
Last Class

• More on if statements
• Nested if statements

public class January28{
public static void main(String[] args) {
while (getCurrentTimeRemaining() > 0)

{
 discussLooping();
 }

}
}

COMP-202
Unit 4: Programming With

Iterations

CONTENTS:
The while and for statements

Repetition Statements
•Repetition statements allow us to execute a (set of) statement(s)
multiple times, repetitively; these statements are often called
loops

Repetition Statements in Java
•Java has two main kinds of repetition statements: the while
loop and the for loop
•“While” and “for” loops are equivalent

– However, in certain circumstances, choosing one of these
statements over the other results in a program that is easier
to understand.

Example of a “while” loop

•int x = 0;
•
•while (x < 4) {
• System.out.println(“I have
to write “
• + “this over and over.”);
• x++;
•}

Recall: increment/decrement
operators

•Remember that if you have an
int variable, you can do
•
•x++
•++x
•x--
•--x
•
•to increment or decrement the
value stored in x

Recall: increment/decrement
operators

•
•for(int x = 0; x < 4; x++) {
• System.out.println(“I have
to“
• + “write this over and
over”);
•}

Recall: “if” statement
• if (condition)
• One statement
•
• Example:
• if(x != 0)
• width = x + 5;

•

•

•

• if (condition)
• One block of statements
•
• Example:
• if(x == 0){
• z = x + 3;
• x = 5;
• }

“while” loops are similar in
structure to “if” statements

•

• while (condition)
• One statement
•

•

•

•

•

• while (condition)
• One block of

statements
•

•
The difference is that when we reach the end of the
one statement or block, we “go back” to the start of
the while loop and re-test the condition

Example of a “while” loop

•int x = 0;
•
•while (x < 4) {
• System.out.println(“I have
to write “
• + “this over and over.”);
• x++;
•}

•x = 0;
•if (x < 4) {
• System.out.println(...);
• x++;
• if (x < 4) {
• System.out.println(...);
• x++;
• if (x < 4) {
• System.out.....
• }
• }
•}

Cheating at rock paper scissors
•Scanner s = new Scanner(System.in);
•bool keepPlaying = true;
•while (keepPlaying) {
• System.out.println(“Enter Rock(r)”
+“Scissor (s), Paper(p),or quit(q)”);
• char next = c.nextChar();
• if (next == 'r')

System.out.println(“I play paper!”);
•if (next == 's')
• System.out.println(“I play rock!”);
•if (next == 'p')
• System.out.println(“I play scissor”);
•if (next == 'q') {
• System.out.println(“Giving up! LAME!);

•keepPlaying = false;
•} }

What does this display?
● public class Counter {
● public static void main(String[] args)
{

● final int LIMIT = 3;
● int count = 1;
●

● while (count <= LIMIT)
● count = count + 1;
● System.out.println(count);
●
●

● System.out.println("Done.");
● }
● }

What does this display?
● public class Counter {
● public static void main(String[] args)
{

● final int LIMIT = 3;
● int count = 1;
●

● while (count <= LIMIT){
● System.out.println(count);
● count = count + 1;
● }
●

● System.out.println("Done.");
● }
● }

while (x < 4)
{
 System.out.println(“I have to write “
 + “this over and over.”);
 x++;
}

Components of a “while” loop
condition

while (x < 4)
{
 System.out.println(“I have to write “
 + “this over and over.”);
 x++;
}

Components of a “while” loop

loop body

Definition: “iteration”

An iteration is a single execution of
the instructions in the loop body.

int x = 0;

while (x < 4) {
 System.out.println(“I have to write “
 + “this over and over.”);
 x++;
}

This loop consists of 4 iterations.

I have to write this over and over.
I have to write this over and over.
I have to write this over and over.
I have to write this over and over.

int x = 4;

while (x > 4) {
 System.out.println(“I have to write “
 + “this over and over.”);
 x++;
}

How many iterations does the
following loop consist of?

int x = 6;

while (x > 4) {
 System.out.println(“I have to write “
 + “this over and over.”);
 x--;
}

How many iterations does the
following loop consist of?

int x = 6;

while (x < 4) {
 System.out.println(“I have to write “
 + “this over and over.”);
 x++;
}

How many iterations does the
following loop consist of?

Logic of a while Statement

condition

statement

(rest of the program)

true

false

What is wrong here?
• public class Abyss {
• public static void main(String[] args) {
• int count = 1;
•
• System.out.println("I'm going in...");
•
• while (count <= Integer.MAX_VALUE) {
• System.out.println(count);
• count = count - 1;
• }
•
• System.out.println("Found the bottom of the

abyss!");
• }
• }
•

Infinite Loops:
A Common Logical Error

•An infinite loop executes until the user interrupts (terminates)
the program.
•This is what happens when the statements in the body of a
while loop never update the loop condition to false

What will be displayed? Why is it the wrong result?
Correct the program so that it displays the right sum.

• public class Sum {
• public static void main(String[] args) {
• final int MAX = 5;
• int sum = 0;
• int i = 1;
•
• while(i < MAX) {
• sum = sum + i;
• System.out.println("Sum: " + sum);
• i = i + 1;
• System.out.println("i: " + i);
• System.out.println();
• }
•
• System.out.println("The sum of integers from 1 to "

+
• MAX + " is: " + sum);
• }
• }

Sum
Sum: 1
i: 2

Sum: 3
i: 3

Sum: 6
i: 4

Sum: 10
i: 5

The sum of the integers from 1 to 5 is: 10

Off-By-One Errors
•It is a common logical error to write loop conditions that result
in the loop body being executed one time too few, or one time
too many
•You should always test your code to check that your loops
conditions do not cause such errors

What will be displayed? Why is it the wrong result?
Correct the program so that it displays the right sum.

• public class AnotherSum {
• public static void main(String[] argv) {
• final int MAX = 5;
• int i = 0;
• int sum = 0;
•
• while(i <= MAX) {
• i = i + 1;
• System.out.println("i: " + i);
• sum = sum + i;
• System.out.println("sum: " + sum);
• System.out.println();
• }
•
• System.out.println("The sum of integers from 1 to "

+
• MAX + " is: " + sum);
• }
• }

i: 1
sum: 1

i: 2
sum: 3

i: 3
sum: 6

i: 4
sum: 10

i: 5
sum: 15

i: 6
sum: 21

The sum of the integers from 1 to 5 is: 21

General loop tips
•Try to think of exactly what it is that you want to do over and
over again
•Figure out the range of values you want to try again and again.
Is the loop counter also used in the computation?
•Make sure that your loop starts or initializes with the right
result
•Make sure that your loop terminates with the correct result

Nested Loops
•Like if and if-else statements, loops can be nested as well
•Every time the body of the outer loop is executed, the inner loop
will go through its entire set of iterations

What does this display?
• public class NestedLoop {
• public static void main(String[] args) {
• final int MAX = 4;
• int outerCount, innerCount;
•
• outerCount = 1;
• while(outerCount <= MAX) {
• innerCount = 1;
• while (innerCount <= MAX) {
• System.out.print("(" + outerCount + "," + innerCount +
• ") ");
• innerCount++;
• }
• System.out.println();
• outerCount++;
• }
• System.out.println("Done.");
• }
• }

(1,1) (1,2) (1,3) (1,4)
(2,1) (2,2) (2,3) (2,4)
(3,1) (3,2) (3,3) (3,4)
(4,1) (4,2) (4,3) (4,4)
Done.

What does this display?
• public class AnotherNestedLoop {
• public static void main(String[] args) {
• final int MAX = 4;
• int outerCount, innerCount;
•
• outerCount = 1;
• while(outerCount <= MAX) {
• innerCount = 1;
• while (innerCount <= outerCount) {
• System.out.print("(" + outerCount + "," + innerCount +
• ") ");
• innerCount++;
• }
• System.out.println();
• outerCount++;
• }
• System.out.println("Done.");
• }
• }

(1,1)
(2,1) (2,2)
(3,1) (3,2) (3,3)
(4,1) (4,2) (4,3) (4,4)
Done.

Part 2: The for Statement

for(int x = 0; x < 4; x++) {
 System.out.println(“I have to write “
 + “this over and over.”);
}

Example: a “for” loop

I have to write this over and over.
I have to write this over and over.
I have to write this over and over.
I have to write this over and over.

“for” loops are a little different,
but still quite similar

•

• for (initialization; condition;
follow-up action)

• One statement
•

•

•

•

•

• for (initialization; condition;
follow-up action)

• One block of statements
•

•

for(int x = 0; x < 4; x++)
{
 System.out.println(“I have to write “
 + “this over and over.”);
}

Components of a “for” loop

Logic of a for Statement

condition
evaluated

statement

(rest of the program)

truefalse

initialization

increment

Logic of a for Statement

x<5

{loop body}

(rest of the program)

truefalse

x=0

x++

for Loops as while Loops
•A for loop is equivalent to the following while loop structure:

initialization;
while (condition) {

statement;
increment;

}

for Loops as while Loops
•A for loop is equivalent to the following while loop structure:

initialization;
while (condition) {

statement;
increment;

}

•Excellent exercise to do at home!
•Find a for-loop example and:
•Rewrite it as a while loop
•Rewrite it as a series of if-else statements.

Execution of a for Loop
•Like in a while loop, the condition of a for loop is tested prior
to entering the loop body
•If the condition of a for loop evaluates to false initially (that
is, it evaluates to false the first time it is evaluated), the
statement is never executed
•Therefore, the body of a for loop will be executed zero or more
times
•A for loop is well suited for executing a specific number of
times that can be determined in advance

AnotherCounter.java
• public class AnotherCounter {
• public static void main(String[] args) {
• final int LIMIT = 3;
•
• for (int count=1; count <= LIMIT; count++) {
• System.out.println(count);
• }
•
• System.out.println("Done.");
• }
• }

AnotherCounter.java
• public class AnotherCounter {
• public static void main(String[] args) {
• final int LIMIT = 3;
•
• for (int count=1; count <= LIMIT; count++) {
• System.out.println(count);
• }
•
• System.out.println("Done.");
• }
• }

What does this display?
count:

LIMIT: 3

1 2 3 4

Console:
1

2

3

Done.

What shape does this display?
• public class Stars {
• public static void main (String[] args) {
• final int MAX_ROWS = 10;
•
• for (int row = 1; row <= MAX_ROWS; row++)
{

• for (int star = 1; star <= row; star++)
{

• System.out.print("*");
• }
• System.out.println();
• }
• }
• }

*
**

Exercise:
In this exercise, you will write
methods to write a small portion of
a chess game. You will write
methods that list the squares a
piece can move to.

-Each method should take as input 1)a
char representing the file (column)
the piece is on and 2)and int
representing the rank (row) the
piece is on. Files go from a-h
(inclusive). Ranks go from 1-8

Exercise:
Write a class ChessMoves which has the
following methods

void printRookMoves(char file, int rank)
void printBishopMoves(char file, int rank)
void printQueenMoves(char file, int rank)
void printPawnMoves(char file, int rank)
void printKingMoves(char file, int rank)
void printKnightMoves(char file,int rank)

(You may assume that no pieces are in the
way or captures can be made)

Ex: printRookMoves :

public static void printRookMoves(
 char file, int rank) {

for (char c = 'A'; c <= 'H'; c++) {
if (c != file) {

System.out.println(c + “” + rank);
}

}
for (int r = 1; r <= 8; r++) {

if (r != rank) {
System.out.println(file + “” + r);

}
}

}
//write this with a while loop instead!

What Shape does this Display?
• public class WhatIsThis {
• public static void main(String[] args) {
• final int MAX_ROWS = 10;
• for (int row = 1; row <= MAX_ROWS; row++) {
• for (int space = 1; space <= MAX_ROWS - row; space++) {
• System.out.print(" ");
• }
• for (int star = 1; star <= row * 2; star++) {
• System.out.print("*");
• }
• System.out.println();
• }
• for (int base = 3; base > 0; base--) {
• for (int space = 1; space <= MAX_ROWS-1; space++) {
• System.out.print(" ");
• }
• System.out.println("**");
• }
• }
• }
•

 **

 **
 **
 **

Details on the for Statement
•Each expression in the header of a for loop is optional
–If the initialization portion is left out, no initialization is performed
–If the condition portion is left out, it is always considered to evaluate to
true, and therefore creates an infinite loop
–If the increment portion is left out, no increment operation is performed

•Both semi-colons are always required in the for loop header

for Loop: Exercise 1
•Complete the main() method of the Multiples class by adding
code that displays all the multiples of a number entered by the
user that exist between 1 and an upper limit also entered by the
user
–The completed program MUST display 5 multiples of the number entered
by the user per line, except for the last line, which may contain less
–In addition, the completed program MUST display a tab character (
'\t') between every multiple displayed on a line
–Finally, the completed program MUST use a for loop to generate and
display the multiples of the number entered by the user

Multiples.java (1 / 2)
• import java.util.Scanner;
•
• public class Multiples {
• public static void main(String[] args) {
• Scanner keyboard = new Scanner(System.in);
• final int PER_LINE = 5;
• int value;
• int limit;
•
• System.out.print ("Enter a positive value: ");
• value = keyboard.nextInt();
• System.out.print ("Enter an upper limit: ");
• limit = keyboard.nextInt();
•
• System.out.println ("The multiples of " + value +
• " between " + value + " and " + limit +
• " (inclusive) are:");
• // Continued on next slide

Multiples.java (2 / 2)
• // Continued from previous slide
•
• // Add your code here
• }
• }

for Loop: Exercise 2
•Complete the main() method of the Approximation class by
adding code that approximates the number e (the basis of the
natural logarithm). The number e can be approximated by the
following sum: e = (1 / 0!) + (1 / 1!) + (1 / 2!) + (1 / 3!) + ...
–The main() method of the Approximation class asks the user to enter the
number of terms of be computed; your task is to add code which computes
each of these terms and adds them together to form the approximation of e

•The obvious way of solving this problem involves using nested
loops, where the inner loop computes the required factorial
during every iteration of the outer loop. Can you find a way to
solve this problem using only one loop?

Approximation.java
• import java.util.Scanner;
•
• public class Approximation {
• public static void main(String[] args) {
• Scanner keyboard = new Scanner(System.in);
• int n;
•
• System.out.print("Please enter the number of terms: ");
• n = keyboard.nextInt();
•
• // Add your code here
• }
• }

Stars.java
• public class Stars {
• public static void main (String[] args) {
• final int MAX_ROWS = 10;
•
• for (int row = 1; row <= MAX_ROWS; row++) {
• for (int star = 1; star <= row; star++) {
• System.out.print("*");
• }
• System.out.println();
• }
• }
• }

What shape does this program display?

WhatIsThis.java (1 / 2)
• public class WhatIsThis {
• public static void main(String[] args) {
• final int MAX_ROWS = 10;
•
• for (int row = 1; row <= MAX_ROWS; row++) {
• for (int space = 1; space <= MAX_ROWS - row; space++) {
• System.out.print(" ");
• }
• for (int star = 1; star <= row * 2; star++) {
• System.out.print("*");
• }
• System.out.println();
• }
•
• for (int base = 3; base > 0; base--) {
• for (int space = 1; space <= MAX_ROWS-1; space++) {
• System.out.print(" ");
• }
• // Continued on next slide

WhatIsThis.java (2 / 2)
• // Continued from previous slide
• System.out.println("**");
• }
• }
• }

What shape does this program display?

Part 4: Exercises

Exercises (1)
1.Write a program which consists of a single class called Factor
that asks the user to enter a positive integer (including zero). The
program then displays that number and its greatest prime factor.
The program repetitively does this until the user inputs a
negative number.

Exercises (2)
2.Write a program which consists of single class called Boxes
that asks the user for a positive integer number n. The program
then displays a solid square with side length n next to a hollow
square with side length n. The program does nothing if the user
inputs 0 or a negative value. If example, if the user enters 4, the
following will be displayed:

**** ****
**** * *
**** * *
**** ****

Exercises (3)
3.One can approximate the square root of any number a using
the following sequence:

x
0
 = a / 2

x
i+1

 = (x
i
 + a / x

i
) / 2

Write a program which consists of a single class called
SquareRoot. This class defines a main() method that asks the
user to enter a number a, and a number of iterations n, and reads
these values from the keyboard. The program then computes the
nth term in the above sequence, thus approximating the value of
of the square root of a, and displays it to the screen.

Assignment Operators (1)
Example 1:

total += 5;
is equivalent to

total = total + 5;

•Example 2:
result *= count1 + count2;

is equivalent to
result = result * (count1 + count2);

