive
Bayes classification. For the query phase, we again con-
vert our document to a vector and then check which side
of the decision boundary it lies on.

3.3 Subjectivity Filtering

3.3.1 Basic Version

The final issue that we consider is the issue of subjectiv-
ity filtering. The idea is to preprocess both our training
data and our test data with a subjectivity filter. See
figure 1. This would seek to remove sentences that were
deemed objective since they should not have any relation
to whether the writer liked a movie or not.

There are two methods of subjectivity filtering that
we considered. The first method is for every sentence
in a document to classify it as ”subjective” or ”objec-
tive” based on a classification technique that is exactly
the same as above except with the goal to classify a sen-
tence instead of classifying a document. We would train
our classifier by giving it sentences that are labeled as
”subjective” or ”objective.” When given a sentence to
classify, our classifier could then output whether or not
it believes it is subjective. This could be done with SVM,
Naive Bayes, or any other classifier one chooses. In our
case, we implemented this with Naive Bayes, but it could
be done with any technique.

To get the classification of the sentence, we must use
Bayes rule in the same fashion as we do for sentiment
classification. The difference is that we are given a train-
ing set which consists of sentences that are classified as
objective or subjective instead of documents which are
classified as good or bad. We compute the MLE for each
of the features in the same way as previously.

Using this process, the goal would be to run every
training and every test document through a subjectivity
filter. We would then keep the sentences that are clas-
sified as subjective and discard the objective sentences
1. Based on these individual classifications, we have a
new set of data. We then can run our algorithms from
the previous section to classify a document as positive or
negative.

1Theoretically, it might be useful to use only the objective sentences in a topic classification system, but we suspect this is being too
idealistic.

4

Figure 1: Subjectivity Filtering: First we run every document through a filter that removes all of the objective
sentences. The aim is to be left with a set of documents that contains only subjective sentences. These documents
are then run through a standard polarity classifier.

3.3.2 Minimum Cut Version

One of the flaws with the basic version of subjectivity
filtering is that it does not take into account any relation
between sentences. It classifies every sentence of a doc-
ument independently. This assumption very likely does
not hold in reality. For example, a reviewer may write
a paragraph of plot summary and then a paragraph of
critique. In this case we would like to associate sen-
tences with each other based on proximity. Note that
this method could be extended to base the association
on any other information, but sentence proximity seems
the most natural.

The idea now is to partition all of the sentences of a
document into two set: one for subjective sentences and
one for objective sentences. The idea is to partition the
sentences such that we minimize both the probability of
being in the other class (based on our ”simple” classi-
fier) and the sum of the associations with other classes.
Mathematically, this is:

min
∑

s∈subj

Po(s)+
∑

s∈obj

Ps(s)+
∑

s1∈obj

∑

s2∈subj

assoc(s1, s2)

where Po(s) and Ps(s) are the probabilities of sen-
tence s being objective and subjective respectively, based
on our original classifier. This seems computationally in-
tractable since there are 2n possible partitions for a doc-
ument with n sentences. However, Pang et. al. [5] have
shown that this problem can be reduced to a Min-Cut
problem, which has a polynomial time solution.

The reduction is the following. For every sentence
create a node. Create a source node s which is connected
to every sentence. The weight on each one of these edges
is given by the probability of the sentence that that node
represents being subjective. This is based on our basic
classifier. We then create a sink node t which is also
connected to every sentence. The weight of an edge to
the sink is given by the probability that the sentence is
objective (1 minus the probability of it being subjective).
Then we connect each sentence to each other via a func-
tion (see below) to represent the association. Finally, we

find the min-cut/ max s-t flow of the graph and whatever
nodes are left on the same side as s are labeled subjective
and the nodes on the side of t are labeled objective. We
then classify our documents as positive or negative based
on this new data set generated.

Note that in order to do this, we now need to compute
the probability of being subjective and the probability
of being objective rather than just computing which is
bigger. We can use the fact that we know the sum of
probabilities of the two classes must be one to do this.

In our case, we used a function for association that
incorporated the proximity of 2 sentences within a doc-
ument. In order to make the graph less dense (and in-
crease the efficiency), we assume the association is 0 if
the proximity is greater than D where D is a parameter
that would normally be determined via cross-validation.
The function we used was

assoc(x, y) = c
1

(x − y)2

where c is also a parameter determined by experimen-
tation and x and y represent the count of what num-
ber sentence each is. Due to time constraints, we only
tested D = 3 and C = .5 and it may be that we could
have improved the success of the classifier had we tried
different values. Additionally, there are other possible
functions, such as an exponential function or simply a
constant function (i.e. association = c if the distance is
less than D and 0 otherwise)

4 Algorithm

The final algorithm that we employed is the following:

• For every document in our training set:

– For each sentence generate a Naive Bayes esti-
mate as to whether it is subjective or objective

– For each pair of sentences compute the asso-
ciation

– Classify each sentence as subjective or objec-
tive based on min-cut algorithm

5

Table 1: A Comparison of the Algorithms: The p-values are the differences on a t-test between the the min-cut
filter and the regular algorithm.

Algorithm Frequency? Regular Subjective Filter Min-Cut Filter p-value 95% signficant?
Naive Bayes no 82.15 % 85.65 % 86.5 % 2.68 yes
Naive Bayes yes 79.90 % 84.90 % 85.05 % 2.751 yes

SVM no 87.3 % 85.85 % 85.80 % -.986 no
SVM yes 82.05 % 83.75 % 85.90 % 2.35 yes

– Only keep the sentences that are subjective.

• Given a query document, run the same min-cut al-
gorithm on it

• Compute the classification of the document as pos-
itive or negative based on Naive Bayes or SVM (or
any other technique you prefer)

5 Our implementation

For the sentiment polarity data set, we used the movie
review set compiled by Pang et. al 2 . They took 2000
movie reviews from IMDB, 1000 of which were positive
(the reviewer gave a score above a threshold), and 1000
of which were negative. The data set only consists of
reviews which are sufficiently good or bad and not any-
thing in the middle. This is good from the perspective of
training as we can learn what words are in good reviews
and bad review separately (i.e. there are no ”so-so” re-
views). For the purpose of testing, it is still sufficient to
use this data set as any review that is in the middle is
difficult for even a human to classify. If a review is in
the middle, then either classification would be right or
wrong depending on who you asked.

Getting subjectivity data is much more difficult. It
is a somewhat difficult task for a human to determine
whether or not a sentence is subjective. For this reason,
subjectivity data set is not as well labeled.Pang et. al.
also compiled a data set of subjective sentences3. They
did this by taking 5000 sentences from ”plot summaries”
and labeling them as objective and 5000 sentences from
an opinion blog and labeled them as subjective. This is
not a perfect training set as of course a plot summary
may still contain opinions and a blog may contain facts.
However, this is the best data set available.

In order to test with SVM, we used the package SVM
Light 4. This package allowed us to train and query with
SVM very easily. Note that we used all of the default
settings for classification, including using the linear ker-
nel.

We ran 100-fold cross-validation which seems like a
large fold, but was necessary in order to include all data

in the test case for every algorithm we ran. This way,
we only needed to train 20 times for each algorithm, as
opposed to running the training, for example, 200 times
if we did 10-fold cross-validation. If anything, using this
large a fold made our task harder as we removed 5 per-
cent of our data in each fold. Note that when we consid-
ered the vocabulary of each, we had to retrain assuming
we had only seen the training data since in a real life sce-
nario this would be the case. This means that we have to
do the computation of what our vocabulary is on every
different fold, which takes a fair amount of time.

6 Data and Results

We experimented with both SVM and Naive Bayes. For
each of these algorithms, we considered keeping track of
both frequency and the presence of unigrams and consid-
ered a feature space based on four different levels of min-
imum information gain. Each of these were run on three
separate data sets: one on the original movie reviews
from IMDB, a second with subjective sentences filtered
using just the Naive Bayes filter, and a third with subjec-
tive sentences filtered using the minimum cut algorithm
proposed by Bo Pang et. al.

Our results are presented in table 1 . Each algorithm
was run with four possible values for information gain.
The percentages listed are the highest percent of cor-
rect classifications during 100-fold cross-validation. The
results indicate that keeping track of simply the pres-
ence of a word is more useful than keeping track of the
frequency as in almost every case (the only exception be-
ing SVM with the Min-Cut filter where the two versions
are essentially equal), the presence version out performed
the frequency version. Additionally, using the subjectiv-
ity filter improved the accuracy significantly in three of
the four cases. Using the Minimum Cut filter improved
things even further. In the case of SVM presence, how-
ever, it actually degrades performance, but this does not
pass a 95 % significance t-test.

In figure 2, are two graphs demonstrating the various
changes of each algorithm with different threshold values
of information gain. Recall that in each case, we con-

2http://www.cs.cornell.edu/people/pabo/movie-review-data/review polarity.tar.gz
3http://www.cs.cornell.edu/people/pabo/movie-review-data/rotten imdb.tar.gz
4http://svmlight.joachims.org/

6

(a) Presence (b) Frequency

Figure 2: The accuracy of the algorithms compared with the minimum information gain used. The smaller the
minimum information gain, the more words we select. One can see that the lines are very horizontal, indicating
that accuracy is not lost when we remove words.

structed our feature space by requiring that each word
satisfied a minimum information gain. Note that the
scales for the frequency and presence is different since
there are significantly more pieces of data in the case of
frequency. Thus we have put them on separate graphs
(since the x-axis refers to information gain as opposed to
number of words used). As you can see, including fewer
words has no negative effect on the success of the classi-
fier. In fact, if anything it leads to better results, most
likely due to the fact that the data is less susceptible to
noise. While we do not present the results here, we infor-
mally experimented with even smaller information gain,
and not surprisingly, eventually discarding data causes
problems.

One further thing to note is that while timing was
not measured, the training time on filtered data is signif-
icantly less than the training time on the unfiltered data
for the obvious reason that the amount of data to look
through is much less. A total word count reveals that
the vanilla subjectivity filter keeps 45.0 % of the posi-
tive data and 50.2 % of the negative data (which was
shorter to begin with) whereas the min-cut filter keeps
50.5 % of the positive data and 55 % of the negative data.
However, despite throwing away about half of our data,
our results improved, indicating our hypothesis that this
data is not useful and can in fact be misleading is correct.
This suggests that even though the SVM implementation
did not improve, subjectivity filtering could still be use-
ful as a way to decrease the size of our data. The speed
of the query is approximately the same, as once the SVM
is trained, classifying the data does not require reexam-
ining the original data–it only requires looking at the
decision boundary.

When we decrease the number of features, we im-
proved both the query time and the training time as
there were fewer elements to consider. Recall that in
the Naive Bayes implementation we had to keep track of

how often every word occurred in each class. This means
that in order to look up how often a word occurred, we
had to look through a list of data that includes every
word, so if there are fewer words, we can search more
quickly. While the focus of the paper was not on tim-
ing optimization issues, it is, needless to say, still a good
thing.

7 Conclusions and Future Work

Our results for are very similar to Pang et. al [4], [5],
who concluded that generally SVM performs better than
Naive Bayes. However, they had better results when
using SVM to test using the subjectivity filter. While
our drop off does not pass a significance test, and is not
nearly as large a difference as in the cases where there
is improvement, we still need to consider the possibil-
ity that it wasn’t due to random chance, especially since
they concluded that there was significant improvement

between the regular algorithm and the Min-Cut formu-
lation.

One potential cause of the difference between the two
results is the large size of each fold5 for cross validation.
We have 2000 documents, and each fold represents 5 %
of the data. It is possible that this didn’t make a major
difference in the case of applying no subjectivity filter, as
there was still a lot of data to test on. However, it may
just be that after applying the subjectivity filter, which
removes approximately half of the sentences, and then
removing 5 % of the training data, that we just don’t
have enough information for the classifier to work well.
This suggests that we need to consider the possibility of
using more training documents in the case of applying a
subjectivity filter compared with when we don’t. While
this would mean we’d need to store more data, it would
be negated by the fact that we are storing much less

5Pang and Lee used 10-fold cross validation

7

data per review. The new data set would perhaps be of
a comparable size, but it would be more useful data.

Another issue that needs to be explored is chang-
ing the association function that is used to compute the
weights of the subjectivity graph. The association func-
tion we used only relied on the proximity of sentences and
did not consider other issues, such as paragraph bound-
aries. Additionally, we can change the actual distance
function that we used and experiment with different con-
stants. With a constant value of .5 in our case, we are
creating very large associations between the different sen-
tences. Additionally, it may just be that our original
SVM presence algorithm got lucky and had higher re-
sults than it normally would as it did much better than
in previous studies. (Pang et. al has 82.9 % accuracy.)

The subjectivity filter led to an increase in accuracy,
but it is clear that it can be tricked sometimes by key-
words, and this problem may be inherent to filtering
based on subjectivity. For example, the following sen-
tence was classified as subjective:

I don’t think anyone needs to be briefed on
Jack the Ripper

The prior sentence is actually a subjective sentence, since
the writer is giving his opinion on what he thinks the
reader knows. However, it has no relevance to the con-
text of sentiment classification as the statement, while
being an opinion, is not an opinion about the movie. The
fact that it is actually an opinion shows us how difficult
the problem of subjectivity filtering is. We have to filter
not only all objective sentences but also all subjective
sentences that are unrelated, and this seems very diffi-
cult. One could design a classifier to classify sentences as
”subjective movie sentences” vs. ”not subjective movie
sentence” (instead of ”subjective sentence” vs. ”objec-
tive sentence”), but it would be very difficult to generate
data for this. As it was, the training data was produced
in a less than perfect manner.

Fortunately, the subjectivity filter does not have to
be perfect in order to work. If it removes a large enough
percentage of the sentences that don’t involve opinions
about the movie, as demonstrated, it can still aid in both
timing performance and accuracy. The fact that we are
able to remove such a large amount of the data and im-

prove accuracy is quite impressive. In [5], they performed
a ”flip” experiment, where they kept only the objective

sentences, and this resulted in worse accuracy than the
baseline Naive Bayes implementation. We did not run
this test but expect we would have very similar results.

In addition to modifying the association function of
the subjectivity filter, we could try to improve the subjec-
tivity classifier by analyzing sentence structure. It may
be that certain sentence structures tend to be opinions
where as others tend to be facts. For example, opinion
sentences may often involve more ”that clauses” since
they often start ”I think that...” In our subjectivity clas-
sifier, the only features that we currently consider are

words. We could add to our feature space features such
as sentence structure, sentence length, etc.

There is also some room for improvement with the
sentiment classifier. One obvious problem is when the
sentence includes words such as ”not,” the entire mean-
ing of the sentence is changed. However, these issues can
be much more subtle. Many of the documents that were
misclassified were caused by an intentional deception on
the part of the author or a gradual build up which sets
up a big but. For example, reviewers will sometimes give
a list of things that they disliked about a movie and then
say they liked it despite all these rational reasons to hate
it. This is a bit troubling as it is very easy for a human to
interpret this, but our algorithm does not perform well
in this setup. This is indeed one of the issues that makes
sentiment classification a more difficult task than topic
classification.

Another idea would be to first determine the topic

of the document before running the sentiment analysis,
as our algorithm assumes that all topics have the same
distribution of words as they related to sentiment. How-
ever, this assumption may be inaccurate. For example,
a horror movie is more likely to include words that seem

negative, but are actually good in the context of being
a horror film. For example, ”This film is scary” has a
completely different meaning in a horror movie review
than it does in a romantic comedy review. In the former
case, it is probably a compliment as the movie was sup-
posed to be scary, but in the latter case, it most likely is
a commentary that it is scary how bad the movie is.

One major problem with this is generating training
data, as we would need to have a large training set for
each of several movie topics. McCallum and Nigam [1]
have suggested an approach to text classification using
EM that would be very interesting to experiment with.

An issue that appears clear is that reducing the num-
ber of words that we kept track of does not hurt our
results and if anything, there is an improvement when
we reduce the number of words, since as hypothesized,
the amount of noise is reduced due to dropping words
that don’t occur very often.

In summary, there is room for exploration. The infor-
mation gain approach definitely works well with respect
to cutting down on computations and the subjectivity
filter has shown it has the potential to be very useful.
Areas for future work include determining a better as-
sociation function, incorporating topic classification into
the filter, and learning with smaller amounts of training
data.

References

[1] Andrew McCallum and Kamal Nigam. A Comparison

of Event Models for Naive Bayes Text Classification.
1998

8

[2] Kamal Nigam, Andrew K. McCallum, Sebastian
Thrun, and Tom M. Mitchell. Text Classification

from Labeled and Unlabeled Documents using EM.
2000

[3] Jana Novovicova, Antonin Malik, and Pavel Pudil.
Feature Selection using Improved Mutual Information

for Text Classification. 2004

[4] Bo Pang, Lillian Lee, and Shivakumar Vaithynathan.
Thumbs up? Sentiment Classification using Machine

Learning Techniques. 2002. Proceedings of EMNLP,
pp. 79-86

[5] Bo Pang and Lillian Lee. A Sentimental Education:

Sentiment Analysis Using Subjectivity Summariza-

tion Based on Minimum Cuts 2004.

[6] Peter Turney. Thumbs Up or Thumbs Down? Se-

mantic Orientation Applied to Unsupervised Classifi-

cation of Reviews 2002.

[7] Yiming Yang and Jan O. Pederson. A Comparative

Study on Feature Selection in Text Categorization.
1997

9

