
COMP322 - Introduction to C++

Lecture 10 - Overloading Operators and
Exceptions

Dan Pomerantz

School of Computer Science

19 March 2013



Overloading operators in classes
It is useful sometimes to define operators to work on the new
types that we are creating.

For example, in C++ or Java, we could define a type
ComplexNumber to consist of

1. private property real
2. private property complex
3. add() method to add 2 ComplexNumbers together
4. subtract() method
5. etc

But this is not necessarily the most convenient to work with.
Wouldn’t it be nice to be able to add two numbers together
with a +

Or what about being able to specify what == means? For
example, if our type is complex, maybe we don’t want to
compare in the ordinary way.



Operator overloading

In Java, they make a philosophical decision that operators
such as +, -, = can’t be re-defined on Objects. In C++though,
we can do it!
const ComplexNumber ComplexNumber::operator+(const ComplexNumber &other) const {

double real = real + other.real;
double complex = complex + other.complex;
return ComplexNumber(real, complex);

}

Now, we can do things like ComplexNumber c = a + b;

This is the sort of thing done in the string class with +. We
can also overload [] if we wanted to make a class resembling
vector for example or = if we wanted to specify copying or ==
to specify comparison.



Format

It always will look:

type operator sign (parameters) { definition }

operator means the text “operator” and sign means the
symbol

http://www.cplusplus.com/doc/tutorial/classes2/



Motivation for exceptions

I Error handling is a difficult problem in general
I Organizing error codes and messages is tricky in C
I Error handling can lead to resource leaks and ugly code
bool f() { // true->success, false->failure
int *pc = malloc(sizeof(int) * 100);
if (pc == NULL) {
return false;

}

FILE *fp = fopen(outfile, "w");

if (fp == NULL) {
free(pc); // release anything allocated

return false;
}

// ...

free(pc);

fclose(fp);

return true;
}



Motivation for exceptions, continued
I Using the “goto” statement is tempting:
bool f() {
int *pc = NULL;
FILE *fp = NULL;

pc = malloc(sizeof(int)*100);
if (pc == NULL) {
goto error;

}

fp = fopen(outfile, "w");

if (fp == NULL) {
goto error;

}

// ...

free(pc);

fclose(fp);

return true;

error:

if (pc != NULL) free(fp);
if (fp != NULL) fclose(fp);
// ...

return false;
}



What is an exception?

I A mechanism for handling exceptional conditions,
including but not limited to errors.

I Exceptions are a mechanism for passing error
information off to the runtime system, which can then
select the appropriate handler for the error.

I Stroustrup: “One way of viewing exceptions is as a way
of giving control to a caller when no meaningful action
can be taken locally”.

I Alternative to printing messages or terminating
programs within generic libraries.

I For C programmers, an exception is a safer, more
flexible replacement for setjmp()/longjmp().



Exception syntax in C++

C++ exception syntax is similar to that of Java:

I try - a “try” block associates a list of statements with
one or more exception handlers.

I catch - one or more “catch” blocks follow the try block.
These define the handler for a given type.

I throw - a “throw” statement passes the exception to the
runtime system for delivery.

I Control is immediately transferred to a handler
associated with the nearest enclosing try block.

I If no appropriate handler is found, the program exits.
I The stack is “unwound” and destructors invoked as

necessary.



A basic example

void g() {
// etc.

if (/* something goes wrong */) {
throw 2;

}

}

void f() {
try {
// ...

g();

}

catch (int code) { // Handle int exceptions
cerr "Caught exception " << code << endl;

}

catch (...) { // Default handler
cerr "Caught unknown exception" << endl;

}

}



Exceptions in C++ vs. Java

I C++ has no finally block
I C++ exceptions can throw any type
I C++ methods are never required to specify the

exceptions they may throw



Some more details

The catch block must specify the type that is to be caught, it
need not specify a parameter name.

If a parameter name is not specified, we can’t examine the
value of the exception or learn anything other than the type:
void f() {
try {
// ...

}

catch (int) { // Handle int exceptions anonymously
// deal with the exception

}

catch (...) { // Always anonymous , even the type is unknown
}

}



Specifying exceptions for functions
I A function may specify the types of exceptions it throws.
I Other types, if thrown, will force an exit.
I No checking is done at compile time.

void f() { // No restrictions
// ...

throw ’c’; // OK
throw 147; // OK
throw string("oops!"); // OK

}

void g() throw() { // No exceptions
// ...

throw 2; // Legal, but can’t be caught

}

void h() throw(int, myexcept) { // May throw an int or ‘‘myexcept’’
// ...

throw 2; // Can be caught

throw 1.0; // Can’t catch a double exception

}



Nested exceptions

Try blocks can be nested within one another. The exception
will be delivered to the innermost possible block:
void f() {
// ...

try {
// ...

}

catch (int e) {
try {
// complex recovery operation

}

catch (int e) {
// handler failed

}

}

}



Nested exceptions and function calls
Exceptions can be delivered through multiple function calls:
void g() {
// ...

throw 13;
}

void f() {
try {
g();

}

catch (int e) { // Will be caught here...
cerr << "f " << e << endl;

}

}

int main() {
try {
f()

}

catch (int e) { // ...not here.
cerr << "main " << e << endl;

}

}



Exceptions and the stack
I A thrown exception will “unwind” the call stack.
I All fully-constructed objects that go out of scope are

destroyed.
I Objects allocated with new are not destroyed.

void f() {
if (/* ... */) {
int *p = new int[100];
string s("a string");

// ...

throw 21; // s will be destroyed , p will not
}

}

void g() {
try {
f();

}

catch (int e) {
// ...

}

}



Exceptions within handlers
Exceptions thrown in a catch block must be caught in some
higher enclosing handler, not in the current handler.

This code is legal and is not an infinite loop:
void f() {
try {
// ...

}

catch (int ec) {
// ...

throw 1; // Would be handled in ’g’

}

}

void g() {
try {
f();

}

catch (int ec) {
// ...

}

}



Re-throw

If your exception handler cannot completely handle the
exception, it can “re-throw” the exception for the benefit of a
caller:
void f() {
try {
// ...

}

catch (Exception & e) {
// ...

throw; // I’ve done all I can.

}

}

The exception will be passed upwards. If you the exception
is received by non-const reference or pointer, any
modification will be passed to the next handler.



Exceptions and classes

Exceptions can use class types. These are generally
preferred over built-in types, as it is easier both to organize
exceptions and to pass useful information to handlers:
class Matherr { };
class Dividebyzero : public Matherr { };
class Overflow : public Matherr { };
class Underflow : public Matherr { };

void f() {
try {
// ...

}

catch (Dividebyzero) {
}

catch (Matherr) {
}

}



Ordering of catch blocks

The order of exception handlers matters. When an exception
occurs, C++ scans through the list of eligible exception
handlers and selects the first one that is compatible.
Therefore we often list catch blocks in order of increasing
generality:
void f() {
try {
// ...

}

catch (Dividebyzero) { // Least general
}

catch (Matherr) { // More general
}

catch (...) { // Most general
}

}



Exception hierarchies
In complex libraries or packages it may be useful to define
one or more exception class hierarchies:
class Exception { // Base class of my exceptions
public:
virtual string toString() = 0; // Convert information to string

};

class IOException: public Exception {
private:
int code;

public:
IOException(int c) { code = c; }
virtual string toString() {
ostringstream oss;

oss << "I/O Error " << code << endl;

return oss.str;
}

};

void f() {
//..

throw IOException(42);
}



Polymorphic exceptions

In a hierarchy of exceptions, the same issues apply with
assignment or passing of derived classes: data may be
“sliced away” when a derived class is assigned to a base
class.

We can avoid this by using either references (or pointers):
void f() {
try {
// ...

}

catch (Exception &e) {
cerr << e.toString();

}

}

Passing exceptions by pointers is somewhat dangerous, as it
may be unclear when and if to delete the exception.



Some exception guidelines

I A given try block is not required to catch all potential
exceptions.

I While you can use any type in an exception, for larger
programs it is probably a good idea to define a set of
exception classes.

I Generally “catch by reference” is the norm.
I Don’t throw exceptions in a destructor.
I The standard library may throw a number of possible

exceptions; these are typically defined in <stdexcept>.
I Standard hierarchy is rooted at std::exception
I New exceptions commonly inherit from
std::runtime error



Exception safety

I Ideally, C++code should go to some length to assure that
it is exception safe.

I Restore modified structures to consistent values
I Release resources

I However, strong guarantees of exception safety are hard
I A standard design pattern helps maintain exception

safety and generally results in simpler code.



Resource acquisition is initialization

I This is a basic pattern in C++, proposed by Bjarne
Stroustrup.

I When objects are allocated on the stack, their destructor
will be called when they go out of scope.

I We can use this to guarantee that resources are freed
after either an exception or function return.

I Known as “resource acquisition is initialization” (RAII).



RAII - example
class infile {
private:
FILE *m_file;

public:
infile(string name) : m_file(fopen(name, "r")) {

if (m_file == NULL) {
throw runtime_error("can’t open file");

}

}

∼infile() {

fclose(m_file);

}

};

int f() {
infile("readme.txt");

// ...

// We’re guaranteed that if the fopen() succeeded , the

// corresponding fclose() will occur!

}



RAII - definition

I Whereever possible, use local objects to manage
resource acquisition, memory allocation, etc.

I The constructors and destructors of these objects are
responsible for the actual acquisition or allocation.

I Explicitly construct contained objects in the initializer list.
I If these operations fail, the constructor should throw an

exception.
I Careful exception handling in the constructor should

allow it to restore the system to a valid state.



RAII - some details

I Once an object is fully constructed, it is guaranteed that
its destructor will be called when the stack “unwinds”,
whether because of an exception or normal return.

I Otherwise, the destructor will not be called.
I Constructors should clean up after themselves if

necessary.

class A {
B_ptr pb; // resource 1

C_ptr pc; // resource 2

A();

};

A::A() : pb(), pc() { // Use initializer list

// if either elements’ constructor throws an exception , the

// object will not be constructed , and A’s destructor will not be

// called

}



Entire constructor as a try block

Often, it is useful to catch exception in the initializer list.

You can do this if you enclose an entire constructor in a try
block:
Class::Class() try

: x(0), y()

{

// ...

}

catch(XErr &xe) {
// trouble initializing ’x’

}

catch(YErr &ye) {
// trouble initializing ’y’

}



Entire function as a try block

You can enclose an entire function body in a similar manner.
int g(int arg)
try {
f(arg);

return (0);
}

catch (Dividebyzero) {
cerr << "Divide by zero\n";

return arg+10; // Can return alternate values
}

catch (Matherr) {
cerr << "Other math error\n";

return arg+100; // Parameter is in scope
}

catch (...) {
cerr << "Other...\n";

return arg+1000;
}


